Сущность процесса сушки

Основные способы подвода теплоты: конвективная, контактная, радиационная, сублимационная и диэлектрическая сушка. Принципиальная схема сушильной установки (СУ). Расчет СУ: материальный и тепловой баланс. Возможности интенсификации процессов сушки.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 29.05.2018
Размер файла 285,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Сущность процесса сушки

1.1 Принципиальная схема сушильной установки

1.2 Расчет сушильной установки

1.2.1 Материальный баланс сушильной установки

1.2.2 Тепловой баланс сушильной установки

1.3 Возможности интенсификации процессов сушки

Введение

теплота сушильный диэлектрический конвективный

Удаление влаги из твердых и пастообразных материалов позволяет удешевить транспортировку, придать им необходимые свойства (например, уменьшить слеживаемость удобрений или улучшить растворимость красителей), а также уменьшить коррозию аппаратуры и трубопроводов при хранении или последующей обработке этих материалов.

Влагу можно удалять из материалов механическими способами (отжимом, отстаиванием, фильтрованием, центрифугированием). Однако более полное обезвоживание достигается путем испарения влаги и отвода образующихся паров, т. е. с помощью тепловой сушки.

Этот процесс широко используется в химической технологии. Он часто является последней операцией на производстве, предшествующей выпуску готового продукта. При этом предварительное удаление влаги обычно осуществляется более дешевыми механическими способами (например, фильтрованием), а окончательное - сушкой. Такой комбинированный способ удаления влаги позволяет повысить экономичность процесса.

В химических производствах, как правило, применяется искусственная сушка материалов в специальных сушильных установках, так как естественная сушка на открытом воздухе - процесс слишком длительный.

Процесс сушки характеризуется рядом параметров: качеством и количеством сырья и готового продукта, температурой и относительной влажностью среды, временем пребывания продукта в сушилке и др.

Основным параметром, определяющим процесс сушки, является конечная влажность продукта. Однако в настоящее время промышленных влагомеров, работающих в потоке, мало, поэтому для правильного ведения процесса сушки в качестве регулируемых используются косвенные параметры: температура сушильного агента, выходящего из сушилки, температура высушенного продукта; регулирующим воздействием является количество подводимого тепла.

1. Сущность процесса сушки

Сушка - это процесс удаления влаги из твердого или пастообразного материала путем испарения содержащейся в нем жидкости за счет подведенного к материалу тепла.

При сушке обычно удаляется из продукта жидкий компонент, которым в большинстве случаев является вода, однако часто приходится удалять и органические растворители. При сушке изменяется теплопроводность материала, снижается его объемный вес и повышается прочность. Чем выше качество материала, тем больше возможность его использования. Это может быть обеспечено при соответствующем режиме процесса сушки, который должен проводиться при определенных температуре, давлении и относительной влажности теплоносителя. Режим сушки зависит от свойств высушиваемого материала.

Сушка широко применяется в химической, химико-фармацевтической, пищевой и других отраслях промышленности.

По своей физической сущности сушка является сложным диффузионным процессом, скорость которого определяется скоростью диффузии влаги из глубины высушиваемого материала в окружающую среду. Удаление влаги при сушке сводится к перемещению тепла и вещества (влаги) внутри материала и их переносу с поверхности материала в окружающую среду. Таким образом, процесс сушки является сочетанием связанных друг с другом процессов тепло- и массообмена (влагообмена).

Различают следующие способы подвода теплоты:

конвективную сушку, проводимую путем непосредственного контакта материала и сушильного агента. Подвод теплоты осуществляется газовой фазой (воздух или смесь воздуха с продуктами сгорания топлива), которая в процессе сушки охлаждается с увеличением своего влагосодержания;

контактную (кондуктивную) сушку, которая реализуется путем передачи теплоты от теплоносителя к материалу через разделяющую их стенку;

радиационную сушку, при которой тепло передается тонкому слою материала, либо поверхности его, покрытой лаками или красками, от электрических или газовых инфракрасных излучателей. Сушка протекает интенсивно. Сушилки отличаются малой инерционностью;

сублимационную сушку, при которой влага удаляется из материала в замороженном состоянии (обычно в вакууме). Чаще применяется в пищевой, чем в химической промышленности, с целью сохранения объёма, цвета, запаха, вкусовых и биологических свойств материала. Оборудование для этого метода сушки отличается сложностью;

диэлектрическую сушку, при которой материал высушивается в поле токов высокой частоты. Применяется для сушки древесины, пенопласта, искусственного волокна и т.д. Этот метод сушки отличается дороговизной.

1.1 Принципиальная схема сушильной установки

Принципиальная схема сушильной установки представлена на рис. 1.1

Высушиваемый материал поступает в сушилку 3, где его влажность снижается от щ1 (начальная) до щ2 (конечная). В сушилке материал либо находится в неподвижном состоянии (на противнях, вагонетках), либо движется (на транспортерных лентах, сетках, при помощи гребков, пересыпается при вращении сушилки). Сушка производится за счет тепла, вырабатываемого в генераторе тепла 2, куда теплоноситель может подаваться вентилятором 1. Генератором тепла могут служить паровые или газовые калориферы, топки, работающие на твердом, жидком или газообразном топливе, инфракрасные излучатели и генераторы электрического тока. Выбор генератора тепла обычно определяется схемой и методом сушки, физическими свойствами высушиваемого материала и требуемым режимом сушки. Иногда в сушильной камере устанавливается дополнительный подогреватель 2'.

Рисунок 1.1- Принципиальная схема сушильной установки

1- вентилятор; 2 - генератор тепла; 3 - сушилка; 4 - пылеулавливающее устройство; 5 - отсасывающее устройство.

Передача тепла высушиваемому материалу производится либо при непосредственном контакте последнего с теплоносителем, либо через обогреваемую поверхность, на которой находится материал. Поверхность теплообмена может обогреваться паром, дымовыми газами, горячей водой. Непосредственно материалу тепло передается либо от воздуха и дымовых газов, омывающих высушиваемый материал, либо от инертных газов и перегретого пара. Последний вид теплоносителя не получил широкого распространения в химической промышленности из-за сложности создания таких сушилок непрерывного действия. Тепло может передаваться материалу также от радиационных источников нагрева (при сушке тонких материалов), либо при помощи тока высокой или промышленной частоты (при сушке материалов сравнительно большой толщины).

Пары растворителя, выделяющиеся из материала, удаляются из сушилки при помощи отсасывающего устройства 5, которое представляет собой либо вентилятор в случае сушки воздухом или газом, либо конденсатор с вакуум-насосом, если необходимо создать вакуум в сушилке. При сушке воздухом и газами с отработанным теплоносителем уносится какое-то количество мелких частиц высушиваемого продукта. Для очистки газа, что необходимо как из санитарных, так и из экономических соображений, в сушильную установку входит пылеулавливающее устройство 4, представляющее собой циклон, скруббер либо рукавный фильтр.

1.2 Расчет сушильной установки

1.2.1 Материальный баланс сушильной установки

Обычно задается годовая производительность сушилки по готовому продукту. Тогда часовая производительность сушилки будет G2 (в кг/ч):

G2 = G/(ab)

где G-годовая производительность по готовому продукту, кг ; a - число часов работы сушилки в сутки; b - число рабочих дней в году; величины a и b зависят от характера производства; обычно для непрерывнодействующих производств принимают a = 22ч. b = 330 сут, иногда принимают 7000-8000 рабочих часов в году.

Если в процессе сушки происходят безвозвратные потери материала, часовую производительность рассчитывают с учетом этой поправки:

G'2 = G2/k

где k - коэффициент, учитывающий выход продукта; он должен составлять 0,95 - 0,99.

Количество удаляемой влаги W(b кг/ч) определяют из уравнения материального баланса

W = G2(w1-w2)/(1-w1),

где w1 и w2 - начальная и конечная влажность материала, масс. доли.

Тогда производительность сушилки по исходному материалу составит (в кг/ч)

G1 = G2 + W.

В процессе сушки масса абсолютного сухого вещества (G c) не изменяется, если нет уноса его частиц или других потерь, т.е. (в кг/ч):

G c = G1 (1-w1) = G2(1-w2)

откуда

G1 = G2(1-w2)/ (1-w1)

При этом влагосодержания материала будут:

начальное

w10= w1/ (1-w1);

конечное

w20 = w2/ (1-w2)

1.2.2 Тепловой баланс сушильной установки

Для испарения влаги и проведения совместно с сушкой других термических процессов к материалу необходимо подвести тепло. Его можно подводить различными способами в зависимости от способа сушки. Если на основании опытных данных известен режим процесса, то из теплового баланса можно определить расход тепла на сушку и расход соответственно топлива, электроэнергии, пара.

Суммарный расход теплоты в сушилке

УQ = Qисп + Qм + Qп + Qг + Qд + Qт

где Qисп , Qм - расход теплоты соответственно на испарение влаги и нагревание материала; Qп и Qг - потери теплоты соответственно в окружающую среду и с отходящими газами; Qд -расход теплоты на дегидратацию, разрушение энергии связи с материалом и другие эндотермические процессы; Qт - расход теплоты на нагревание дополнительно вводимых сред (пара, сжатого воздуха и транспортных средств.

Для непрерывнодействующих сушилок рассчитывают часовой расход теплоты, для сушилок периодического действия - расход теплоты на один цикл сушки. Расход теплоты (в кДж/ч) на испарение жидкости

Qисп = W(Hп - Hж),

на испарение воды

Qисп = 4,19 W(595 + 0,49tг - ?1)

где Hп - энтальпия перегретого пара жидкости при температуре отходящих газов; Hж - энтальпия жидкости при начальной температуре материала; tг - температура отходящих газов, К; ?1 - начальная температура материала, К.

Расход теплоты на нагревание высушенного материала(в кДж/ч):

Qм = G2см(?2 - ?1),

где ?2 - температура материала, уходящего из сушильной камеры, К; см теплоемкость высушенного материала, кДж/(кг · К).

Причем

см = сс (1 -w2) + w2с2,

где сс - теплоемкость абсолютно сухого материала, кДж/(кг · К).

Потери теплоты сушилкой в окружающую среду (в кДж/ч):

Qп = KFп.с (t'- t0)

где K - коэффициент теплопередачи через стенку сушилки; Fп.с - наружная поверхность сушилки; t' - средняя температура в сушилке, К; t0 - температура окружающей среды, К.

Теплоизоляцию сушилки подбирают с учетом того, чтобы температура наружной стенки не превышала 40--50 °С (313-323 К). До определения максимальной поверхности сушилки можно приближенно принять удельные потери теплоты в окружающую среду qп = 125 ч 420 кДж на 1 кг испаренной влаги в зависимости от влажности материала (меньшую величину принимают для высоковлажных материалов).

Потери теплоты с отходящими газами составят

QT = LH2 ,

где Н2-энтальпия отходящих газов.

При расчете сушилок часто приходится учитывать дополнительное количество воздуха Lдоп, который поступает в сушилку через загрузочное отверстие и другие неплотности. Обычно принимают

Lдоп ? 0,1 L

Расход теплоты на дегидратацию и другие эндотермические процессы (в кДж/ч)

Qд = q'д G2 .

где q'д -средняя удельная теплота дегидратации, отнесенная к 1 кг готового (сухого) продукта.

1.3 Возможности интенсификации процессов сушки

В связи с ростом производства различных химических продуктов, повышением требований к их качеству, совершенствованием технологии производства появляется необходимость в разработке новых способов сушки, обеспечивающих высокое качество продукта, максимальную автоматизацию, механизацию и значительную интенсификацию процесса.

Условная удельная интенсивность процесса (например, съем влаги с 1 м3 любого аппарата) зависит от концентрации материала, точнее - от активной поверхности тепло- и массообмена материала в единице объема, от максимально допустимых потенциалов переноса теплоты и массы и от гидродинамической (аэродинамической) обстановки.

Например, при двух различных способах сушки удельная интенсивность испарения может быть одинаковой, если в первом случае поддерживается более высокая концентрация материала, а во втором - более высокие температуры газовой фазы. Анализируя с этой точки зрения каждый сушильный аппарат, можно выявить возможность максимальной интенсификации процесса в нем и соответственно его перспективность для использования в промышленности.

Для интенсификации процессов сушки и повышения экономической эффективности работы аппаратов могут быть выбраны следующие пути:

использование более высоких начальных температур теплоносителя в условиях автоматизированных контроля и регулирования температуры. С повышением температуры теплоносителя резко сокращается длительность сушки, в результате материал сохраняет свои качественные показатели. При этом уменьшаются удельные расходы топлива и электроэнергии;

использование больших локальных скоростей (сопловая сушка), пульсирующих газовых потоков и вибрации частиц материала, закрученных высокоскоростных потоков (вихревая сушка) и т.д.;

применение электрических и магнитных полей;

применение перегретых паров испаряемой из материала жидкости в качестве теплоносителя (водяные пары, пары органических растворителей - тетрахлорид углерода, хлорбензол и т.д.);

применение комбинированных способов сушки и совмещение различных процессов в одном аппарате;

использование вторичных энергетических и тепловых ресурсов производства (тепло отходящих газов, а также котельных, сушилок и других термических установок).

Размещено на Allbest.ru

...

Подобные документы

  • Расчет горения топлива и начальных параметров теплоносителя. Построение теоретического и действительного процессов сушки на I-d диаграмме. Материальный баланс и производительность сушильного барабана для сушки сыпучих материалов топочными газами.

    курсовая работа [106,3 K], добавлен 03.04.2015

  • Тепловой расчет барабанного сушила, его производительность и расчет начальных параметров. Построение теоретического процесса сушки, тепловой баланс. Расход воздуха и объем отходящих газов, аэродинамический расчет. Материальный баланс процесса сушки.

    курсовая работа [664,3 K], добавлен 27.04.2013

  • Сушка - технологический процесс, используемый в химической, фармацевтической и пищевой промышленности. Основные виды сушки. Распылительная сублимационная сушка. Эффективность применения вакуума при сушке сублимацией. Определение эвтектических температур.

    курсовая работа [4,0 M], добавлен 23.02.2011

  • Сущность процесса сушки. Расчет сушильной установки. Аппаратное обеспечение процесса сушки. Технологические основы регулирования сушилок с кипящим слоем. Определение момента окончания сушки по разности температур. Автоматизация сушильных установок.

    дипломная работа [2,7 M], добавлен 25.01.2011

  • Принципиальная технологическая схема сушильной установки. Построение рабочей линии процесса сушки. Расчет газовой горелки, бункера-питателя, ленточного и винтового транспортера, шлюзового дозатора, вентилятора дымососа. Расчет тепловой изоляции установки.

    курсовая работа [1,9 M], добавлен 13.01.2015

  • Установки для сушки сыпучих материалов. Барабанные сушила, сушила для сушки в пневмопотоке и кипящем слое. Установки для сушки литейных форм, стержней. Действие устройств сушильных установок. Сушила с конвективным режимом работы. Расчет процессов сушки.

    курсовая работа [2,9 M], добавлен 29.10.2008

  • Характеристика производственного процесса сушки крови убойных животных в сушильных установках различного типа. Материальный баланс и расчет геометрических размеров камеры. Обоснование необходимости разработки новой распылительной сушильной установки.

    дипломная работа [555,7 K], добавлен 28.11.2012

  • Устройство и принцип действия основного и дополнительного оборудования. Выбор и обоснование режимов сушки и влаготеплообработки. Расчет продолжительности цикла сушки, количества камер. Определение параметров агента сушки, а также расхода теплоты.

    курсовая работа [139,6 K], добавлен 23.04.2015

  • Технологическая схема установки сушки молока. Формирование состава и свойств сухого цельного молока. Методика проектного расчета распылительной сушильной установки. Уравнение теплового баланса. Тепловая нагрузка калорифера и изоляционный расчёт.

    курсовая работа [84,3 K], добавлен 22.01.2013

  • Расчет необходимого расхода абсолютно сухого воздуха, влажного воздуха, мощности калорифера и расхода греющего пара в калорифере. Определение численного значения параметра сушки. Построение линии реальной сушки. Объемный расход отработанного воздуха.

    контрольная работа [131,8 K], добавлен 07.04.2014

  • Технологическая схема лесосушильного цеха, выбор способа сушки древесины. Разработка схемы технологического процесса сушки пиломатериалов, описание работы сушильной камеры. Технологические требования к сухим пиломатериалам, их укладка и транспортировка.

    курсовая работа [100,8 K], добавлен 10.03.2012

  • Классификация сушилок по способу подвода тепла, уровню давления сушильного агента в рабочем пространстве сушильной камеры, применяемому сушильному агенту. Принцип работы барабанных сушилок. Графоаналитический расчет процесса сушки в теоретической сушилке.

    курсовая работа [3,0 M], добавлен 26.05.2015

  • Расчет установки для сушки известняка. Обоснование целесообразности выбора конструкции аппарата с учетом современного уровня развития технологии, экономической эффективности и качества продукции. Выбор технологической схемы, параметров процесса.

    курсовая работа [1,1 M], добавлен 20.05.2015

  • Устройство и принцип действия сушильной камеры. Выбор режимов сушки и влаготеплообработки. Расчет требуемого количества камер. Определение массы испаряемой влаги, параметров агентов сушки, расходов теплоты на сушку. Разработка технологического процесса.

    курсовая работа [1,4 M], добавлен 11.10.2012

  • Исследование конструкции бункерной зерносушилки СБВС-5. Характеристика газовоздушной смеси и состояния зерна в процессе сушки и охлаждения. Расчет испаренной влаги в сушильной камере, размеров барабанной сушилки. Определение расхода теплоты на сушку.

    курсовая работа [49,7 K], добавлен 23.12.2012

  • Описание сушильной камеры и выбор параметров режима сушки. Расчет продолжительности камерной сушки пиломатериалов. Показатели качества сушки древесины. Определение параметров сушильного агента на входе и выходе из штабеля. Выбор конденсатоотводчика.

    курсовая работа [3,9 M], добавлен 08.01.2016

  • Сущность и назначение процесса нагревания продукта под вакуумом (сублимации). Материальный и энергетический баланс процесса выпаривания. Навесные, валковые, просыпные или жидкостные магнитные сепараторы. Схема сушилки для сублимационной сушки продуктов.

    контрольная работа [1020,3 K], добавлен 11.09.2010

  • Сушка как способ удаления влаги. Характеристика сырья, химический состав продукта. Технологическая схема производства сушеных яблок, технические требования. Методы сушки яблок, лабораторные сушильные установки. Восстанавливаемость сушеных яблок.

    курсовая работа [172,9 K], добавлен 04.06.2011

  • Цели, процессы сушки древесины. Существующая технология и оборудование для сушки пиломатериалов. Определение типа конструкции лесосушильной установки. Подбор энергетической установки для лесосушильной камеры М-1. Схема энергетического комплекса Прометей.

    реферат [670,6 K], добавлен 07.11.2009

  • Описание технологии производства пектина. Классификация сушильных установок и способы сушки. Проектирование устройства для сушки и охлаждения сыпучих материалов. Технологическая схема сушки яблочных выжимок. Конструктивный расчет барабанной сушилки.

    курсовая работа [2,9 M], добавлен 19.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.