Технологии конструкционных материалов

Особенности подготовки производства. Разработка процессов обработки деталей и их сборки. Характеристика литейного и сварочного производств. Способы изготовления отливок и формовочных смесей. Основные методы литья. Обработка металлов давлением и резанием.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 16.06.2018
Размер файла 5,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Получение деталей из композиционных пластиков.

С технологической точки зрения удобно использовать отдельные пластмассы, находящиеся в жидком состоянии при нормальной температуре. В первую очередь это относится к производству крупногабаритных деталей из композиционных пластиков. Пластики состоят из связующей смолы, наполнителя и в некоторых случаях отвердителя и ускорителя отверждения. В качестве связующего предпочтительнее использовать полиэфирные и эпоксидные смолы. Эти смолы характеризуются высокой адгезией к наполнителю и способностью отверждаться при нормальной температуре за счет добавления к ним отвердителей и ускорителей отверждения (перекиси бензола, нафтената, кобальта, полиэтиленполиамина и др.). Высокая прочность композиционных пластиков зависит от применяемых наполнителей (стеклоткани и стекловолокна, хлопчатобумажные ткани и волокна, металлическая сетка и проволока, углеродные и борные волокна и т. п.). Тип наполнителя зависит от требуемых свойств создаваемого материала. В отдельных случаях в состав пластиков вводят пластификаторы и красители.

К основным способам изготовления деталей из композиционных пластиков относятся контактная формовка, автоклавная формовка, стирометод, вихревое напыление, центробежная формовка, намотка и др.

Контактной формовкой изготовляют крупногабаритные детали с наполнителями из стеклотканей, стекломатов и т. д. Применяют формы из дерева, гипса и легких сплавов. Форма должна точно воспроизводить наружный или внутренний контур детали.

Перед формовкой на рабочие поверхности формы наносят разделительный слой (поливиниловый спирт, нитролаки, целлофановую пленку и др.), предотвращающий прилипание связующего к поверхности формы. По разделительному слою наносят слой связующего, затем слой предварительно раскроенной ткани, которую тщательно прикатывают резиновым роликом к поверхности формы. Этим достигаются плотное прилегание ткани к поверхности формы, удаление пузырьков воздуха и равномерное пропитывание ткани связующим. Затем снова наносят связующее, ткань и т. д. до получения заданной толщины. Отверждение происходит при нормальной температуре в течение 5-50 ч, в зависимости от вида связующего. Время отверждения сокращают увеличением температуры до 60-120 °С. После отверждения готовую деталь извлекают из формы и в случае необходимости подвергают дальнейшей обработке (обрезке кромок, окраске и т. д.).

Особенность контактной формовки - простота оснастки и возможность получения деталей любых размеров и форм. Однако этот метод малопроизводителен, качество получаемых деталей недостаточно высокое из-за неравномерной укладки наполнителя и связующего. К нему предъявляют определенные требования по технике безопасности. Поэтому контактную формовку применяют в опытном и мелкосерийном производствах.

Автоклавную формовку применяют при выпуске деталей большими сериями. Форму с деталью накрывают резиновым чехлом и помещают в герметический резервуар (автоклав). С помощью пара или воды в автоклаве создают определенное давление.

Стирометодом изготовляют крупногабаритные детали из композиционных пластиков с замкнутым полым профилем (полые рамы, диски, кронштейны и т. д.). На тонкостенный поливинилхлоридный чехол, размеры которого соответствуют размерам изготовляемой детали, наматывают волокно. Заготовку укладывают в разогретую до температуры 100-120 °С пресс-форму. Под действием давления воздуха, разогретого внутри шланга, заготовка растягивается до размеров полости пресс-формы. В пространство между чехлом и пресс-формой за счет создания вакуума засасывается связующее.

Приведенные способы формовки используют в основном для изготовления деталей из пластиков с длинноволокнистыми наполнителями. При применении измельченных наполнителей процесс изготовления деталей удается механизировать. Наполнитель и связующее подают под давлением сжатого воздуха.

Вихревым напылением изготовляют крупногабаритные детали из стеклопластиков (кузова легковых и грузовых автомобилей, корпуса лодок, емкости и др.). Стекловолокно и смолу с отвердителем и ускорителем отверждения наносят на форму специальным пульверизатором. Смола смачивает стекловолокно в вихревом потоке, образованном сжатым воздухом. Стекловолокно со связующим, нанесенные на форму, вручную уплотняют роликом.

Высокой степенью механизации отличается напыление с помощью передвижной установки, в которой смонтированы режущее устройство для стекловолокна, вентилятор для подачи сжатого воздуха, распылитель и емкости для связующего, отвердителя и ускорителя. Стекловолокно разрезают на отдельные куски длиной 10-90 мм. Распылитель имеет три сопла: центральное для подачи стекловолокна и два боковых (одно служит для подачи связующего и отвердителя, другое - связующего и ускорителя отверждения). Смешение компонентов происходит на поверхности формы или перед нею в потоке сжатого воздуха.

Центробежной формовкой получают детали больших габаритных размеров, имеющие форму тел вращения, толщиной 2-15 мм, диаметром до 1 м и высотой до 3 м.

Стекловолокно и связующее равномерно подают во вращающуюся форму. После формовки в форму помещают резиновый мешок, с помощью которого создается давление на заготовку. В таком состоянии происходит отверждение композиции при определенной температуре. Намоткой получают трубы и сложные по форме оболочки из композиционных пластиков. Основным элементом технологической оснастки является металлическая оправка, на которую перед намоткой укладывают пленку, облегчающую снятие изделия. При намотке оправка совершает вращательное и возвратно-поступательное движение. Волокно или тканевую ленту смачивают связующим. Отформованную заготовку покрывают защитной целлофановой пленкой и отправляют в камеру для отверждения.

Основной недостаток производства крупногабаритных деталей из пластиков - невысокая производительность труда, повышение которой возможно за счет механизации технологического процесса.

Изготовление резиновых технических деталей.

Состав, свойства и области применения резиновых деталей.

В производстве резиновых технических деталей основным видом сырья являются натуральные и синтетические каучуки. Натуральные каучуки не нашли широкого применения, так как сырьем для их получения служит каучукосодержащий сок отдельных сортов растений. Сырьем для получения синтетических каучуков является нефть, нефтепродукты, природный газ, древесина и т. д. Каучук в натуральном виде в промышленности не применяют, его превращают в резину вулканизацией. В качестве вулканизирующего вещества обычно используют серу. Количество серы определяет эластичность резиновых деталей. Например, мягкие резины содержат 1-3 % серы, твердые (эбонит) - до 30 % серы. Процесс вулканизации происходит под температурным воздействием (горячая вулканизация) или без температурного воздействия (холодная вулканизация). Для улучшения физико-механических и эксплуатационных свойств резиновых технических деталей и снижения расхода каучука в состав резиновых смесей вводят различные компоненты.

Наполнители уменьшают расход каучука, улучшают эксплуатационные свойства деталей. Наполнители подразделяют на порошкообразные и тканевые. В качестве порошкообразных наполнителей применяют сажу, тальк, мел и др. К тканевым наполнителям относят хлопчатобумажные, шелковые и другие ткани. В некоторых случаях для повышения прочности деталей их армируют стальной проволокой или сеткой, стеклянной или капроновой тканью. Количество наполнителя зависит от вида выпускаемых деталей.

Мягчители (парафин, стеариновая кислота, канифоль и др.) служат для облегчения процесса смешивания резиновой смеси и обеспечения мягкости и морозоустойчивости. Для замедления процесса окисления в резиновые смеси добавляют противостарители (вазелин, ароматические амины и др.). Процесс вулканизации ускоряют введением в смесь оксида цинка и др.

Красители (охра, пятисернистая сурьма, ультрамарин и др.) вводят в смесь в количестве до 10 % массы каучука.

Высокая эластичность, способность к большим обратимым деформациям, стойкость к действию активных химических веществ, малая водо- и газопроницаемость, хорошие диэлектрические и другие свойства резины обусловили ее применение во всех отраслях народного хозяйства. В машиностроении применяют разнообразные резиновые технические детали: ремни - для передачи вращательного движения с одного вала на другой; шланги и напорные рукава-для передачи жидкостей и газов под давлением; сальники манжеты, прокладочные кольца и уплотнители - для уплотнения подвижных и неподвижных соединений; муфты, амортизаторы - для гашения динамических нагрузок; конвейерные ленты - для оснащения погрузочно-разгрузочных устройств и т. д.

Способы формообразования резиновых деталей.

Технологический процесс изготовления резиновых технических деталей состоит из отдельных последовательных операций приготовления резиновой смеси, формования и вулканизации. Процесс подготовки резиновой смеси заключается в смешении входящих в нее компонентов. Перед смешением каучук переводят в пластичное состояние многократным пропусканием его через специальные вальцы, предварительно подогретые до температуры 40-50 °С. Находясь в пластичном состоянии, каучук обладает способностью хорошо смешиваться с другими компонентами. Смешение проводят в червячных или валковых смесителях. Необходимо иметь в виду, что первым из компонентов при приготовлении смеси вводят противостаритель, последним - вулканизатор или ускоритель вулканизации.

Рис. 90. Схема получения прорезиненных тканей

Резиновые технические детали в зависимости от предъявляемых к ним требований формообразуют каландрованием, непрерывным выдавливанием, прессованием, литьем под давлением, намоткой и т. д. Многие технологические процессы переработки резиновых композиций в детали подобны тем, которые были рассмотрены при формообразовании деталей из пластмасс.

Каландрование применяют для получения, резиновых деталей в виде листов и прорезиненных лент, а также для соединения листов резины и прорезиненных лент (дублирование). Операцию выполняют на многовалковых машинах - каландрах. Валки каландров снабжают системой внутреннего обогрева или охлаждения, что позволяет регулировать температурный режим. Листы резины, полученные прокаткой на каландрах, сматывают в рулоны и используют затем в качестве полуфабриката для других процессов формообразования резиновых деталей. Во избежание слипания резины в рулонах ее посыпают тальком или мелом при выходе из каландра.

В процессе получения прорезиненной ткани в зазор между валками каландров 3 (рис. 90) одновременно пропускают пластифицированную сырую резиновую смесь 4 и ткань 2. Резиновая смесь поступает в зазор между верхним и средним валками, обволакивает средний валок и поступает в зазор между средним и нижним валками, через который проходит ткань. Средний валок вращается с большей скоростью, чем нижний. Разность скоростей обеспечивает втирание резиновой смеси в ткань. Толщину резиновой пленки на ткани регулируют, изменяя зазор между валками каландра. Многослойную прорезиненную ткань получают при пропускании определенного числа листов однослойной прорезиненной ткани через валки каландра. Полученную ткань наматывают на барабан 1 и затем вулканизируют.

Непрерывное выдавливание используют для получения профилированных, резиновых деталей (труб, прутков, профилей для остекления и т, д.). Детали непрерывным выдавливанием изготовляют на машинах червячного типа. Таким способом покрывают резиной металлическую проволоку.

Прессование - один из основных способов получения фасонных деталей (манжет, уплотнительных колец, клиновых ремней и т. д.). Прессуют их в металлических формах. Применяют горячее и холодное прессование. При горячем прессовании резиновую смесь закладывают в горячую пресс-форму и прессуют на гидравлических прессах с обогреваемыми плитами. Температура прессования 140-155 °С. При прессовании одновременно происходят формообразование и вулканизация деталей. Высокопрочные детали (например, клиновые ремни) после формования подвергают дополнительной вулканизации в специальных приспособлениях - пакетах. Xолодным прессованием получают детали из эбонитовых смесей (корпуса аккумуляторных батарей, детали для химической промышленности и т. д.). После прессования заготовки отправляют на вулканизацию. В состав эбонитовой смеси входят каучук и значительное количество серы (до 30 % массы каучука). В качестве наполнителей применяют размельченные отходы эбонитового производства.

Литьем под давлением получают детали сложной формы. Резиновая смесь поступает под давлением при температуре 80-120 °С через литниковое отверстие в литейную форму, что значительно сокращает цикл вулканизации.

Вулканизация - завершающая операция при изготовлении резиновых деталей - проводят в специальных камерах (вулканизаторах) при температуре 120-150 °С в атмосфере насыщенного водяного пара при небольшом давлении. В процессе вулканизации происходит химическая реакция серы и каучука, в результате которой линейная структура молекул каучука превращается в сетчатую, что уменьшает пластичность, повышает стойкость к действию органических растворителей, увеличивает механическую прочность.

При массовом производстве резиновых технических деталей рее технологические операции выполняют с помощью высокопроизводительного и автоматизированного оборудования.

Лекция 25. Электрофизические и электрохимические методы обработки. Электроэрозионные способы обработки

Характеристика электрофизических и электрохимических методов обработки.

Эти методы предназначены в основном для обработки заготовок из очень прочных, весьма вязких, хрупких и неметаллических материалов.

Эти методы имеют следующие преимущества:

- отсутствует силовое воздействие инструмента на заготовку (или очень мало и не влияет на суммарную погрешность обработки);

- позволяют менять форму поверхности заготовки и влияют на состояние поверхностного слоя: наклеп обработанной поверхности не образуется, дефектный слой незначителен; повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхности;

- можно обрабатывать очень сложные наружные и внутренние поверхности заготовок.

ЭФЭХ методы обработки являются универсальными и обеспечивают непрерывность процессов при одновременном формообразовании всей обрабатываемой поверхности. Эти методы внедряются в различных отраслях промышленности.

Электроэрозионные методы обработки.

Эти методы основаны на явлении эрозии электродов из токопроводящих материалов при пропускании между ними импульсного электрического тока.

Разряд между электродами происходит в газовой среде или при заполнении межэлектродного пространства диэлектрической жидкостью - керосин, минеральное масло.

При наличии разности потенциалов на электродах происходит ионизация межэлектродного пространства. При определенном значении разности потенциалов - образуется канал проводимости, по которому устремляется электроэнергия в виде импульсного искрового или дугового разряда.

На поверхности заготовки температура возрастает до 10000…12000 0C. Происходит мгновенное оплавление и испарение элементарного объема металла и на обрабатываемой поверхности образуется лунка.

Удаленный металл застывает в диэлектрической жидкости в виде гранул диаметром 0,01…0,005 мм.

При непрерывном подведении к электродам импульсного тока процесс эрозии продолжается до тех пор, пока не будет удален весь металл, находящийся между электродами на расстоянии, при котором возможен электрический пробой (0,01…0,05 мм) при заданном напряжении.

Для продолжения процесса необходимо сблизить электроды до указанного расстояния. Электроды сближаются автоматически с помощью следящих систем.

Электроискровая обработка.

Схема электроискровой обработки представлена на рис. 91.

Рис. 91. Схема электроискрового станка: 1 - электрод-инструмент; 2 - ванна; 3 - заготовка-электрод; 4 - диэлектрическая жидкость; 5 - изолятор

При электроискровой обработке - используют импульсные искровые разряды между электродами (обрабатываемая заготовка (анод) - инструмент (катод)).

Конденсатор заряжается через резистор от источника постоянного тока напряжением 100…200 В. Когда напряжение на электродах 1 и 3 достигает пробойного образуется канал, через который осуществляется искровой разряд энергии, накопленной конденсатором.

Продолжительность импульса 20…200 мкс.

Точность обработки до 0,002 мм, 0,63…0,16 мкм.

Для обеспечения непрерывности процесса (зазор =const) станки снабжаются следящей системой и системой автоматической подачи инструмента.

Получают сквозные отверстия любой формы поперечного сечения, глухие отверстия и полости, отверстия с криволинейными осями, вырезают заготовки из листа, выполняют плоское, круглое и внутреннее шлифование.

Изготовляют штампы и пресс-формы, фильеры, режущий инструмент.

Схемы электроискровой обработки представлены на рис. 92.

Рис. 92. Схемы электроискровой обработки: а - прошивание отверстия с криволинейной осью; б - шлифование внутренней поверхности фильеры

Электроискровую обработку применяют для упрочнения поверхностного слоя металла. На поверхность изделия наносят тонкий слой металла или композиционного материала. Подобные покрытия повышают твердость, износостойкость, жаростойкость, эрозионную стойкость и так далее.

Электроимпульсная обработка.

При электроимпульсной обработке используют электрические импульсы большой длительности (5…10 мс), в результате чего происходит дуговой разряд.

Большие мощности импульсов от электронных генераторов обеспечивают высокую производительность обработки.

Электроимпульсную обработку целесообразно применять при предварительной обработке штампов, турбинных лопаток, фасонных отверстий в детали из коррозионностойких и жаропрочных сплавов.

Схема обработки показана на рис. 93.

Рис. 93. Схема электроимпульсной обработки: 1 - электродвигатель; 2 - импульсный генератор постоянного тока; 3 - инструмент-электрод; 4 - заготовка-электрод; 5 - ванна

Электроконтактная обработка.

Электроконтактная обработка основана на локальном нагреве заготовки в месте контакта с электродом-инструментом и удалении размягченного или расплавленного металла из зоны обработки механическим способом: относительным движением заготовки или инструмента.

Источником теплоты служат импульсные дуговые разряды.

Этот вид обработки рекомендуется для крупных деталей из углеродистых и легированных сталей, чугуна, цветных сплавов, тугоплавких и специальных сплавов (рис. 94).

Рис. 94. Схема электроконтактной обработки плоской поверхности: 1 - обрабатываемая заготовка; 2 - инструмент-электрод; 3 - трансформатор

Этот метод применяют для зачистки отливок от заливов, отрезки литниковых систем, зачистки проката, шлифования коррозионных деталей из труднообрабатываемых сплавов.

Анодно-механическая обработка.

Анодно-механическая обработка основана на сочетании электротермических и электромеханических процессов и занимает промежуточное место между электроэрозионным и электрохимическим методами.

Заготовку подключают к аноду, а инструмент - к катоду. В качестве инструмента используют металлические диски, цилиндры, ленты, проволоку.

Обработку ведут в среде электролита (водный раствор жидкого натриевого стекла).

Рабочие движения, как при механической обработке резанием.

Электролит в зону обработки подают через сопло (рис. 95).

Рис. 95. Схема анодно-механической обработки плоской поверхности

При пропускании через раствор электролита постоянного электрического тока происходит процесс анодного растворения, как при электрохимической обработке.

При соприкосновении инструмента с микронеровностями заготовки происходит электроэрозия, присущая электроискровой обработке. Металл заготовки в месте контакта с инструментом разогревается и разжижается. Продукты электроэрозии и анодного растворения удаляются при относительных движениях инструмента и заготовки.

Этим способом обрабатывают заготовки из высокопрочных и труднообрабатываемых сплавов, вязких материалов.

Этим способом разрезают заготовки на части, прорезают пазы и щели, обрабатывают поверхности тел вращения, шлифуют плоские поверхности и поверхности, имеющие форму тел вращения, полируют поверхности, затачивают режущий инструмент.

Лекция 26. Электрохимическая, ультразвуковая и лучевая обработка материалов

Электрохимическая обработка.

Электрохимическая обработка основана на законах анодного растворения металлов при электролизе.

При прохождении электрического тока через электролит на поверхности заготовки происходят химические реакции, и поверхностный слой металла превращается в химическое соединение.

Продукты электролиза переходят в раствор или удаляются механическим способом.

Производительность этого способа зависит от электрохимических свойств электролита, обрабатываемого материала и плотности тока.

Электрохимическое полирование.

Электрохимическое полирование осуществляется в ванне, заполненной электролитом (растворы кислот и щелочей).

Обрабатываемую заготовку подключают к катоду (рис. 96). Катодом служит металлическая пластинка из свинца, меди, стали (иногда электролит подогревают).

Рис. 96. Схема электрохимического полирования: 1 - ванна; 2 - обрабатываемая заготовка; 3 - пластина-электрод; 4 - электролит; 5 - микровыступ; 6 - продукты анодного растворения

При подаче напряжения начинается процесс растворения металла заготовки (в основном на выступах микронеровностей). В результате избирательного растворения, микронеровности сглаживаются, и обрабатываемая поверхность приобретает металлический блеск.

Улучшаются электрофизические характеристики деталей: уменьшается глубина микротрещин, поверхностный слой не деформируется, исключаются упрочнения и термические изменения структуры, повышается коррозионная стойкость.

Этим методом получают поверхности под гальванические покрытия, доводят рабочие поверхности режущего инструмента, изготовляют тонкие ленты и фольгу, очищают и декоративно отделывают детали.

Электрохимическая размерная обработка.

Электрохимическая размерная обработка выполняется в струе электролита, прокачиваемого под давлением через межэлектродный промежуток.

Электролит растворяет образующиеся на поверхности заготовки - анода соли и удаляет их из зоны обработки. Высокая производительность процесса заключается в том, что одновременно обрабатывается вся поверхность заготовки.

Участки, не требующие обработки, изолируют. Инструменту придают форму, обратную форме обрабатываемой поверхности. Формообразование происходит по методу копирования (рис. 97).

Рис. 97. Схема электрохимической размерной обработки: 1 - инструмент - катод; 2 - заготовка - анод

Точность обработки повышается при уменьшении рабочего зазора. Для его контроля используют высокочувствительные элементы, которые встраивают в следящую систему.

Этот способ рекомендуют для обработки заготовок из высокопрочных сталей, карбидных и труднообрабатываемых материалов. Также можно обрабатывать тонкостенные детали с высокой точностью и качеством обработанной поверхности (отсутствует давление инструмента на заготовку).

Комбинированные методы обработки.

Электроабразивная и электроалмазная обработка.

При таких видах обработки инструментом служит шлифовальный круг из абразивного материала на электропроводящей связке (бакелитовая связка с графитовым наполнителем).

Между анодом - заготовкой и катодом - шлифовальным кругом имеется зазор, куда подается электролит. Продукты анодного растворения удаляются абразивными зернами; шлифовальный круг имеет вращательное движение, а заготовка - движение подачи, которые соответствуют процессу механического шлифования (рис. 98).

Рис. 98. Схема электроабразивного шлифования: 1 - заготовка; 2 - абразивные зерна; 3 - связка шлифовального круга

Введение в зону резания ультразвуковых колебаний повышает производительность в 2…2,5 раза при улучшении качества поверхности. Эти методы применяются для отделочной обработки заготовок из труднообрабатываемых материалов, а также нежестких заготовок, так как силы резания незначительны.

Лучевые методы обработки.

Электроннолучевая обработка - основана на превращении кинетической энергии направленного пучка электронов в тепловую энергию. Высокая плотность энергии сфокусированного электронного луча позволяет обрабатывать заготовку за счет нагрева, расплавления и испарения материала с локального участка.

Схема электроннолучевой обработки представлена на рис. 99.

Электронный луч образуется за счет эмиссии электронов с нагретого в вакууме катода. Он с помощью электростатических и электромагнитных линз фокусируется на заготовке.

При размерной обработке установка работает в импульсном режиме, что обеспечивает локальный нагрев заготовки.

Электроннолучевой метод эффективен при обработке отверстий диаметром 1…0,010 мм, при прорезании пазов, резке заготовок, изготовлении тонких пленок и сеток из фольги, изготовлении заготовок из труднообрабатываемых металлов и сплавов, керамики, кварца, полупроводникового материала.

Рис. 99. Схема установки для электроннолучевой сварки: 1 - катод электронной пушки; 2 - электрод; 3 - анод; 4 и 5 - отклоняющая магнитная система; 6 - заготовка

Лазерная обработка - основана на тепловом воздействии светового луча высокой энергии на поверхность заготовки. Источником светового излучения служит лазер - оптический квантовый генератор.

Энергия светового луча не велика 20…100 Дж, но она выделяется в миллионные доли секунды и сосредотачивается в луче диаметром 0,01 мм. Поэтому температура в зоне контакта 6000…8000 0С.

Слой металла мгновенно расплавляется и испаряется. С помощью этого метода осуществляется прошивание отверстий, разрезание заготовки, прорезание пазов в заготовках из любых материалов (фольга из тантала, вольфрама, молибдена). Также с помощью этого метода можно осуществить контурную обработку по сложному периметру.

Размещено на Allbest.ru

...

Подобные документы

  • Общая характеристика и направления деятельности исследуемого предприятия, этапы реализации литейного и сварочного производства. Особенности и инструментальное обеспечение технологии обработки металлов резанием, принципы автоматизации и роботизации.

    контрольная работа [653,7 K], добавлен 22.01.2014

  • Основы технологии термической обработки металлов и сплавов. Термическая обработка - этап технологического процесса изготовления деталей. Улучшение обрабатываемости материалов давлением или резанием. Формирования технических и электрических свойств.

    реферат [53,8 K], добавлен 20.01.2009

  • Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.

    презентация [4,7 M], добавлен 25.09.2013

  • Сущность технологии литья по выплавляемым моделям. Процесс изготовления разрезных пресс-форм. Суть и назначение обработки конструкционных материалов резанием. Рабочие и вспомогательные движения в металлорежущих станках. Подготовка порошков к формованию.

    реферат [76,4 K], добавлен 11.10.2013

  • Обработка резанием является универсальным методом размерной обработки. Все виды механической обработки металлов и материалов резанием подразделяются на лезвийную и абразивную обработку согласно ГОСТ 25761-83. Основные виды обработки по назначению.

    курсовая работа [1,3 M], добавлен 27.02.2009

  • Разработка чертежа отливки. Выбор машины для литья под давлением. Технологический процесс изготовления детали "Крышка". Проектирование пресс-формы. Расчет количества машин для литья под давлением. Расчет расхода электроэнергии, сжатого воздуха, воды.

    дипломная работа [1,5 M], добавлен 09.02.2012

  • Характеристика предприятия и технологических процессов. Применения отливок из серого чугуна в машиностроении. Сущность литья в оболочковые формы. Способы электрофизической и электрохимической обработки детали, контрольное и станочное приспособления.

    отчет по практике [29,2 K], добавлен 25.04.2009

  • Сущность токарной обработки. Токарная обработка является разновидностью обработки металлов резанием. Основные виды токарных работ. Обработка конструкционных материалов на малогабаритном широкоуниверсальном станке. Правила эксплуатации токарных станков.

    реферат [1,5 M], добавлен 29.04.2009

  • Схема механической обработки поверхности заготовки на круглошлифовальных станках. Схема нарезания резьбы резьбовым резцом. Обработка поверхностей заготовок деталей с периодически повторяющимся профилем. Физическая сущность обработки металлов давлением.

    курсовая работа [415,9 K], добавлен 05.04.2015

  • Технология изготовления деталей и узлов подсвечника, выбор материалов. Обоснование технологии изготовления деталей, выбор технологических переходов и операций. Последовательность изготовления художественного изделия методом обработки деталей давлением.

    курсовая работа [419,5 K], добавлен 04.01.2016

  • Классификация и применение процессов объемного деформирования материалов. Металлургические и машиностроительные процессы обработки металлов давлением. Методы нагрева металла при выполнении операций ОМД. Технология холодной штамповки металлов и сплавов.

    контрольная работа [1,2 M], добавлен 20.08.2015

  • Технологический процесс изготовления крышки. Изготовление деталей из легированной стали. Тип производства, количество деталей в партии. Выбор инструментов и режимов резания. Вид заготовки и припуски на обработку. Структура технологического процесса.

    курсовая работа [3,8 M], добавлен 16.07.2013

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

  • Разработка художественного образа кольца. Выбор материалов на основе анализа их структуры и оценки свойств. Описание технологий изготовления изделия при помощи обработки давлением и литья по выплавляемым моделям. Подбор рационального режима обработки.

    курсовая работа [901,9 K], добавлен 11.07.2014

  • Сущность процессов литья. Основные свойства литейных сплавов и влияние их на качество отливок. Анализ технологичности детали. Выбор эффективного способа получения заготовки. Разработка технологии получения детали резанием. Контроль размеров детали.

    курсовая работа [512,5 K], добавлен 07.10.2012

  • Состав, назначение, приготовление формовочных и стержневых смесей. Элементы литниковой системы. Какие дефекты возникают или могут возникать в стальной заготовке при ее нагреве перед горячей обработкой давлением. Типы электродов для дуговой сварки.

    контрольная работа [463,9 K], добавлен 25.02.2015

  • Проектирование современного цеха по производству отливок из сплавов черных металлов. Выбор оборудования и расчет производственной программы этого цеха. Особенности технологических процессов выплавки стали. Расчет площади складов для хранения материалов.

    курсовая работа [125,6 K], добавлен 13.05.2011

  • Составление технологической схемы производства. Подготовка и заливка формы. Исправление дефектов отливки. Основной участок литья под давлением. Расчет установленной и потребляемой мощности. Компоновка технологического оборудования, планировка помещений.

    дипломная работа [2,4 M], добавлен 18.02.2012

  • Что такое сталь. Классификация конструкционных сталей по химическому составу и качеству. Примеры маркировки стали. Схемы и способы разливки стали, их достоинства и недостатки. Основные способы обработки металлов давлением, особенности их применения.

    контрольная работа [441,6 K], добавлен 05.01.2010

  • Выбор способа литья и типа производства. Условие работы детали, назначение отливки и выбор сплава. Маршрутная технология изготовления отливки, последовательность выполнения технологических операций и их характеристика. Контроль качества отливок.

    курсовая работа [1,8 M], добавлен 11.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.