Градуирование и корректировка датчика температуры для самостоятельного использования (без термопары) при помощи нелинейного динамического моделирования
Апробация метода градуирования и корректировки датчика температуры, при помощи нелинейного динамического моделирования на основе алгоритма метода или модели NARMAX (нелинейной авторегрессивной модели). Построение датчика на основе термистора и термопары.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 06.05.2018 |
Размер файла | 420,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Градуирование и корректировка датчика температуры для самостоятельного использования (без термопары) при помощи нелинейного динамического моделирования
Г.Н. Лукьянов1, С.А. Полищук2, И.С.Ковальский3
1Доктор технических наук, 2Аспирант, 3Аспирант, Университет ИТМО
Аннотация
Представлена апробация метода градуирования и корректировки датчика температуры, при помощи нелинейного динамического моделирования на основе алгоритма метода или модели NARMAX (Non-Linear Auto-Regressive Moving Average with Exogeneous Inputs, то есть нелинейной авторегрессивной модели скользящего среднего значения с внешними входами). Датчик построен на основе термистора и термопары. Градуирование и корректировка датчика необходимо для его самостоятельного использования без термопары.
Ключевые слова: нелинейное динамическое моделирование, NARMAX, датчик, термистор, термопара, результаты температурных измерений, синхронизация.
N. Lukyanov1, S. A. Polistshouk2, I. S. Kowalski3
1doctor of technical Sciences, 2post graduate student, 3postgraduate student, University ITMO
CALIBRATION AND ADJUSTMENT OF TEMPERATURE SENSOR FOR INDEPENDENT USE (WITHOUT THERMOCOUPLE) USING NONLINEAR DYNAMIC MODELING
Abstract
The method has been evaluated calibration and adjustment of temperature sensor using nonlinear dynamic simulation based on the algorithm of the method or model NARMAX (Non-Linear Auto-Regressive Moving Average with Exogeneous Inputs, i.e. nonlinear autoregressive models moving average with external inputs). The sensor is based on the thermistor and thermocouple. Calibration and adjustment of the sensor is necessary for its independent use without thermocouple.
Keywords: nonlinear dynamic modeling, NARMAX, sensor, thermistor, thermocouple, temperature measurements, synchronization.
Известно, что процессы, протекающие в природе, в большинстве случаях являются периодическими, нелинейными и динамическими. К таким процессам относятся нестационарные процессы теплообмена, в частности теплообмен при кипячении воды. Для проведения и мониторинга температурных измерений создаются разнообразные датчики температуры на основе термопар и термисторов. При проведении температурных измерений новыми датчиками возникают вопросы, связанные с их корректировкой и градуированием. Для этого существуют несколько способов, таких как использование эталонных процессов, где заранее известно поведение процесса и статистические методы. Одним из таких методов является нелинейное динамическое моделирование.
Для построения динамических моделей можно применять, например, метод ARMAX (Auto-Regressive Moving Average with Exogeneous Inputs), реализованный в пакете MATLAB. Однако процедура ARMAX строит только линейные модели и ее целевая функция линейна по управляющим переменным. Для устранения этих недостатков разработана нелинейная модель на основе метода NARMAX (Non-Linear Auto-Regressive Moving Average with Exogeneous Inputs) [1,2,3], которая обладает следующими достоинствами:
1. модели NARMAX подходят для описания обширной области нелинейного динамического поведения процессов;
2. модели NARMAX удобны для описания реальных процессов
Целью настоящей работы является апробация применения модели NARMAX для апробации метода градуирования и корректировки датчика температуры, при помощи нелинейного динамического моделирования. Для этого нужно решить задачу нелинейного динамического моделирования на основе экспериментально зарегистрированных рядов наблюдений информационных процессов. Информацией для построения нелинейной динамической модели NARMAX служат результаты синхронных измерений колебаний температуры при кипячении воды.
В работе впервые продемонстрировано применение метода NARMAX для корректировки и градуирования датчика температуры.
В работе проведено исследование модели, с двумя входами (сигналы от термопары и термистора). В экспериментах использовался прибор датчик температуры, схема которого показана на рисунке 1. Датчик разработанный на кафедре Сенсорики Университета ИТМО. Этот датчик содержит термопару, имеющую высокую инерцию к изменению температуры, и термистор, имеющий низкую инерцию к изменению температуры. Данное исследование необходимо для самостоятельного использования датчика без термопары. Это обусловлено снижением стоимости производства датчика.
Рис. 1 - Схема датчика температуры
градуирование датчик температура термистор
Вышесказанное говорит о научной новизне этой работы
Описание и решение проблемы
Использована нелинейная авторегрессивная модель скользящего математического ожидания с внешними входами по методу NARMAX [2]. Математически она представляет собой полиномиальное выражение, состоящее из последовательности многочленов. Численные коэффициенты элементов многочленов данной последовательности являются элементами матрицы коэффициентов, встраиваемую в модель по окончании итерационного процесса построения модели. Указанный процесс проиллюстрирован на рисунке 2 далее на примере сопоставления результатов температурных измерений при дыхании человека и расчета по модели.
Рис. 2 - Реакция модели на процесс: 1 - значения температуры вдыхаемого-выдыхаемого воздуха на входе в ноздри, 2 - модель на этапе подстройки под процесс дыхания
На этом рисунке также показан принцип действия метода NARMAX для построения нелинейных динамических моделей. Из имеющегося набора данных одновременно анализируются от 100 до 1000 отсчетов, составляющих апертуру («окно») метода. Размер «окна» установлен экспериментально. Модель (рис. 2, кривая 2) ведет себя как реальный физический прибор, подстраиваясь под описываемый процесс (кривая 1) по экспоненте (кривая 3). По окончании очередной итерации метод NARMAX выводит результат моделирования, после чего смещает «окно» на один отсчет и проводит очередную итерацию. Также модель может быть использована в качестве цифрового фильтра, который может очищать входной сигнал от нежелательных помех и ненужных для исследования частот. В настоящее время разрабатывается математический аппарат для адаптивной настройки этого фильтра.
Аналитически принцип действия метода NARMAX можно представить на примере работы с полиномиальными выражениями, состоящими из последовательностей многочленов, которые являются математическим представлением моделей синхронизации электрического сигналов, идущих от термопары и термистора. Метод NARMAX, используя процедуру ортогонализации, позволяет произвольно менять степень этих многочленов. Эта особенность данного метода использована для фиксирования всех экстремумов исследуемых процессов, т. е. повышения чувствительности модели. При этом на каждой итерации не только подбираются степени многочленов, но и проверяется значимость вклада его членов в модель. Незначимые члены метод NARMAX отбрасывает - их коэффициенты приравниваются нулю. В ходе многочисленных экспериментов по применению метода NARMAX для построения моделей, что процедура ортогонализации выбирает степень многочлена на основе соотношения дисперсий процессов и их моделей [3].
Модель сигнала, идущего от термопары:
(1),
Где (a0, a1, …, an) - это столбцы матрицы коэффициентов модели сигнала, идущего от термопары, t - дискретное время, ф - временная задержка, в данном случае равная нулю, модель сигнала, идущего от термистора:
(2),
где (b0, b1, …, bn) - это столбцы матрицы коэффициентов модели сигнала, идущего от термистора
Общая модель сигналов идущих от термистора и термопары:
(3)
Модель ведет себя как реальный физический прибор, подстраиваясь под описываемый процесс по экспоненте, что показано на рис. 2. Это было выявлено в ходе проведенного исследования возможностей данной модели. Также модель может быть использована в качестве цифрового фильтра, который может очищать входной сигнал от нежелательных помех и ненужных для исследования частот.
Если рассматривать потоки данных, которые подаются на входы в модель как совокупность векторов равной длины, то данные векторы можно объединить в одну матрицу, которая удобно может быть представлена в виде таблицы данных. Использование такой таблицы данных существенно сокращает время на построение модели с несколькими входами.
На рис. 3 показана блок-схема, где наглядным образом представлено построение общей модели сигналов, исходящих из термопары и термистора.
Рис. 3 - Схема модели NARMAX. К первому входу подан сигнал исходящий от термопары, ко второму входу подан сигнал, исходящий от термистора.
Столбцы матрицы коэффициентов модели сигнала термопары(a0, a1, …, an), а также столбцы матрицы коэффициентов модели сигнала термистора (b0, b1, …, bn), представляют собой числовые ряды.
На следующем рисунке 4 представлены результаты коррекции температурных измерений термопарой и термистором при кипении воды. Кривая 1 указывает температурные измерения, полученные при помощи термопары, кривой 2 - при помощи термистора. Кривой 3 показана корректировка температурных измерений, полученная при помощи метода NARMAX с использованием общей модели NARMAX. В данном случае был применён MISO - вариант общей модели, то есть модели, которая имеет много входов в модель NARMAX и один выход из этой модели, при которой данная корректировка является выходом общей модели NARMAX. На входы в эту модель поданы температурные измерения термопарой (первый вход) и термистором (второй вход).
Рис. 4 - Результаты коррекции температурных измерений термопарой и термистором при кипении воды
Интервал измерений длительностью одну минуту на рисунке выделен двойной стрелкой. Характерные выдающиеся пики, представленные на рисунке, обусловлены некоторыми особенностями работы измерительных приборов. Температурные измерения проводились с частотой 1 кГц, а также были нормированы по средним значениям.
На рисунке 5 представлен процесс закипания воды более подробно.
Рис. 5 - Процесс закипания воды.
На рисунке 6 представлен процесс остывания воды также более подробно.
Рис. 6 - Процесс остывания воды.
Исходя из представленных выше графиков, показанных на рисунках 4, 5 и 6 видно, что общая модель сигналов идущих с термопары и термистора позволяет градуировать и корректировать представленный датчик температуры. Соответственно, датчик температуры может работать самостоятельно, то есть без термопары. В настоящее время датчик проходит калибровку при различных температурных режимах, поэтому на оси ординат указаны нормированные значения сигналов в милливольтах.
Заключение
Проведено исследование возможностей применения метода NARMAX как метода градуирования и корректировки датчика температуры,
На основе метода NARMAX создана общая модель сигналов термопары и термистора, которая произвела соответствующую корректировку и градуирование разработанного датчика температуры.
Литература
1. Billings S.A. Orthogonal least squares methods and their application to non-linear system identification // Int. J. Control. - 1989. - V. 50. - № 5. - P. 1873-1896.
2. Лукьянов Г.Н., Рассадина А.А., Дранишникова О.А., Скирмандт Е.В., Усачев В.И. Исследование тепло- и массообменных характеристик человеческого дыхания // Приборостроение. - 2005. - № 5. - С. 68-73.
3. Лукьянов Г. Н. Полищук С. А. Нелинейное динамическое моделирование взаимосвязи процессов дыхания и сердцебиения человека на основе проведенных измерений // Науч.-технич. вестн. информационных технологий, механики и оптики . 2013. № 4 (86). С. 67-72.
Размещено на Allbest.ru
...Подобные документы
Характеристика технологического процесса, конструкции доменной печи. Автоматизация процесса, задачи управления. Выбор термопары, датчика расхода, исполнительного механизма. Техническое обслуживание первичного датчика системы автоматического регулирования.
курсовая работа [5,2 M], добавлен 07.12.2014Технология проведения монтажных работ, настройка и калибровка датчика давления Метран-150-CD. Принцип действия и способы устранения неисправностей датчика. Ремонт и обработка прибора, корректировка его с помощью настроечного механизма водосчетчика.
отчет по практике [190,4 K], добавлен 18.04.2015Обоснование приборов и устройств автоматического контроля и регулирования экстрактора противоточного типа. Выбор датчика давления в теплообменнике, расходомера, датчика температуры, регуляторов, уровнемера. Спецификация на выбранные средства измерения.
курсовая работа [831,3 K], добавлен 06.03.2011Особенности и сущность метода динамического молекулярного моделирования. Параметры потенциала, относительный коэффициент диффузии. Специфика распределения атомов в структуре системы. Координационное число для Li-Oet. Сфера использования этого метода.
презентация [250,4 K], добавлен 24.10.2013Применение холода для сохранения скоропортящихся пищевых продуктов, необходимость автоматического поддержания температуры. Обоснование требований к диапазону датчика и допустимой погрешности измерений автоматической регулировки холодильной установки.
курсовая работа [712,2 K], добавлен 03.05.2017Исследование моделирования медицинского аппарата пульсовой аналитической системы. Задача оценки степени объективности метода моделирования применительно к объекту. Использование метода декомпозиции. Рекомендации по применению алгоритма моделирования.
статья [23,6 K], добавлен 06.09.2017Выбор элементной базы локальной системы управления. Выбор датчика угла поворота, двигателя, редуктора, усилителя, реле и датчика движения. Расчет корректирующего устройства. Построение логарифмической амплитудной частотной характеристики системы.
курсовая работа [710,0 K], добавлен 20.10.2013Построение технологической схемы объекта автоматического регулирования. Выбор датчика уровня жидкости в емкости, пропорционального регулятора, исполнительного механизма, электронного усилителя. Расчет датчика обратной связи, дискретности микроконтроллера.
курсовая работа [1,7 M], добавлен 20.10.2013Принцип работы системы привода транспортной машины. Выбор дистанционного датчика температуры, усилителя, электромеханического преобразователя сигнала. Функции звеньев системы. Переходный процесс скорректированной системы автоматического управления.
курсовая работа [1,7 M], добавлен 17.02.2014Принципы работы датчиков перемещения предметов, их практическое применение. Бесконтактная связь между элементами в устройствах. Разработка конструкции датчика и технического процесса сборки измерительной систем. Редактирование габаритных размеров датчика.
курсовая работа [525,2 K], добавлен 06.11.2009Назначение и область применения, конструкция и принцип действия индукционного датчика угла с подвижной катушкой. Вывод формул для определения величины и крутизны выходного сигнала, технические данные датчика, его погрешности, достоинства и недостатки.
курсовая работа [498,9 K], добавлен 17.10.2009Построение функциональной схемы системы автоматического управления кухонным комбайном. Выбор микропроцессора, электронного усилителя напряжения, электропривода, резервуара, датчиков температуры и концентрации. Расчет характеристик датчика обратной связи.
курсовая работа [790,4 K], добавлен 20.10.2013Применение устройств для измерения давления, основанных на принципе пьезоэлектрического преобразования. Принцип получения сигнала. Характеристика устройства датчика избыточного давления Yokogawa EJA430 на приеме нефтеперекачивающей станции ЛПДС "Торгили".
курсовая работа [941,1 K], добавлен 25.12.2012Контроль температуры различных сред. Описание принципа бесконтактного метода измерения температуры. Термометры расширения и электрического сопротивления. Манометрические и термоэлектрические термометры. Люминесцентный метод измерения температуры.
курсовая работа [93,1 K], добавлен 14.01.2015Общие сведения о термопреобразователях. Выбор датчика температуры по исходным данным; анализ и расчет погрешностей устройства. Характеристика современных измерительных приборов - аналоговых и цифровых милливольтметров, микропроцессоровых аппаратов.
курсовая работа [440,8 K], добавлен 08.03.2012Расчет вала на изгиб и сечения балки. Разработка конструкции узла механизма. Выбор кинематической схемы аппарата. Описание предлагаемой конструкции. Расчет геометрических параметров пружины. Расчет погрешности механизма датчика для второго положения.
курсовая работа [2,0 M], добавлен 24.12.2011Технология понижения температуры методом откачки паров, процесса изготовления детали типа "прокладка", для установки агрегата АВЗ-180 на фундаментальную плиту. Исследование азотного датчика криогенного уровнемера с целью проверки его характеристики.
дипломная работа [5,8 M], добавлен 13.02.2014Состав локальной системы автоматического управления (САУ). Выбор термоизмерительного датчика давления. Расчет датчика перемещения обратной связи локальной системы управления. Выбор усилителя мощности, двигателя, редуктора. Расчет передаточной функции САУ.
курсовая работа [1,1 M], добавлен 20.10.2013Понятие модели системы. Принцип системности моделирования. Основные этапы моделирования производственных систем. Аксиомы в теории модели. Особенности моделирования частей систем. Требования умения работать в системе. Процесс и структура системы.
презентация [1,6 M], добавлен 17.05.2017Определение параметров и проектирование расчетной схемы механической части электропривода. Выбор комплектного преобразователя и датчика координат электропривода. Разработка программного обеспечения для компьютерного моделирования электропривода.
курсовая работа [845,8 K], добавлен 25.04.2012