Осуществление термического воздействия на свариваемые кромки неплавящиеся и плавящиеся электроды

Сведения о сварочной проволоке, электродных стержнях, прутках, пластинчатых электродах для сварки и наплавки. Типы электродных покрытий. Электроды для ручной дуговой сварки чугуна и цветных металлов. Газы и жидкости, применяемые в сварочном производстве.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 26.05.2018
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1 - рама; 2 - предохранительная пружина; 3 - предохранительный кожух; 4 - валки; 5 - резиновые буфера; 6 - сборник продуктов размола.

Рис. 3.7. Шаровая мельница непрерывного действия для тонкого измельчения:

1 - загрузочная воронка, 2 и 5 ступицы для крепления корпуса к валу, 3 - стенки, 4 и 13 - защитные плиты, 6 - вал, 7 - предохранительное сито, 8 - вентиляционный патрубок, 9 - сито, 10 - плиты, 11 - кожух, 12 - разгрузочная воронка

Рис. 3.8. Вибрационное сито:

1 - короб с сетками; 2 - труба для подачи материала на сито; 3 - выход годного продукта, 4 - труба для выхода отсева, 5 - электромагнитный привод.

Подготовленные составные части покрытия отвешиваются в нужной пропорции и перемешиваются в смесителе (рис. 3.9).

Рис. 3.9. Барабанный смеситель

В специальном отделении приготовляют водный раствор жидкого стекла из силикатной глыбы (рис. 3.10).

Рис. 3.10. Схема процесса производства жидких стекол:

1 - автоклав; 2 - отстойники

Сухие части покрытия замешивают на растворе жидкого стекла до нужной густоты и покрытие наносят на проволоку под давлением 75--100 МПа на обмазочных прессах (рис. 3.11).

Рис. 3.11. Схема электродообмазочной головки:

1 - корпус; 2 - втулка; 3 - фильера; 4 - поршень пресса.

После нанесения покрытия электроды сушат, пока влажность покрытия будет не более 4--5%. Сушка производится сначала на воздухе при температуре 25--30° С в течение 12--25 ч, а затем в сушильных электрических шкафах при температуре 150--300° С в течение 1--2 ч. Электроды, содержащие органические элементы, прокаливают при температуре не выше 150--200° С во избежание выгорания органических примесей.

Хранят готовые электроды в сухих помещениях с нормальной важностью воздуха. Электроды с отсыревшим покрытием нужно перед сваркой в течение часа прокалить при температуре 180-- 200°С. Качество готовых электродов проверяется наплавкой и сваркой контрольных образцов с последующим испытанием их на прочность и пластичность.

Электроды упаковывают в водонепроницаемую бумагу или полиэтиленовую пленку и пачками массой 3 - 8 кг укладывают в деревянные ящики. Масса ящика - от 30 до 50 кг. На каждой пачке имеется этикетка, содержащая наименование завода-изготовителя, условное обозначение электрода, область применения, режимы сварки, обработки и механические показатели сварного шва, свойства наплавленного и коэффициент наплавки.

3. Газы и жидкости, применяемые в сварочном производстве

3.1 Кислород

Кислород - самый распространенный на Земле элемент. Он составляет около 50 % массы Земли, где он находится в окислах различных элементов, около 86 % массы воды в соединении с водородом и 23 % массы воздуха (21 % по объему) в смеси с азотом, аргоном и с другими газами.

Кислород -- бесцветный газ, без запаха, тяжелее воздуха, плотность его при нормальном давлении и комнатной температуре 1,33 кг/м3. Кислород сжижается при нормальном давлении и температуре - 182, 9?С. Жидкий кислород прозрачен и имеет голубоватый цвет. Масса 1 л жидкого кислорода равна 1,14 кг. При испарении 1 л жидкого кислорода образуется 860 л газа.

Кислород очень активен - соединяется со всеми химическими элементами, кроме инертных газов. Реакции веществ с кислородом экзотермические, идущие с выделением теплоты при высокой температуре, - это горение.

При соприкосновении сжатого газообразного кислорода с маслом или жирами последние могут самовоспламеняться и вызвать пожар или взрыв. Поэтому кислородные баллоны следует тщательно предохранять от загрязнения маслом. Особенно опасны пропитанные жидким кислородом пористые горючие вещества (уголь, сажа, войлок, вата и др.), которые в этом случае становятся взрывчатыми. Одежда и волосы, будучи насыщены кислородом, легко загораются. Смеси кислорода с горючими газами, жидкостями и их парами взрывоопасны при определенных соотношениях кислорода и горючего в смеси.

Получают кислород из воздуха глубоким охлаждением или из воды электролизом. В первом случае воздух в несколько приемов сжимают, каждый раз отводя выделяющуюся теплоту. После каждого цикла сжатия воздух очищают от влаги и углекислого газа. При температуре - 194,5 °С воздух становится жидким. Затем его разделяют на кислород и азот перегонкой (ректификацией), основанной на разности температур кипения жидкого азота (-196 °С) и кислорода (-183 °С). При ректификации жидкий воздух переливают в ректификационной колонне. Азот при этом испаряется и отводится через верхнюю часть колонны, а кислород сливается на ее дно. Часть его испаряется и отводится из колонны, а жидкий кислород закачивают в теплоизолированные цистерны (танки), в которых его транспортируют. К месту сварки кислород доставляют газообразным в баллонах синего цвета под давлением 15 МПа.

Технический кислород выпускается по ГОСТ 5583--78 трех сортов: 1-го сорта, содержащего не менее 99,7% чистого кислорода, 2-го сорта--не менее 99,5% и 3-го сорта--не менее 99,2% (по объему); остаток в 0,3--0,8% составляют аргон и азот. Чем ниже чистота кислорода, тем хуже качество газопламенной обработки металла, особенно резки.

Для получения кислорода электролизом через воду, налитую в емкость электролизера, пропускают постоянный ток. В результате на отрицательном электроде - катоде - выделяется газообразный водород, а на аноде - кислород. При этом на 1 м3 кислорода затрачивается 10...20 кВ•А/ч электроэнергии, тогда как для получения 1 м3 кислорода глубоким охлаждением из воздуха - 0,5...1,6 кВ•А/ч. Поэтому электролиз воды выгодно применять для получения кислорода, если используется и выделяющийся одновременно с ним водород, который может быть применен при газопламенной сварке в качестве горючего газа. При электролизе больших количеств воды водород закачивают в баллоны зеленого цвета под давлением 15 МПа. При небольшой потребности в газах выгоднее производить электролиз воды непосредственно на месте сварки. В результате прямо из электролизера кислород и водород раздельно направляются по шлангам в сварочную горелку, где они смешиваются и на выходе из сопла горелки образуют пламя. Продукт горения при этом - водяной пар, такое пламя экологически чистое.

Кислород для целей сварки хранят и транспортируют в газообразном виде или в жидком состоянии.

В первом случае жидкий чистый кислород, накопившийся в воздухо-распределительном аппарате, испаряют и им заполняют баллоны под давлением 150 - 165 кг/см2, создаваемым с помощью насоса или ком-прессора.

К месту сварки и резки газообразный кислород можно подавать под давлением от 5 до 30 кгс/см3.

Жидкий кислород хранят и транспортируют в специальных сосудах, с хорошей теплоизоляцией. При использовании для сварки и резки жидкий кислород предварительно превращают в газ. Для этого на заво-дах устанавливают газофикаторы или насосы с испарителями для жид-ого кислорода, а к рабочему месту транспортируют по трубам.

3.2 Общие сведения о горючих газах

В качестве горючих газов при сварке и резке применяют ацетилен, водород, пропан, бутан, нефтяные газы, природный газ и другие горючие, а также пары бензина и керосина (табл. 5.1).

Таблица 5.1

Горючие газы, применяемые при газопламенной сварке

Горючие газы, их состав

Плотность при 200С нормальном давлении, кг/м3

Температура пламени при сгорании в кислороде, 0С

Коэффициент замены ацетилена

Количество кислорода на 1 м3 газа подаваемого в горелку, м3

Ацетилен С2Н2

1,17

3200

1,0

1,1...1,7

Водород Н2

0,089

2500

5,2

0,4

Метан СН4

0,67

2200-2700

1,6

1,5

Природный газ:

94...98% СН4 и 2...6%

негорючих примесей

0,73-0,9

1850-2200

1,5

1,5-2,0

Пропан С3Н8

1,88

2750

0,6

3,5

Бутан С4Н10

2,54

2500

0,45

4,0

Пропан-бутановая смесь:

85% С3Н8, 12% С4Н10

и 3% С2Н6

1,92

2500-2700

0,6

0,6

Коксовый газ:

50% Н2, 25% СН4

8...10% СО3Н, 15...17%

негорючих примесей

0,4-0,55

2200

3,2

0,6

Нефтяной газ: 12% Н2, 50% смеси СН4 и С3Н8 , 28% других углеводородов и 10% примесей

0,87-1,37

2200-2300

1,2

0,65

Пары бензина С7Н15

0,7-0,75

2300-2400

1,4

2,5 м3/кг

Пары керосина С7Н14

0,79-0,82

2100-2450

1,3

2,0 м3/кг

3.3 Ацетилен

Ацетилен бесцветен, обладает резким неприятным запахом, взрывоопасен: при давлении 0,15...0,2 МПа для взрыва достаточно искры или быстрого нагрева до температуры 200 °С. При температуре 530 °С разлагается со взрывом. Смеси ацетилена с кислородом и воздухом способны взрываться даже при атмосферном давлении, если содержание ацетилена в смеси с кислородом лежит в пределах 2,8--93% и в смеси с воздухом -- в пределах 2,2--81 % (по объему). Присутствие окиси меди снижает температуру его самовоспламенения до 240 °С. Может реагировать с медью, образуя взрывоопасные соединения. Поэтому при изготовлении ацетиленового оборудования нельзя применять сплавы с содержанием меди более 70 %. Взрываемость ацетилена понижается при растворении его в жидкостях, особенно в ацетоне (СН3СОСН3), в одном объеме которого можно растворить 20 объемов ацетилена и еще больше, если увеличить давление и уменьшить температуру. Поэтому к месту сварки ацетилен доставляют в стальных баллонах, заполненных пористой массой (например, древесным активированным углем с размером частиц 2...3 мм). Эту массу пропитывают ацетоном, в котором под давлением 1,9 МПа растворен ацетилен.

Взрывы ацетилена обладают большой разрушительной силой, поэтому при использовании его необходимо строго соблюдать правила техники безопасности.

Длительное вдыхание технического ацетилена вызывает головокружение и даже отравление.

Ацетилен получают из карбида кальция СаС2, воздействуя на него водой в ацетиленовых генераторах. Идет реакция

СаС2 + 2Н2О = С2Н2 + Са(ОН)2.

Реакция эта экзотермическая, нужно принимать меры для предупреждения перегрева ацетилена, иначе возможен взрыв. Теоретически для разложения 1 кг карбида кальция требуется 0,562 кг воды. При этом получается 0,406 кг ацетилена и 1,156 кг гашенной извести. Гашеная известь (шлам) используется в строительстве.

Из карбида кальция в ацетилен переходят вредные примеси, загрязняющие ацетилен: сероводород, аммиак, фосфорный водород, кремнистый водород. Эти примеси могут ухудшать свойства наплавленного металла и поэтому удаляются из ацетилена промывкой в воде и химической очисткой. Особенно нежелательна примесь фосфористого водорода, содержание которого более 0,7% в ацетилене повышает взрывоопасность последнего.

В настоящее время разработаны и применяются в промышленности новые способы получения ацетилена: термоокислительным пиролизом природного газа в смеси с кислородом; разложением жидких углеводородов (нефти, керосина) действием электродугового разряда.

Ацетилен обеспечивает наибольшую температуру пламени (до 3200 °С). Поэтому он чаще остальных газов применяется при всех видах газопламенной обработки.

3.4 Газы -- заменители ацетилена

Для сварки и резки металлов применяют также горючие -- заменители ацетилена. При сварке необходимо, чтобы температура пламени примерно в два раза превышала температуру плавления металла. Поэтому газы-заменители, поскольку температура их пламени ниже, чем у ацетилена, обычно используют при сварке металлов с более низкой температурой плавления, чем сталь (чугуна, алюминия и его сплавов, латуни, свинца), при пайке и т.п.

При замене ацетилена другими газами требуемое их количество можно примерно определить с помощью коэффициента замены: отношения объема газа-заменителя Vгаза к объему ацетилена Vс2н2, при условии, что оба эти объема обеспечивают одинаковое количество теплоты, вводимое при сварке в металл в единицу времени (одинаковую эффективную тепловую мощность Qэф):

Кз= Vгаза/ Vс2н2, при Qэф=const.

Вследствие более низкой температуры пламени применение газов-заменителей при сварке ограничено. Некоторые газы и жидкие горючие (например, нефтяной газ, пропан, керосин) для получения высокотемпературного пламени требуют по сравнению с ацетиленом большего удельного расхода кислорода. Низкокалорийные газы-заменители ацетилена неэкономично транспортировать в баллонах под высоким давлением на значительные расстояния. Такие газы следует использовать на предприятиях в тех районах, где эти газы имеются в достаточном количестве и могут додаваться к местам сварки и резки по трубопроводам.

Водород в нормальных условиях - один из самых легких газов, он в 14,5 раз легче воздуха, бесцветен, не имеет запаха, с кислородом и воздухом образует взрывчатые смеси - гремучий газ, чем опасен.

Метан - газ без цвета и без запаха, при концентрации в воздухе 5...15 % взрывоопасен, является главной составляющей частью большинства природных или попутных при добыче и переработке нефти и каменного угля горючих газов.

Пропан -- бесцветный газ с резким запахом, получаемый при переработке нефтепродуктов. Так же получают и бутан - газ без цвета и без запаха, сжижающийся при температуре 0 °С, взрывоопасный при его содержании в воздухе 1,5...8,5 %. Для сварки применяют чаще всего смесь пропана с бутаном, которую получают как побочный продукт переработки нефти. Пропан, бутан и их смесь подают к месту сварки в стальных баллонах в жидком состоянии под давлением 1,6 МПа.

Нефтяной и пиролизный газы получают при переработке нефти и нефтепродуктов. Они похожи по составу и свойствам, которые могут изменяться в широких пределах в зависимости от состава исходных продуктов. Бесцветны, могут обладать запахом сероводорода. К месту сварки подаются очищенными от смолистых примесей и сероводорода в баллонах красного цвета под давлением в 15 МПа, в сжиженном виде или по трубопроводам.

Коксовый газ бесцветен, с запахом сероводорода (тухлых яиц). Получают его при выработке кокса из каменного угля. Может содержать ядовитые цианистые соединения. Для сварки применяют после очистки от сероводорода и смолистых веществ.

Жидкие горючие, бензин и керосин, доступнее, дешевле и безопаснее горючих газов. В пар они превращаются непосредственно в сварочных горелках при подогреве специальным пламенем, что усложняет конструкцию горелок. Бензин для сварки предпочтительнее использовать с низким октановым числом. Применение этилированного бензина запрещено. Керосин нужно применять осветительный, предварительно профильтровав его через войлок и кусочки едкого натра NаОН для очистки от механических частиц, смолистых веществ и воды.

Главное значение при газопламенной обработке и особенно сварке имеет температура пламени, которую эти газы могут обеспечивать при сгорании в кислороде. Этим определяются области применения различных газов при сварке (табл. 5.2).

Таблица 5.2

Области предпочтительного применения горючих газов

Виды газопламенной обработки и обрабатываемые материалы

Ацетилен

Водород

Метан

Природный газ

Пропан

Бутан

Смесь пропана с бутаном

Коксовый газ

Нефтяной газ

Бензин

Керосин

Сварка тонколистовой стали, чугуна, меди, алюминия и их сплавов

+

+

+

Сварка свинца, стекла

+

+

+

Пайка с газопламенным нагревом

+

+

+

+

+

+

+

+

+

+

+

Поверхностная закалка

+

+

+

+

+

+

+

Напыление легкоплавких материалов

+

+

+

+

Нагрев при правке, гибке

+

+

+

+

+

+

+

+

+

+

+

3.5 Карбид кальция

Карбид кальция - это твердое вещество темно-серого или коричневого цвета (в зависимости от наличия и количества примесей) плотностью 2,26... 2,4 г/см3. Карбид кальция получают в электрических печах сплавлением извести и кокса по следующей реакции:

СаО + ЗС = СаС2 + СО.

В Институте электросварки им. Е.О. Патона разработан способ электрошлаковой выплавки карбида кальция, который удешевляет процесс и улучшает чистоту получаемого продукта.

В техническом карбиде кальция содержится до 90 % чистого карбида, остальное - известь и другие примеси. Остывший карбид кальция дробят и сортируют на куски размерами 2 - 8, 8 - 15, 15 - 25 и 25 - 80 мм. Частиц размером менее 2 мм (пыли) в техническом карбиде должно быть не более 3%. Чем крупнее куски, тем больше выход ацетилена. В среднем из 1 кг СаС2 получают 250...280 дм3 ацетилена (таблица 5.3).

Таблица 5.3

Нормы выхода ацетилена в зависимости от размеров кусков карбида кальция (по ГОСТ 1460-76)

Размеры кусков карбида кальция, мм

Норма выхода ацетилена, дм3/час

1-й сорт

2-й сорт

2 - 8

8 - 15

15 - 25

25 - 80

смешанные размеры

255

265

275

285

275

235

245

255

265

265

Потребителям карбид кальция доставляют в герметичных барабанах из кровельного железа или в бидонах вместимостью 80... 120 кг. При хранении карбид кальция надо оберегать от влаги, которую он активно поглощает из воздуха, образуя ацетилен.

Чем меньше размеры кусков карбида кальция, тем быстрее происходит его разложение. Карбидная пыль, смоченная водой, разлагается почти мгновенно, поэтому ее нельзя применять в обычных ацетиленовых генераторах, рассчитанных для работы на кусковом карбиде кальция, так как это может вызвать вспышку и даже взрыв ацетилена в генераторе. Для разложения карбидной пыли применяют генераторы специальной конструкции. Применяют также «сухой» способ разложения карбида кальция. Поэтому способу на 1 кг мелко раздробленного карбида кальция в генератор подают от 1 до 1,2 дм3 воды. Часть этой воды идет на реакцию разложения, а остаток ее испаряется, на что расходуется, основное количество тепла, выделяющегося при разложении карбида кальция. В результате этого процесса гашеная известь получается в виде сухой пушонки, удаление и транспортировка которой обходятся дешевле.

3.6 Инертные защитные газы

К химически инертным газам, используемым при сварке, относятся аргон и гелий. Аргон в основном получают из воздуха методом ректификации в разделительных колонках, т.к. объемное содержание аргона в воздухе 0,9325%. Гелий добывается из природных газов посредством их сжижения после предварительной очистки от примесей.

Аргон - газообразный чистый поставляется по ГОСТ 10157-79 двух сортов:

- высший сорт - содержание аргона не менее 99,993%;

- первый сорт - содержание аргона не менее 99,987%.

В чистом аргоне в качестве примесей остаются небольшие количества азота, кислорода и влаги.

Аргон высшего сорта предназначен для сварки химически активных металлов и сплавов на их основе (Ti, Zr, ниобий и т.п.). Аргон первого сорта применяется при сварке неплавящимся электродом алюминия и магния, а также нержавеющих сталей.

Гелий газообразный чистый поставляется по техническим условиям ТУ 51-689-79 двух сортов:

- гелий особой частоты - содержание гелия не менее 99,995 %;

- гелий высокой частоты - гелий не менее 99,985%.

В составе гелия в качестве примесей находится в небольшом количестве CO2, CO, CH4 и другие углеводороды.

При применении гелия в качестве защитного газа проплавляющая способность дуги резко увеличивается. Поэтому целесообразно применять гелий там, где необходима меньшая ширина и большая глубина проплавляемого шва.

Аргон и гелий хранятся и транспортируются в газообразном виде в стальных баллонах (водяной емкостью 40 л) под давлением 15 МПа. Баллоны для аргона окрашены в серый цвет, надпись зеленого цвета ("Аргон чистый"). Баллоны для гелия - цвет коричневый, надпись белого цвета (Гелий"). Часть верхней сферы баллона не окрашивается и на ней выбивают паспортные данные баллона.

3.7 Активные защитные газы

Активные защитные газы защищают зону сварки от воздуха, но сами либо растворяются в жидком металле, либо вступают с ним в химическое взаимодействие. Наиболее распространенным защитным газом является углекислый газ - "СО2".

При применении углекислого газа, сварочная проволока должна содержать дополнительное количество легирующих элементов. Наиболее широко применяется сварочная проволока Св-08Г2С, которая в своем составе содержит кремний и марганец.

Заключение

Углекислоту транспортируют и хранят в стальных баллонах или цистернах большой емкостью в жидком состоянии с последующей газификацией на заводе, с централизованным снабжением сварочных постов.

При испарении 1 кг жидкой углекислоты при 0°С и 101,3 кПа образуется 506,8 л газа.

В баллоне водяной емкостью 40 литров под давлением 20 МПа содержится 25 кг жидкого СО2, дающего при испарении 12,5 м3 газа при нормальном давлении. Баллоны для СО2 окрашиваются в черный цвет, надпись желтого цвета «Углекислота».

В промышленности углекислый газ получают тремя способами:

- при действии серной кислоты на мел или обжиг известняка;

- сжиганием кокса в специальных топках;

- из дымовых газов обычных котельных установок.

Химически инертные газы не взаимодействуют с нагретым и жидким металлом и практически не растворяются в сварочной ванне. Поэтому одним из широко распространенных способов сварки является сварка в атмосфере инертных газов. Защиту сварочной ванны можно осуществить либо струей защитного газа, либо сваркой в специальных камерах.

Список используемой литературы:

1. Петров. Г.А. Сварочные материалы. Л.: Машиностроение, 1972

2. Патон Б.Е., Лебедев В.К. Электрооборудование для дуговой и шлаковой сварки. - М., Машиностроение, 1966. - 360 с.

3. Сварка в машиностроении: Справочник. В 4-х т. - М.: Машиностроение, 1979 - Т.4/ Под ред. Ю.Н. Зорина. 1979. 512 с.

4. Сварки и свариваемые материалы: В 3-хт. Т 2. Технология и оборудование. Справочное издание /Под. ред. В.М. Ямпольского. - М.: Изд-во МГТУ им Н.Э. Баумана, 1998. - 574 с.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация и обозначение покрытых электродов для ручной дуговой сварки. Устройство сварочного трансформатора и выпрямителя. Выбор режима сварки. Техника ручной дуговой сварки. Порядок проведения работы. Процесс зажигания и строение электрической дуги.

    лабораторная работа [1,1 M], добавлен 22.12.2009

  • Получение сварного соединения, сущность сварки, физико-химические процессы, происходящие при ней. Схема процесса зажигания дуги. Технология получения качественного сварного соединения. Схема сварочного трансформатора. Электроды для ручной дуговой сварки.

    реферат [917,4 K], добавлен 16.01.2012

  • Применение сварки под слоем электропроводящего флюса для автоматической сварки. Преимущества метода сварки под флюсом, ограничения области применения. Типичные виды сварных швов. Автоматические установки для дуговой сварки и наплавки, режимы работы.

    книга [670,7 K], добавлен 06.03.2010

  • Методика расчета ручной дуговой сварки при стыковом соединении стали 3ВС3пс. Определение химического состава и свойств данного металла, времени горения дуги и скорости сварки. Выбор светофильтра для сварочного тока и соответствующего трансформатора.

    реферат [27,1 K], добавлен 04.06.2009

  • Основные способы и свойства сварки чугуна. Общие сведения о свариваемости и технологические рекомендации. Структурные превращения в зоне термического влияния при сварке чугуна. Влияние скорости охлаждения на структуру металла шва и околошовной зоны.

    контрольная работа [509,2 K], добавлен 22.11.2011

  • Описание физической сущности ручной дуговой сварки покрытым электродом. Физическая сущность процесса сварки. Основные и вспомогательные материалы, вредные факторы. Влияние химических элементов на свариваемость. Расчет параметров режима процесса сварки.

    курсовая работа [530,4 K], добавлен 05.12.2011

  • Процесс ручной дуговой сварки электродами с основным видом покрытия и автоматической сварки порошковой проволокой в защитных газах. Расчет предельного состояния по условию прочности, времени сварки кольцевого стыка и количества наплавленного металла.

    курсовая работа [167,8 K], добавлен 18.05.2014

  • История возникновения сварки, ее классификация и виды. Характеристика высокопроизводительных видов ручной дуговой сварки. Назначение и описание конструкции трубопровода. Особенности организации контроля качества и безопасности при сварочных работах.

    дипломная работа [30,6 K], добавлен 24.07.2010

  • Состав и свойства стали. Сведения о ее свариваемости. Технология получения сварного соединения внахлёст двух листов сваркой ручной дуговой и в среде защитных газов плавящимся электродом. Выбор сварочных материалов и источников питания сварочной дуги.

    курсовая работа [201,9 K], добавлен 28.05.2015

  • Выбор и обоснование способов сварки и сварочных материалов, рода тока и полярности. Характеристика основного металла. Описание механизированного сборочно-сварочного приспособления. Расчет режимов для ручной дуговой и механизированной сварки в среде СО2.

    курсовая работа [221,6 K], добавлен 20.01.2014

  • Определение свариваемости применяемых материалов, подбор присадочных материалов и оборудования. Узел приварки верхнего днища и верхней обечайки. Расчет режима ручной дуговой сварки. Карта технологического процесса сварки узла А Ar-С17 по ГОСТ 14771-76.

    курсовая работа [1,8 M], добавлен 20.02.2013

  • Краткое сведение о металле и свариваемости стали марки 09Г2С. Оборудование сварочного поста для ручной дуговой сварки колонны. Основные достоинства металлоконструкций. Технология ручной дуговой сварки. Дефекты сварных швов. Контроль качества соединения.

    дипломная работа [1,8 M], добавлен 08.12.2014

  • Общая характеристика видов сварки металла: электрошлаковая, высокочастотная, ультразвуковая. Знакомство с основными особенностями ручной аргонодуговой сварки неплавящимся электродом. Анализ схемы выполнения прихваток. Рассмотрение форм сварочной ванны.

    презентация [10,2 M], добавлен 31.01.2015

  • Выбор способа соединения деталей. Особенности технологического процесса сборки и сварки изделия. Электроды для шовной сварки сильфонов с арматурой. Конструктивно-технологический анализ сварных узлов изделий. Измерение и регулирование параметров сварки.

    курсовая работа [712,1 K], добавлен 12.06.2010

  • Виды и особенности сварки чугуна. Выбор электродов для сварки чугуна. Горячая сварка чугуна. Холодная сварка чугуна электродами из никелевых сплавов. Охрана труда при сварочных работах. Способы сварки чугуна. Мероприятия по защите окружающей среды.

    презентация [1,6 M], добавлен 13.12.2011

  • Знакомство с особенностями разработки технологических процессов сварки рамы для листопрокатного производства ручной электродуговой сваркой из стали 20ХМ. Характеристика материалов, предназначенных для ручной дуговой сварки. Анализ свойств электродов.

    дипломная работа [4,4 M], добавлен 27.01.2016

  • Технология производства сварки. История развития сварочного производства. Специфика аргонно-дуговой сварки и сфера её использования. Применение, преимущества и недостатки аргонно-дуговой сварки. Сравнительная характеристика оборудования этого вида сварки.

    реферат [635,2 K], добавлен 18.05.2012

  • Материалы и электроды, применяемые при сварки. Оборудование сварочного поста. Технические характеристики сварочного выпрямителя. Подготовка изделия к сварке, выбор режима сварки, разработка технологии выполнения. Особенности приварки патрубков к сосуду.

    контрольная работа [35,8 K], добавлен 11.06.2012

  • Сущность, основные достоинства и недостатки ручной дуговой сварки покрытыми электродами. Сущность, достоинства и недостатки сварки в среде защитных газов плавящимся электродом. Выбор сварочных материалов. Сварочно-технологические свойства электродов.

    курсовая работа [4,6 M], добавлен 22.03.2012

  • Характеристика металла для конструкции балки, оценка его свариваемости. Характеристика дуговой сварки: ручной и автоматической, в среде защитных газов. Технологический процесс сборки-сварки. Расчёт ее режимов. Выбор сварочных материалов и оборудования.

    дипломная работа [1,4 M], добавлен 19.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.