Современное состояние вопроса в области кремнийсодержащих наноматериалов

Описание установки зондовых исследований плазменного пучка при абляции кремния. Схема исследования распределения по толщине пленки в плоскости осей факелов относительно биссектральной оси. Характеристика и особенности асимметрии зондовых кривых.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 17.06.2018
Размер файла 827,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Современное состояние вопроса в области кремнийсодержащих наноматериалов

А.З. Исагулов

В настоящей работе методом зонда Ленгмюра исследованы распределения по скоростям ионов в факеле при абляции одной мишени кремния и в плазменном пучке, сформированном пересекающимися факелами при абляции двух мишеней кремния. Получены времяпролетные кривые (ВПК) ионного тока на зонд при расстояниях зонд-мишень в интервале 40-157 мм. Проведена аппроксимация ВПК суммой одномерных распределений Максвелла по скоростям для нескольких групп ионов. Измерено распределение толщины пленки в плоскости осей узконаправленных факелов. Получено распределение времени прихода пика ВПК от координаты относительно биссектральной оси. Получены образцы пленок кремния с шероховатостью поверхности 1 нм.

Схема экспериментальной установки представлена на рисунке 1. Эксперименты проводились в вакуумной камере, которая откачивалась турбомолекулярным насосом до давления 10-6 Торр. Мишени в виде дисков из монокристаллического кремния закреплялись в оправе и вращались для однородности выработки мишени. Лазерная эрозионная плазма от кремниевой мишени образовывалась под действием излучения твердотельного YAG:Nd3+ лазера с модуляцией добротности. Длительность импульса по полувысоте составляла 15 нс, энергия в импульсе 300 мДж. Луч делился на два равных, которые затем фокусировались на поверхность мишеней линзами с фокусным расстоянием 30 см. Площадь пятна фокусировки на мишени 0,65 мм2.

Зонд Ленгмюра длиной 5 мм изготавливался из вольфрамовой проволоки диаметром 0,2 мм, которая помещалась в керамическую трубку. Зонд располагался перпендикулярно оси факела. Перемещение зонда в вакуумной камере осуществлялось вдоль оси эрозионного факела в интервале 40-157 мм. Потенциал зонда мог изменяться в пределах от 0 до -18 В. Источником регулируемого напряжения на зонде служила батарея аккумуляторов, которая одним полюсом через потенциометр подключалась к зонду, а другим полюсом через нагрузочный резистор заземлялась [1]. Для стабилизации потенциала зонда во время протекания тока источник регулируемого напряжения шунтировался емкостью 2,5 мФ. Ток зонда регистрировался на резисторе утечки 1 кОм с использованием быстродействующей платы аналогово-цифрового преобразователя (АЦП) АТ-5102 фирмы International Instruments и записывался на ПК. Отсчет времени прихода зарядов на зонд производился от момента генерации лазерного импульса, регистрируемого фотодиодом, сигнал с которого подавался на канал запуска АЦП.

В режиме перекрещенных пучков угол между мишенями и, соответственно, между факелами составлял 90°. Оси вращения мишеней располагались в одной плоскости. Перпендикулярно биссектрисе угла, образованного осями факелов, устанавливался неподвижный экран с отверстием. Диаметр отверстия выбирался таким, чтобы исключить прямую видимость областей абляции мишеней с места расположения зонда, чем исключалось прямое попадание на зонд заряженных частиц от исходных факелов. При исследовании одного из исходных факелов регистрировался сигнал с зонда, расположенного на оси разлета этого факела, второй луч перекрывался, и экран не устанавливался.

ВПК для обоих случаев имеют один ярко выраженный максимум с резким передним фронтом и более пологим задним фронтом, спадающим до нуля примерно за 30 мкс. Все ВПК были получены в интервале времени от 0 до 50 мкс, но для лучшего разрешения на рисунке 2 интервал времени сокращен до 20 мкс. Амплитуда сигнала ВПК с увеличением расстояния зонд-мишень спадает в результате расширения факела.

Были получены ВПК ионного тока на зонд на разных расстояниях зонд-мишень как для плазменного пучка, образованного при пересечении двух факелов (рисунок 2а), так и для факела от одной мишени кремния (рисунок 2б).

1 - излучение твердотельного ИАГ:Nd3+ лазера; 2 - фокусирующая линза; 3 - окно вакуумной камеры; 4 - мишень; 5 - плазменный пучок; 6 - зонд Ленгмюра; 7 - вакуумная камера; 8 - диафрагма; 9 - ось факела; 10 - вакуумный затвор; 11 - турбомолекулярный насос

Рисунок 1 - Схема установки зондовых исследований плазменного пучка при абляции кремния

Из рисунка 2 видно, что задержка переднего фронта сигнала пропорциональна расстоянию зонда до мишени. Были определены времена прихода лидирующей группы ионов от расстояния зонд-мишень в интервале 40-157 мм. Время прихода определялось по задержке между моментом абляции мишени и максимумом сигнала с зонда. Для обоих случаев образования эрозионного факела эта зависимость имеет линейный характер, то есть скорость разлета лидирующей группы ионов кремния не зависит от расстояния до мишени и составляет в плазменном пучке, образованном пересекающимися факелами, 31 км/с, а в факеле от одной мишени кремния - 70 км/с.

Асимметрия зондовых кривых, представленных на рисунке 2, связана с неравновесным распределением ионов по скоростям в факеле [2]. Наиболее вероятная скорость: L - расстояние зонд-мишень; t - время. Так, ВПК для факела от одной мишени являются суммой четырех групп положительно заряженных частиц, распространяющихся со скоростями, равными 71 км/с; 35,5 км/с; 18 км/с и 9 км/с. На рисунке 3 представлены

а - для плазменного пучка, образованного при пересечении двух факелов; б - для факела одной мишени

Рисунок 2 - Зондовые ВПК на разных расстояниях зонд-мишень: 1 - 72 мм; 2 - 102 мм; 3 - 132 мм; 4 - 157 мм

Рисунок 3 - Экспериментальные ВПК факела от одной мишени для расстояний зонд-мишень 72 мм (a) и 157 мм (b) и их аппроксимация суммой четырех максвелловских кривых. Толстой сплошной линией обозначена экспериментальная кривая 1, кружками отмечена расчетная кривая 2, представляющая собой сумму максвелловских кривых 3, 4, 5 и 6 для групп ионов со скоростями 71 км/с; 35,5 км/с; 18 км/с и 9 км/с соответственно

ВПК для расстояний зонд-мишень 72 и 157 мм и их аппроксимация суммой четырех максвелловских кривых. Видно, что суммарные кривые, обозначенные на рисунке 3 кружками, практически совпадают с экспериментальными ВПК.

Сравнивая ВПК ионов эрозионного факела от одной мишени (рисунок 2б) и пучка, распространяющегося по биссектрисе угла между осями исходных факелов (рисунок 2а), можно видеть, что энергетический спектр отклоненного пучка существенно отличается от энергетического спектра исходных факелов. Максимальная скорость в отклоненном пучке существенно ниже, чем скорость лидирующей группы ионов одиночного факела. Это вызвано тем, что эффективность отклонения ионов в пучках пропорциональна плотности ионов в пересекающихся пучках n(t) и сечению столкновения ионов Q. Аналогичный вид имеет и выражение для тока на зонд в отклоненном пучке.

Был проведен расчет тока на зонд для плазменного пучка, образованного при пересечении двух факелов, для всех исследованных расстояний зонд-мишень. При расчетах были взяты только группы ионов со скоростями 71 км/с и 35,5 км/с, т.к. для более медленных групп ионов время взаимодействия велико [2] и вкладом от них можно пренебречь. Полученные для Q ~ 1/V2, где V - скорость ионов, расчетные кривые хорошо совпадают с экспериментальными ВПК для всех исследуемых расстояний. В общем случае, наибольшее отклонение будут испытывать ионы из тех участков факела, для которых произведение концентрации и сечения рассеяния будет максимальным. зондовый биссектральная ось плоскость

На рисунке 4 указаны области осаждения капель и зона, свободная от капель. Кривая а показывает распределение толщины пленки, полученной при абляции только одной мишени, а кривая b описывает распределение толщины пленки при абляции двух мишеней (перекрещенные пучки).

Также было получено распределение времени прихода пика ВПК от координаты относительно биссектральной оси. Для этого зонд перемещался по дуге в плоскости разлета плазменных факелов, причем радиус дуги выбирался так, чтобы расстояние от точки пересечения факелов до зонда составляло 6 см. Плотность энергии на мишени составляла 20 Дж/см2. Полученное распределение представлено на рисунке 5.

1 - мишень; 2 - излучение лазера; 3 - биссектральная ось; 4 - подложка; 5 - пленка кремния; 6 - факел

Рисунок 4 - Схема исследования распределения по толщине пленки в плоскости осей факелов относительно биссектральной оси (обозначена пунктиром)

Рисунок 5 - Распределение времени прихода пика ВПК от координаты относительно биссектральной оси (обозначена пунктиром) при плотности энергии на мишени 20 Дж/см2

Из распределения видно, что скорость ионов, распространяющихся вдоль биссектральной оси, а соответственно и энергия меньше скорости ионов, двигающихся вдоль направлений разлета исходных эрозионных факелов [3].

Методом пересекающихся пучков получены образцы пленок кремния с шероховатостью поверхности менее 1 нм. На рисунке 6 представлено изображение участка тонкой пленки кремния, полученное при помощи атомно-силового микроскопа (АСМ).

Рисунке 6 - АCМ-изображение участка тонкой пленки кремния толщиной 150 нм без капель с шероховатостью поверхности 0,5 нм

СПИСОК ЛИТЕРАТУРЫ

1. Харрис, П. Углеродные нанотрубы и родственные структуры. Новые материалы XXI века [Текст]: Пер. с англ. / П. Харрис; Под ред. и с доп. Л.А. Чернозатонского. М.: Техносфера, 2003.

2. Пул, Ч. Нанотехнологии [Текст]: учеб. пособие: Пер. с англ. / Ч. Пул, Ф. Оуэнс; Под ред. Ю.И. Головина. М.: Техносфера, 2004.

3. Технические и программные средства автоматизации научных иссл. М.: Наука, 1987.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие токсичности и наноматехнологии. Преимущества и недостатки использования наноматериалов. Лабораторные исследования по токсичности наноматериалов. Исследования по токсичности наноматериалов на живых организмах. Применение наноматериалов в медицине.

    реферат [5,3 M], добавлен 30.08.2011

  • Химическая формула и вид молекулы полиэтилена. Характеристика материала и изделия по назначению. Толщина пленки различных марок. Усадка и предельные отклонения. Технологическая схема установки для производства пленки рукавным методом с приемкой вверх.

    реферат [847,2 K], добавлен 10.02.2014

  • Материальная основа и функции технического сервиса пути его развития. Современное состояние предприятий ТС, направления их реформирования. Виды и применение наноматериалов и нанотехнологий при изготовлении, восстановлении и упрочнении деталей машин.

    реферат [397,6 K], добавлен 23.10.2011

  • Требования, предъявляемые к защитным диэлектрическим пленкам. Кинетика термического окисления кремния: в сухом и влажном кислороде, в парах воды. Особенности методов осаждения оксидных пленок кремния. Оценка толщины и пористости осаждаемых пленок.

    реферат [1,2 M], добавлен 24.09.2009

  • Состояние вопроса в области выплавки сплавов из оксидосодержащих материалов и отходов металлообработки. Особенности редкофазной обновительной плавки. Методика проведения эксперимента. Описание экспериментальной установки. Материальные балансы плавки.

    курсовая работа [218,9 K], добавлен 14.10.2010

  • Характеристика черного карбида кремния и область его применения. Физико-химические и технологические исследования процесса производства карбида кремния в электропечах сопротивления. Расчет шихтовых материалов. Расчет экономической эффективности проекта.

    курсовая работа [2,8 M], добавлен 24.10.2011

  • Явление коррозии медицинских инструментов, его физическое обоснование и предпосылки, факторы риска и методы профилактики. Технология плазменного напыления: сущность и требования, характеристика наносимых покрытий. Оборудование для плазменного напыления.

    курсовая работа [44,3 K], добавлен 05.11.2014

  • Современное состояние вопроса исследования напряженно-деформированного состояния конструкций космических летательных аппаратов. Уравнения теории упругости. Свойства титана и титанового сплава. Описание комплекса съемочной аппаратуры микроспутников.

    дипломная работа [6,2 M], добавлен 15.06.2014

  • Порядок расчета основных энергетических характеристик и размеров стационарного плазменного двигателя. Определение тяговой и кинетической мощностей струи ионов и протяжённости слоя ионизации рабочего тела. Расчет разрядного тока и ресурса двигателя.

    курсовая работа [95,0 K], добавлен 01.03.2009

  • Общая характеристика шахты "Черкасская" Луганской области, ее геологическое описание и месторождения. Технология и схема подготовки шахтного поля. Водоотливные установки и методика откачки воды их шахты. Электроснабжение поверхности и подземной части.

    реферат [18,6 K], добавлен 19.04.2009

  • Триботехническая система "колесо-рельс". Способы повышения твердости гребней колесных пар, которые классифицируются по способу нагрева, охлаждения. История внедрения плазменного упрочнения на ВСЖД. Режим плазменного упрочнения. Оценка трещиностойкости.

    статья [241,0 K], добавлен 10.09.2008

  • Общая характеристика камеры сгорания, описание ее конструкции и основных элементов, система распределения топлива и зажигания. Обслуживание и ремонт газотурбинной установки, технология и методика расчета экономического эффекта от ее модернизации.

    дипломная работа [570,7 K], добавлен 17.10.2013

  • Применение коэффициентов асимметрии и эксцесса для проверки нормальности распределения результатов измерений. Проверка с использованием критерия Пирсона. Оценка нормальности распределения периода калибровочной решетки "TGZ2" непараметрическим методом.

    курсовая работа [2,7 M], добавлен 29.04.2014

  • Общая характеристика установок плазменного нагрева. Принцип работы плазматрона косвенного и прямого действия. Характеристики плазмообразующих газов. Характеристика плазменно-дуговых печей с кристаллизатором конструкции института электросварки им. Патона.

    курсовая работа [250,7 K], добавлен 04.12.2008

  • Разработка технологии сварки изделия. Выбор способа получения заготовок. Резка металла с помощью установки автоматизированного плазменного раскроя. Расчет режимов автоматической сварки под флюсом. Схема листогибочной машины с гидравлическим приводом.

    контрольная работа [183,0 K], добавлен 23.03.2014

  • Описание циркуляционной установки. Схема установки и ее расчет. Определение геометрической высоты всасывания насоса Н2, показаний дифманометра (дифпьезометра) скоростной трубки. Построение эпюр скоростей для сечения в месте установки скоростной трубки.

    курсовая работа [751,2 K], добавлен 18.05.2010

  • Современное состояние коксохимического производства ОАО «Алчевсккокс» описание и характеристика предприятия. Перспективная потребность в коксохимической продукции и возможность ее сбыта. Описание применяемого оборудования и программного обеспечения.

    отчет по практике [24,0 K], добавлен 12.01.2009

  • Основы гидроочистки топлив. Использование водорода в процессах гидроочистки. Требования к качеству сырья и целевым продуктам. Параметры гидроочистки, характеристика продуктов. Описание установки гидроочистки Л-24-6. Технологическая схема установки Г-24/1.

    курсовая работа [305,2 K], добавлен 19.06.2010

  • Тенденция к использованию более богатого по содержанию кремния ферросилиция и брикетов и комплексных сплавов на основе ферросилиция и кристаллического кремния. Физико-химические свойства кремния. Шихтовые материалы для производства ферросилиция.

    курсовая работа [696,9 K], добавлен 02.02.2011

  • Поверхности осей, работающие на трение. Материалы для изготовления осей. Анализ технологичности конструкции детали. Шероховатости обрабатываемых поверхностей. Методы получения заготовки. Припуски на поверхности заготовки. Расчет припусков и допусков.

    курсовая работа [1,9 M], добавлен 21.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.