Технология получения винилацетата в промышленности

Основные свойства и направления применения винилацетата. Исследование методов получения органического соединения класса сложных эфиров из ацетилена и уксусной кислоты газофазным и жидкофазным способом. Главные принципы создания безотходных технологий.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 23.03.2018
Размер файла 339,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Свойства винилацетата

2. Применение винилацетата

3. Общие методы получения винилацетата

4. Технология получения винилацетата окислением этилена в присутствии уксусной кислоты

Список используемой литературы

Введение

Среди кислородосодержащих соединений, получаемых в промышленности основного органического и нефтехимического синтеза, сложные виниловые эфиры, наиболее важным из которых является винилацетат, занимают одно из первых мест.

Значение винилацетата возросло с развитием промышленности пластиков, так как он полимеризуется с образованием смол, обладающих хорошими механическими и оптическими свойствами. Широкое распространение в промышленности винилацетат нашел, прежде всего, в качестве мономера.

Поэтому, в связи с широкой применимостью в промышленности винилацетата, перед современной химической промышленностью стоит задача разработать методы и пути интенсификации получения винилацетата, улучшения качества продукта, уменьшения затрат на ее производство.

Цель работы: ознакомиться с технологией получения винилацетата в промышленности.

1. Свойства винилацетата

Винилацетат (СН2 = CH- OCO- CH3 ) относится к сложным виниловым эфирам и представляет собой виниловый эфир уксусной кислоты. Винилацетат - бесцветная жидкость с характерным запахом. [1]

Регистрационный номер CAS - 108-05-4 [2]

Физические свойства: Тпл = - 93°С, Ткип = 72,7°С. [2]

Молекулярная масса - 86,09 г/моль. [2]

Плотность с = 0,934 г/см3 [2]

Химические свойства: хорошо растворим в обычных органических растворителях; растворимость в воде при 20° С составляет 2,0 - 2,4% (мас). Винилацетат образует азеотропные смеси с водой, спиртами, углеводородами. [2]

Винилацетат способен и к сополимеризации с теми мономерами, для которых характерна полимеризация, протекающая по свободно-радикальному механизму. Важнейшим свойством винилацетата выступает его способность к полимеризации, которая протекает по ионному механизму и катализируется кислотными агентами (протонными - НСlO4 , Н3 РО4 , Н2 SO4 , CF3 COOH и др. и апротонными (кислоты Льюиса) - BF3 , SbCl5 , SnCl4 , А1С13 , TiCl4 , ZnCl2 и др. [2]

2. Применение винилацетата

На схеме ниже показаны основные направления применения винилацетата [2].

Поливинилацетат [ - СН2 СН (ОСОСН3 ) -] n является нетоксичным бесцветным термопластическим материалом, плохо поглощающим воду. Благодаря растворимости во многих органических растворителях, эластичности и адгезионным свойствам поливинилацетат обладает высокой клеящей способностью и применяется для производства водорастворимых латексных красок, клеев, для аппретирования тканей и наиболее пригоден в качестве материала для горячей укупорки покрытий. Кроме того, широко распространены его сополимеры с винилхлоридом (винилит), этиленом, эфирами акриловой кислоты, стиролом [2].

Поливиниловый спирт ПВС [ - СН2 СН (О H) -] n растворим в воде и используется в качестве эмульгатора и загустителя водных растворов, а также для изготовления бензостойких и маслостойких шлангов, уплотнителей, маслонепроницаемой бумаги и, главным образом, волокна, выпускаемого под разными названиями: "винол", "винал" (США), "куралон", "винилон" (Япония) [2].

Поливинилацетали обладают высокой адгезией к различным поверхностям и применяются в клеевых композициях, в качестве связывающих в производстве стеклотекстолита, для электроизоляционных покрытий.

В частности, промышленное значение имеют: поливинилформаль - при производстве эмалей (в сочетании с резольными смолами) для покрытия электропроводов, при изготовлении связующих, а также бензостойких пленок и баков для бензина, в которых самопроизвольно затягиваются отверстия, возникающие при повреждениях; поливинилэтилаль - при производстве высокостойких бесцветных пленок и связующих для покрытия по дереву;поливинилбутираль (бутвар) - в качестве материала для прослоек в многослойных автомобильных и самолетных безосколочных стеклах, при производстве клеев, пленок, покрытий[2].

Сополимерам с винилхлоридом [ - СН2 СН (ОСОСН3 ) -] х [ - СН2 СН Cl ] y ( 97 - 75% по масс.последнего) часто присваиваются торговые названия ПВХ: весталит, хосталит, виннол (ФРГ), люковил (Франция), кюрвик, джеон (Великобритания), сикрон, виплавил (Италия), сольвик (Бельгия) и др.

Сополимеры с этиленом [ - СН2 СН (ОСОСН3 ) -] х [ - СН2 СН2 -] у находят широкое применение в производстве различных типов плёнок, кабельных оболочек, транспортёрных лент, в качестве присадок, улучшающих низкотемпературные характеристики нефтепродуктов, клеев - расплавов и в других областях техники.

3. Общие методы получения винилацетата

Метод получения из ацетилена и уксусной кислоты газофазным способом.

Тщательно очищенный ацетилен насыщают парами уксусной кислоты и подогретую парогазовую смесь направляют в трубчатый контактный аппарат. Трубки контактного аппарата заполнены катализатором - ацетатом цинка или кадмия на высокопористом носителе (активированный уголь, силикагель, оксид алюминия). Температура процесса 180 - 200 °С. В начальный период катализатор обогревают высококипящим органическим теплоносителем, циркулирующим в межтрубном пространстве контактного аппарата; при установившемся процессе тепло реакции требуется отводить, что осуществляется при помощи этого же теплоносителя, охлаждаемого в выносном холодильнике. Парофазное винилирование проводят при большом избытке ацетилена. Чем выше мольное отношение ацетилена к уксусной кислоте, тем больше степень превращения кислоты за один проход через катализатор. Наибольшая степень превращения достигается при мольном отношении ацетилена к кислоте от 8: 1 до 10:

1. Однако вследствие трудности последующего выделения винилацетата из очень разбавленных контактных газов приходится проводить при значительно меньшем избытке ацетилена (4:1 и 3:1).

1). При этом степень превращения за один проход снижается и увеличивается количество непрореагировавшей кислоты, которую выделяют из контактных газов и возвращают в процесс [1].

Метод получения из ацетилена и уксусной кислоты жидкофазным способом. Жидкофазный процесс производства винилацетат осуществляют при 60 - 65 ° С, пропуская с большой скоростью избыток ацетилена через реактор, в котором находится смесь ледяной уксусной кислоты и уксусного ангидрида, содержащая диспергированные ртутные соли. Винилацетат по мере его образования выводится из зоны реакции в виде паров, увлекаемых избыточным ацетиленом. Пары винилацетата конденсируют и направляют на ректификацию. Отделяемый от жидкости ацетилен возвращают в производственный цикл[3].

Из двух представленных методов получения винилацетата из ацетилена и уксусной кислоты в Российской Федерации, в основном, используется газофазный способ. Жидкофазное получение более популярно за рубежом.

4. Технология получения винилацетата окислением этилена в присутствии уксусной кислоты

В реакциях с этиленом происходит прямое окислительное замещение атома водорода в молекуле этилена группами на комплексных катализаторах, содержащих переходные металлы[3].

Отечественными учеными (Я.К. Сыркин, И.И. Моисеев, М.Н. Варгафтик) было показано, что при пропускании этилена через раствор PdCl2 в уксусной кислоте в присутствии ацетата натрия образуется винилацетат. При этом также образуются ацетальдегид и этилидендиацетат.

Эта реакция ацетоксилирования этилена в присутствии восстановленного катализатора, в которой происходит замещение водорода в этилене группой СН2 СОО - в присутствии кислорода. В качестве катализатора предложены хлорид и бромид палладия, ацетат палладия, металлический палладий. Для сравнения рассмотрим основные закономерности и технологию получения винилацетата окислением этилена в среде уксусной кислоты, как на гомогенном, так и на гетерогенном катализаторах.

В промышленности винилацетат жидкофазным окислением начали получать в 1965 г., парофазным окислением - в 1970 г. [3].

Жидкофазный способ.

Теоретические основы.

По этому методу промышленное применение получил катализатор, содержащий анион хлора и катионы Pd, Сu и щелочного металла в среде уксусной кислоты. Жидкофазный процесс синтеза винилацетата включает следующие стехиометрические реакции:

Реакция 1.

Реакция 1 катализируется ацетат - ионом. Металлический палладий в уксусной кислоте медленно окисляется кислородом (низкая растворимость кислорода, невысокие константы скорости реакций окисления), поэтому в систему добавляются катализаторы и промоторы для ускорения этой реакции. Такими катализаторами являются соли меди или железа, n -бензохинон, а промотором - хлорид-ион, который вводится в виде LiCl. В системе протекают реакции:

Реакция 2.

Реакция 3.

Известен промышленный способ получения винилацетата посредством взаимодействия этилена, уксусной кислоты и кислорода в присутствии гетерогенного биметаллического палладий - золотого (Pd - Au) катализатора [3], а также катализатора, который содержит катализаторный носитель, палладий, гетерополикислоту, промоутер получения винилацетата, включающий ацетат кадмия, золото, медь, никель [3].

Механизм реакции 1 включает промежуточное образование - комплексов, изомеризацию в палладий-органические соединения и гетеролитический распад последнего с образованием металлического палладия[3].

Из промежуточно образующегося карбкатиона при отщеплении протона в уксусной кислоте получается винилацетат, а при взаимодействии cэтилидендиацетат:

Схема механизма реакции представлена ниже:

Ацетат натрия, необходимый для протекания этой реакции, в случае хлорида палладия является источником ионов ацетата, участвующих во внутрисферной нуклеофильной, а также в процессе изомеризации л-комплекса в металлоорганическое соединение.[3].

Активность палладиевого катализатора синтеза винилацетата повышается почти в 10 раз при добавлении 2-10% (мас) ацетатов щелочных металлов. Эффективность действия катионов щелочных металлов убывает в последовательности:

В жидкой фазе в результате длительного контакта винилацетата с реакционной водой при каталитическом действии солей металлов и хлор - иона получается ацетальдегид. Кроме того, при непосредственном окислении этилена в присутствии воды по тому же механизму так же образуется ацетальдегид.

Изменение мольного соотношения ацетальдегид: винилацетат (л) в жидкой фазе в зависимости от содержания воды при температуре процесса 100° С (рисунок 1) [ 3].

Повышения содержания воды, температуры, длительности пребывания винилацетата в реакционной зоне, содержания палладия в растворе катализатора способствуют гидролизу винилацетата с образованием ацетальдегида [3]. винилацетат жидкофазный безотходный технология

Для полной компенсации уксусной кислоты, используемой в синтезе винилацетата, требуется определенное количество ацетальдегида. Для этой цели необходимо поддерживать мольное соотношение винилацетата и ацетальдегида, равное 1,14. Следовательно, для получения винилацетата этим методом можно использовать необезвоженную свежую уксусную кислоту и не проводить обезвоживания возвратной уксусной кислоты, что значительно снижает затраты на разделение реакционной смеси. При этом на 1 моль винилацетата можно получать 0,3-0,4 моля ацетальдегида[3].

Кроме того, выход винилацетата и ацетальдегида, конверсия исходных продуктов, выход побочных продуктов зависят от температуры и давления, при которых протекают реакции, а также от концентрации PdCl2 , соотношения Pd и Сu, соотношения между этиленом, кислородом и уксусной кислотой. Наиболее активно катализатор работает при температуре 100-130°С. Температура определяет, главным образом, скорость процесса, так как в интервале 110 - 130 °С скорость реакции при подъеме температуры на 10°С увеличивается в 1,3 раза. С ростом температуры усиливается гидролиз винилацетата, приводящий к повышению выхода ацетальдегида. Однако влияние концентрации воды на выход ацетальдегида сказывается сильнее, чем влияние температуры [3].

Повышение парциальных давлений этилена и кислорода приводит к увеличению растворимости и скорости основной реакции. При этом снижается выход этилидендиацетата. Увеличение парциального давления этилена приблизительно пропорционально увеличивает объемную производительность реактора. Например, если при парциальном давлении этилена 0,98 МПа и общем давлении 2,8 МПа получается 0,58 моль/час винилацетата, то при парциальном давлении этилена, равном 2,6 МПа, и том же общем давлении выход винилацетата доходит до 0,88 моль/час. Увеличение общего давления приводит к сокращению выхода этилидендиацетата и ацетальдегида при увеличении выхода винилацетата. В частности, при увеличении давления от 0,1 до 2,5 МПа выход этилидендиацетата уменьшается от 100 г до 16 г, а выход винилацетата увеличивается от 0,8 г до 223 г с 1 л катализатора в 1 час. В связи с этим рекомендуется давление от 0,5 до 10 МПа. Чаще всего процесс проводят при 4 МПа, так как дальнейшее повышение давления практически не оказывает влияния на выход винилацетата [3].

Большое влияние на выход винилацетата, этилидендиацетата и ацетальдегида оказывают различные растворители, которые добавляются в уксусную кислоту. Так, при добавлении в уксусную кислоту таких соединений, как мочевина и амиды, образование этилидендиацетата значительно снижается. Например, замена 50-60% уксусной кислоты N, N - диметилбензамидом в одних и тех же условиях реакции приводит к снижению выхода этилидендиацетата с 23,0 до 0,6% (считая на прореагировавший этилен). При этом выход ацетальдегида снижается с 64,0 до 18,2%, а выход винилацетата повышается с 7,6 до 41,4%. Количество таких добавок может составлять до 80% от общего содержания уксусной кислоты [3].

В данном процессе на выход винилацетата, ацетальдегида и побочных продуктов влияет состав катализаторного раствора. Так, при увеличении концентрации палладия увеличивается производительность катализатора по винилацетату и ацетальдегиду. Но при этом усиливается димеризация этилена в бутены (бутен-1, цис - и транс -бутен-2). Увеличение же содержания воды в растворе катализатора уменьшает образование бутенов. Так, при содержании ионов палладия в растворе катализатора 30-50 мг/л и содержании воды 5-15% (мас) около 5% этилена превращается в бутены и их производные. Следовательно, наблюдается конкурентная ситуация. В данном случае, вероятно, необходимо присутствие воды, снижающей активность полимеризации этилена, но приводящей к образованию ацетальдегида, который должен рассматриваться как целевой продукт. [4]

В отношении концентрации палладия в жидкой фазе существует два варианта. В одних производствах поддерживают низкую концентрацию PdCl2 , равную 0,035 - 0,35 г/л, что соответствует скоростям образования винилацетата от 100 до 120 г/л·час. В других производствах предпочитают работать с концентрацией PdCl2 около 2 г/л и достигать высоких скоростей реакции (500 г/л·час). Учитывая высокую стоимость палладия, в первом случае ориентируются на эффективную работу катализатора, а во втором - на максимально возможное использование объема дорогостоящего реактора. Тем более что катализаторный раствор и вся реакционная масса обладают высокой коррозионной способностью [3].

Таким образом, жидкофазное окисление этилена проводят при следующих условиях: температура 100-130° С; давление 3 - 4 МПа, содержание ионов Pd 30 - 50 мг/л и ионов Си 3 - 5 г/л; для отгонки полученных ацетальдегида и винилацетата используется большой избыток этилена (3 - 5 молей циркуляционных газов на 1 моль смеси ацетальдегида и винилацетата); потери хлорид-ионов компенсируются подачей НС l. В этих условиях конверсия уксусной кислоты достигает 20 - 30%, а этилена - только 2 - 3% за один проход [3].

Наряду с целевыми продуктами (винилацетатом и ацетальдегидом) образуются следующие побочные продукты: бутены, хлорорганические соединения, щавелевая и муравьиная кислоты, сложные эфиры, углекислый газ. Необходимо учитывать, что наличие щавелевой кислоты приводит к выпадению в осадок оксалата палладия [3].

Технологическое оформление.

Принципиальная технологическая схема получения винилацетата жидкофазным методом представлена на рис.1 [3]

Технологическая схема производства винилацетата жидкофазным методом: 1 - реактор; 2 - регенератор; 3 - водный конденсатор; 4 - рассольный конденсатор; 5 - сепаратор; 6 - дроссель; 7, 13 - абсорберы; 8 - десорбер; 9 - насос; 10, 12, 14, 15, 18, 20 - ректификационная колонна; 11, 16 - холодильники; 17, 19 - флорентийские сосуды; I - этилен; II - кислород; III - уксусная кислота; IV - углекислый газ; V - ацетальдегид; VI - винилацетат; VII - тяжёлые примеси; VIII - фузельная вода; IX - газы сдувки на сжигание; X - вода; XI - раствор карбоната натрия [3].

Этилен, кислород, уксусную кислоту и катализаторный раствор, содержащий ацетаты и хлориды палладия, меди и щелочного металла в среде уксусной кислоты, подают в нижнюю часть реактора 1 , заполненного катализаторным раствором. Отходящая из реактора парогазовая смесь проходит последовательно водный 3 и рассольный 4 конденсаторы , где конденсируются винилацетат, ацетальдегид, вода, непрореагировавшая уксусная кислота и другие побочные продукты. В сепараторе 5 происходит отделение конденсата от непрореагировавших и несконденсированных этилена, кислорода и инертных примесей. Часть несконденсированных газов возвращается в реактор 1 , а остальные после дросселирования поступают в абсорбер 7 для улавливания СО2 . Абсорбер орошается раствором Na2 CO3 , который образует NaHCO3 , последний затем разлагается при нагревании в десорбере с выделением СО2 . После очистки газов от СО2 они возвращаются в реактор 1, часть их выводится из системы для очистки от инертных газов или направляется на сжигание. Часть катализаторного раствора выводится непрерывно из реактора на регенерацию (очистку от полимеров, доокисление выпавшего в осадок палладия) [4].

Нижний слой из сепаратора 5 направляется в ректификационную колонну 10, где все продукты отделяются от непрореагировавшей уксусной кислоты и полимерных примесей. Эта кислота рециркулирует в реактор 1 . Дистиллят колонны 10 направляется в ректификационную колонну 12 для выделения ацетальдегида. Так как вместе с ацетальдегидом отделяются растворенные в конденсате газы, то возникают трудности с конденсацией ацетальдегида, и он частично уносится газами. В связи с этим несконденсированные газы, содержащие ацетальдегид, направляются в абсорбер 13 для отмывки ацетальдегида. Газы возвращаются в реактор 1 , а водный раствор ацетальдегида поступает в ректификационную колонну 14 для отделения ацетальдегида от воды. Ацетальдегид как целевой продукт направляется по назначению, а вода после охлаждения возвращается в абсорбер 13 [3].

Кубовый продукт колонны 12 после охлаждения в холодильнике 16 поступает во флорентийский сосуд 17, где он расслаивается. Нижний водный слой объединяется с нижним слоем флорентийского сосуда 19 и поступает в отгонную колонну 15 для отделения винилацетата и углеводородов в виде гетероазеотропов (с водой) от воды. Верхний углеводородный слой также объединяется с верхним слоем флорентийского сосуда 19 и поступает в отгонную колонну 18 для гетероазеотропной осушки. Безводный винилацетат, содержащий примеси побочных продуктов и полимеров, направляется в ректификационную колонну 20 для очистки от примесей [3].

Основными недостатками рассмотренного способа являются:

сильная коррозионная способность катализаторного раствора, что вынуждает изготавливать реактор из дорогостоящего материала (титана) или применять покрытия; [3]

низкая конверсия за один проход, как уксусной кислоты, так и этилена. Это приводит к значительным затратам энергии на циркуляцию, вынуждает применять аппараты больших объемов и теплообменную аппаратуру с большой поверхностью; затрудняет конденсацию продуктов из-за сильного их разбавления этиленом, а также выделение винилацетата из растворов, разбавленных уксусной кислотой [3].

К недостаткам технологической системы относится также рециркуляция уксусной кислоты без очистки от полимеров непосредственно из куба колонны 10 в реактор 1. Это приводит к загрязнению полимерами катализаторного раствора и к снижению его активности. Если же учесть то обстоятельство, что в колонны ректификации, где присутствует винилацетат, подается ингибитор полимеризации, то из колонны 10 вместе с уксусной кислотой в реакторный раствор должен попадать ингибитор. Это, естественно, может привести к еще большему снижению активности катализатора[3].

Парофазный метод.

Теоретические основы.

В парофазном методе окисление этилена с целью получения винилацетата осуществляется на твердом катализаторе (соли палладия или металлический палладий на оксиде алюминия или силикагеле). В этом процессе функцию катализаторов окисления и промоторов выполняет инертный пористый носитель. Вместе с тем в обоих процессах обязательна добавка катиона щелочного металла. Поэтому схема механизма основной реакции может быть представлена следующим образом [3]:

В парофазном процессе благодаря диспергированию палладия на поверхности носителя возникает непосредственный контакт кислорода с атомами палладия. Природа активации этилена в жидкофазном и парофазном процессах различна[3].

Механизм действия гетерогенного палладиевого катализатора пока не установлен, однако есть основания считать, что он аналогичен механизму гомогенного процесса и включает стадии образования и превращения этилен - палладиевых комплексов [3].

В парофазном процессе со стационарным слоем катализатора начальная концентрация палладия на носителе составляет от 1 до 5% и уменьшается в процессе работы до 0,5%. При этом скорость образования винилацетата достигает 200 г/л·ч. При работе катализатора в псевдоожиженном слое его производительность удается повысить (до 1000 г/л·ч). Однако возможность промышленного осуществления такого процесса вызывает сомнение из - за значительного уноса катализатора. Вследствие высокой стоимости палладия его потери должны быть не более 2,2 г на 1т винилацетата. Только тогда затраты на катализатор будут такими же, как и в ацетиленовом парофазном процессе [3].

Парофазный процесс характеризуется меньшим выходом побочных продуктов и, прежде всего, ацетальдегида и полимеров. Не образуются хлорорганические соединения, что объясняется отсутствием хлор - ионов в парофазном процессе. Небольшой выход ацетальдегида объясняется малым сроком пребывания винилацетата и воды на поверхности катализатора и, следовательно, незначительным гидролизом винилацетата. Общие потери этилена в этом процессе составляют (в%): утечка - 1; образование СО2 - 5 - 15; ацетальдегида - 0,5 - 2; полимеров - 0,5 - 2. При этом основной побочной реакцией является полное окисление этилена [3]:

Выход винилацетата по этилену составляет 91 - 94%, а по уксусной кислоте - 95 - 100%. Общий выход винилацетата достигает 91%, СО2 - 8%, других примесей - 1%. Процесс проводится при давлении 0,1 - 0,7 МПа и температуре 175 - 200 °С. При этих условиях срок службы катализатора, находящегося в стационарном состоянии, не превышает 2,5 лет [3].

Известен промышленный способ непрерывного парофазного получения винилацетата из этилена, уксусной кислоты и кислорода на гетерогенном катализаторе с повышением содержания кислорода на входе в реактор[3] .Процесс также ведётся с частичной заменой этилена в реакционной смеси предельными углеводородами (этаном, пропаном или их смесью) [3] .Также в промышленности известен интегрированный способ получения винилацетата [3].

Технологическое оформление.

Технологическая схема получения винилацетата из ацетилена и уксусной кислоты парофазным методом: 1 - колонна - испаритель; 2, 10, 21 - сепараторы; 3, 6 - теплообменники; 4 - подогреватель; 5 - реактор; 7, 14 - водяные холодильники; 8 - труба Вентури; 9 - расширитель; 11 - скруббер; 12, 22 - сборники; 13 - насос; 15, 16 - рассольный холодильник; 17, 18, 19 - ректификационная колонна; 20 - дистилляционный куб; I - свежий ацетилен; II - свежая уксусная кислота; III - полимеры и ингибитор; IV - кротоновая фракция; V - лёгкая фракция; VI - винилацетат; VII - бифенильная смесь (теплоноситель); VIII - ацетилен на очистку; IX - скоагулированная катализаторная пыль; X - тяжёлая фракция (этилендендиацетат, полимеры, ингибитор); XI - вода[3].

Свежая уксусная кислота смешивается с возвратной уксусной кислотой и поступает в колонну-испаритель 1. В нижнюю часть этой колонны подается смесь свежего этилена и возвратной смеси этилена с кислородом. Следовательно, испарение уксусной кислоты проводится в токе газа при более низких температурах. При этом кислота отделяется от нелетучих примесей [3].

Парогазовая смесь поступает в подогреватель 2, где нагревается до температуры процесса ? 200 ° С. Кислород вводится после смешения этилена с кислотой (специальное перемешивающее устройство предотвращает взрыв). После этого парогазовая смесь вводится сверху в трубчатый вертикальный реактор 3. Трубы реактора заполнены катализатором, а в межтрубное пространство подается для отвода тепла водный конденсат; получаемый пар используется на внутризаводские нужды. Из реактора продукты реакции поступают в холодильник, где охлаждаются от 4 до 0° С. При этом часть продуктов конденсируется. Конденсат отделяется от парогазовой смеси в сепараторе 5 . Несконденсировавшиеся газы после сжатия компрессором 6 подаются в абсорбер 7 . Абсорбция может быть осуществлена, например, пропиленгликолем или водным раствором уксусной кислоты. Последний случай не требует введения в систему постороннего вещества и позволяет использовать винилацетат - сырец в качестве обезвоживающего агента при получении безводной уксусной кислоты - рецикла (очевидно, в данном случае уксусная кислота используется в качестве абсорбента)[3].

Конденсат направляется на разделение в ректификационную колонну 11 . Несконденсированные продукты с некоторым количеством кислоты и воды (за счет уноса) поступают в абсорбер 8, орошаемый водой, для улавливания прежде всего кислоты. Водный раствор кислоты также поступает в ректификационную колонну 11. Очищенные от кислоты газы направляются на очистку от СО2 в абсорбер 9, орошаемый водой или раствором Na2 CO3 . Часть газов отводится из системы с целью вывода инертных газов. Очищенные от СО2 газы (этилен и кислород) возвращаются в колонну 1 . Абсорбент из абсорбера 9 направляется в десорбер 10, откуда возвращается в абсорбер 9 , а СО2 выводится из системы[3].

В ректификационной колонне 11 происходит отделение всех легкокипящих компонентов, в том числе винилацетата с водой в виде гетероазеотропа, от уксусной кислоты и тяжелокипящих примесей. Уксусная кислота из куба колонны 11 направляется в колонну-испаритель 1 . Пары из колонны 11, содержащие растворенные газы, поступают в конденсатор 12. Далее конденсат поступает во флорентийский сосуд 13, где он расслаивается. Часть верхнего винилацетатного слоя направляется в виде орошения в колонну 11 , а остальная часть - в отгонную колонну 15 для гетероазеотропного обезвоживания винилацетата и отделения легколетучих примесей. Пары из колонны 15 также поступают в конденсатор 12. Нижний водный слой из флорентийского сосуда 13 направляется в отгонную колонну 14 для отделения растворенного винилацетата в виде гетероазеотропа с водой и легколетучих примесей, пары из которой поступают в конденсатор 12. Из куба колонны 14 выводится фузельная вода с содержанием 0,001% винилацетата, которая направляется на биологическую очистку. В кубе колонны 15 получается винилацетат с содержанием примесей 0,001%[3].

Винилацетат из куба колонны 15 поступает в колонну 16 для отделения фракции, содержащей метилацетат и легколетучие примеси, далее - в колонну 17 для отделения от тяжелокипящих примесей. Кубовый поток поступает на утилизацию винилацетата и полимерных продуктов. Дистиллят колонны 17 является товарным винилацетатом, который содержит следующие примеси: 0,005 - 0,03% воды; 0,0025 - 0,005% уксусной кислоты; 0,0025 - 0,0075% ацетальдегида; 0,01% метилацетата; 0,0025% этилацетата. Содержание основного продукта 99,9% (мас). Для изготовления реактора применяется хромоникелевая нержавеющая сталь, для ректификационных колонн, в которых присутствует уксусная кислота - высоколегированная нержавеющая сталь, для сборника ледяной уксусной кислоты - алюминий, а для остальных аппаратов - обычная стал [3].

Данная технологическая схема имеет следующие недостатки [3]:

свежая уксусная кислота смешивается с возвратной, содержащей тяжелые примеси. Необходимо свежую кислоту подавать наверх колонны в качестве флегмы, что будет способствовать отделению уксусной кислоты от тяжелых примесей. Возвратную кислоту необходимо подавать в среднюю часть колонны [3] ;

ввод воды в реакционную смесь после реактора 3 нецелесообразен, так как это приводит, во-первых, к потере тепла, которое может быть утилизировано, во-вторых, к усилению гидролиза винилацетата и, в-третьих, к дополнительным затратам энергии на обезвоживание смеси. "Закалку" и отвод тепла необходимо проводить в конденсаторе 4, который может служить котлом-утилизатором [3] ;

в трехколонном агрегате ректификационных колонн 11, 14, 15 в верхних частях колонны и флорентийском сосуде 13 происходит накапливание легколетучих примесей, что приводит к затруднению разделения и особенно расслаивания во флорентийском сосуде. Кроме того, сдувка из флорентийского сосуда будет приводить к потерям винилацетата. В связи с этим необходимо предварительно отделить легколетучие примеси, в том числе и ацетальдегид. В качестве такой колонны может быть использована колонна 16, так как легколетучие примеси будут предварительно отделены[3].

Принципы технологии производства винилацетата окислением этилена в присутствии уксусной кислоты.

Производства винилацетата окислением этилена в присутствии уксусной кислоты как для парофазного, так и для жидкофазного процессов имеют некоторые общие черты с точки зрения реализации в них принципов создания безотходных (малоотходных) технологий. Эти технологии характеризуются одностадийностью по химической составляющей и непрерывностью. Невысокие конверсии исходных реагентов за один проход приводят к необходимости использования рециркуляции для полного превращения сырья. Например, для жидкофазной технологии рециклы по этилену охватывают аппараты 1 - 3 - 4 - 1; 1 - 3 - 4 - 6 - 7 - 1; 1 - 3 (4) - 5 - 9 - 10 - 12 - 13 - 1; а по уксусной кислоте 1 - 3 (4) - 5 - 9 - 10 (рис.2). Исходное сырье для получения винилацетата доступно, поскольку этилен, технический кислород и уксусная кислота являются относительно дешевыми многотоннажными продуктами. Обе технологии позволяют получать высокие (до 95%) выходы винилацетата и, следовательно, могут быть отнесены к высокоэффективным процессам, хотя конверсии реагентов за один проход нельзя считать достаточными. В полной мере в рассмотренных технологических решениях реализован принцип полноты выделения продуктов из реакционной смеси, так как в противном случае невозможно организовать рецикловые потоки и достичь высокой суммарной конверсии исходного сырья. Достаточно хорошо использован и принцип разработки технологий с минимальным расходованием воды, так как отсутствуют кислые, щелочные и солевые водные стоки, а фузельная вода, пройдя очистку, может вновь использоваться в смежных цехах и производствах. Реализация принципа применения аппаратов и технологических линий большой единичной мощности для обеих рассмотренных технологий затруднена, но по разным причинам. Для парофазного процесса это связано с трудностями совмещения большой производительности аппарата и исключения местных перегревов, а также истирания катализатора. Для жидкофазного процесса - с трудностями создания барботажных аппаратов большой единичной мощности [3].

Кроме того, качественное различие рассмотренных реакционных подсистем приводит и к некоторым отличиям в реализации принципов создания технологий. В частности это относится к принципу полноты использования энергии системы. Он может быть более просто и эффективно реализован для парофазной технологии производства винилацетата, поскольку в этом случае температурные условия в реакторе обеспечивают получение греющего пара, который в дальнейшем можно использовать как энергоноситель для ректификации или других химических процессов [3].

Список используемой литературы

1. Рабинович В.А., Хавин З.Я. "Краткий химический справочник". Л.: Химия, 1977. стр.186.

2. Основы химии и технологии мономеров: Учеб.пособие/Н.А. Платэ, Е.В. Сливинский. - М.: Наука: МАИК "Наука/интерпериодика", 2002. - 696 с., ил.

3. Тимофеев В.С. Принципы технологии основного органического и нефтехимического синтеза: Учеб.пособие для вузов/В.С. Тимофеев, Л.А. Серафимов. - 2-е изд., перараб. - М.: Высш. шк., 203. - 536 с.: ил.

Размещено на Allbest.ru

...

Подобные документы

  • Свойства винилацетата и его применение. Общие методы получения винилацетата. Технология получения винилацетата окислением этилена в присутствии уксусной кислоты. Характеристика сырья технологии. Сравнение различных методов получения винилацетата.

    курсовая работа [2,0 M], добавлен 25.12.2009

  • Характеристика уксусной кислоты, технологическая схема ее производства окислением ацетальдегида. Материальный баланс процесса ее получения. Расчет технологических и технико-экономических показателей. Составление рекламы для продажи уксусной кислоты.

    курсовая работа [787,2 K], добавлен 19.08.2010

  • Сущность комбинированного и сбалансированного методов получения винилхлорида. Каталитическое гидрохлорирование ацетилена. Технология получения дихлорэтана путем прямого хлорирования. Классификация вторичных энергетических ресурсов промышленности.

    курсовая работа [548,0 K], добавлен 30.04.2012

  • Отличия гомоферментативного и гетероферментативного молочнокислого брожения. Процесс подготовки питательной среды и стадии получения посевного материала при производстве молочной кислоты. Примеры способов получения молочной кислоты и их эффективность.

    презентация [1,1 M], добавлен 06.10.2016

  • Процесс получения лимонной кислоты при ферментации сахара, стадии процесса. Технология получения молочной кислоты путем ферментации углеводсодержащего сырья молочнокислыми бактериями. Получение уксуса при окислении этанола уксуснокислыми бактериями.

    реферат [504,8 K], добавлен 15.05.2014

  • Общие сведения о фосфорной кислоте, методы ее получения экстракционным полугидратным способом. Разработка принципиальной технологической схемы производства фосфорной кислоты со схемой КИПиА. Расчет материального баланса и расходных коэффициентов.

    курсовая работа [716,5 K], добавлен 11.03.2015

  • Технологический процесс получения полифосфорной кислоты. Методы и аппараты для обеспечения экологической безопасности. Контроль производства и управления абсорбцией отходящих газов. Расчет абсорбера санитарного. Приборы измерения загрязняющих веществ.

    дипломная работа [1,3 M], добавлен 06.11.2012

  • Получение органических соединений, материалов и изделий посредством органического синтеза. Основные направления и перспективы развития органического синтеза. Группы исходных веществ для последующего органического синтеза. Методика органического синтеза.

    реферат [1,6 M], добавлен 15.05.2011

  • Процесс вулканизации резины, ее общая характеристика. Классификация каучука, особенности его применения в России. Специфические свойства резин. Технология получения, методы воздействия на их свойства. Описание и свойства готовых резинотехнических изделий.

    реферат [13,2 K], добавлен 28.12.2009

  • Пищевая ценность, состав, свойства коровьего молока. Вода и сухое вещество, ферменты и гормоны, микрофлора сырого молока. Переработке молока предприятиями молочной промышленности. Приемка и первичная обработка молока. Технология получения молока и сливок.

    курсовая работа [41,6 K], добавлен 18.09.2010

  • Технология получения и области применения биогаза как нового источника получения энергии. Методы переработки отходов животноводства и птицеводства для получения биотоплива. Правила техники безопасности при работе в микробиологической лаборатории.

    курсовая работа [952,4 K], добавлен 06.10.2012

  • Физико-химические особенности наполнителей. Влияние распределения наполнителя в матрице на физико-механические параметры. Адсорбционные свойства и прочности связи наполнителей. Технология получения электроизоляционных резинотехнических материалов.

    научная работа [134,6 K], добавлен 14.03.2011

  • Виды и свойства керамических покрытий, способы получения. Электронные ускорители низких энергий в технологиях получения покрытий. Нанесение покрытий CVD-методом. Золь-гель технология. Исследование свойств нанесенных покрытий, их возможные дефекты.

    курсовая работа [922,9 K], добавлен 11.10.2011

  • Обоснование места размещения производства продукции. Характеристика методов производства соляной кислоты. Описание технологической схемы получения синтетической соляной кислоты. Устройство и принцип работы основного и вспомогательного оборудования.

    дипломная работа [3,5 M], добавлен 03.12.2017

  • Свойства и применение молибдена, характеристика сырья для его получения. Окислительный обжиг молибденитовых концентратов. Разложение азотной кислотой. Выбор и технико-экономическое обоснование предлагаемой технологии получения триоксида молибдена.

    курсовая работа [148,8 K], добавлен 04.08.2012

  • Особенности криогенных технологий. История физики низких температур. Технология разделения воздуха с помощью криогенных температур на основные газовые компоненты. Методы получения низких температур. Основные сферы применения криогенных технологий.

    презентация [297,9 K], добавлен 05.12.2013

  • Назначение и свойства буровзрывных работ. Классификация и особенности способов погружения свай. Общие вопросы сталеплавильного производства, кричный, пудлинговый и тигельный процессы. Припуски на механическую обработку, технология получения заготовок.

    контрольная работа [84,0 K], добавлен 10.04.2009

  • Сырье, технология и способы производства портландцемента: мокрый, сухой и комбинированный. Твердение и свойства портландцемента, его разновидности, состав и технология получения, область применения. Расширяющиеся и безусадочные цементы, процесс активации.

    курсовая работа [935,7 K], добавлен 18.01.2012

  • Разработка технологического процесса получения биметаллического инструмента с экономией дорогостоящих штамповых сталей до 80%. Установление схемы нагружения, обеспечивающей получение формообразующей полости с формированием биметаллического соединения.

    курсовая работа [4,7 M], добавлен 06.11.2015

  • Основные свойства материала, методы получения монокристалла. Расшифровка марки материала, описание его свойств и методов получения. Вывод распределения примеси. Выбор технологических режимов и размеров установки. Алгоритм расчета легирования кристалла.

    курсовая работа [917,6 K], добавлен 30.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.