Переработка газов
Исходное сырье и продукты переработки газов. Объекты газоперерабатывающих заводов. Пять технологических процессов: прием и подготовка газа к переработке; компримирование газа до необходимого давления; отбензинивание газа; разделение нестабильного бензина.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 22.10.2018 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Переработка газов
1. Исходное сырье и продукты переработки газов
Легкие углеводороды содержатся в природных горючих газах (чисто газовых, нефтяных и газоконденсатных месторождений), а также в газах, получаемых при переработке нефти.
Природные горючие газы состоят в основном из смеси парафиновых углеводородов. Кроме того, в их состав могут входить азот, углекислый газ, пары воды, сероводород, гелий.
Природные горючие газы перерабатывают на газоперерабатывающих заводах, которые строят вблизи крупных нефтяных и газовых месторождений. Предварительно газы очищают от мехпримесей (частиц пыли, песка, окалины и т.д.), осушают и очищают от сероводорода и углекислого газа. Продуктами первичной переработки природных горючих газов являются газовый бензин, сжиженные и сухие газы, технические углеводороды: этан, пропан, бутаны, пентаны.
Газы, получаемые при первичной и вторичной (особенно там, где используют термокаталитические процессы) переработке нефти, кроме предельных парафиновых углеводородов содержат и непредельные - олефины. Этим они отличаются от природных горючих газов.
переработка газ компримирование отбензинивание
2. Основные объекты газоперерабатывающих заводов
На газоперерабатывающих заводах (ШЗ) с полным (законченным) технологическим циклом применяют пять основных технологических процессов:
1) прием, замер и подготовка (очистка, осушка и т.д.) газа к переработке;
2) компримирование газа до давления, необходимого для переработки;
3) отбензинивание газа, т.е. извлечение из него нестабильного газового бензина;
4) разделение нестабильного бензина на газовый бензин и индивидуальные технически чистые углеводороды (пропан, бутаны, пентаны, н-гексан);
5) хранение и отгрузка жидкой продукции завода.
Газоперерабатывающее производство может быть организовано не только как ГПЗ, но и как газоотбензиниваюшая установка в составе нефтегазодобывающего управления (НГДУ) или нефтеперерабатывающего завода (НПЗ). Это делается когда количество исходного сырья невелико.
Принципиальная технологическая схема ГПЗ приведена на рис. 1.
Газ поступает на пункт приема под давлением ОД 5...0,35 МПа. Здесь сначала производят замер его количества, а затем направляют в приемные сепараторы, где от газа отделяют механические примеси (песок, пыль, продукты коррозии газопроводов) и капельную влагу. Далее газ поступает на установку очистки газа 2, где от него отделяют сероводород и углекислый газ.
Компрессорная станция 1-й ступени 3 предназначена для перекачки сырьевого («сырого») газа. Сжатие осуществляется в одну, две или три ступени газомоторными компрессорами (10 ГК, 10 ГКМ, 10 ГКН) или центробежными нагнетателями (К-380, К-980).
На отбензинивающих установках 4 сырьевой газ разделяют на нестабильный газовый бензин, отбензиненный газ и сбросной газ. Нестабильный бензин направляют на газофракционирующие установки 6. Отбензиненный («сухой») газ компрессорной станцией П-й ступени 5 закачивается в магистральный газопровод или реализуется местным потребителям. Сбросной газ используют для топливных нужд котельной и трубчатых печей.
Газофракционирующие установки 6 предназначены для разделения нестабильного бензина на газовый (стабильный) бензин и индивидуальные технически чистые углеводороды: этан, пропан, бу-таны, пентаны и н-гексан. Получаемые продукты газоразделения откачивают в товарный парк 7, откуда впоследствии производится их отгрузка железнодорожным транспортом или по трубопроводам.
3. Отбензинивание газов
Для отбензинивания газов используются компрессионный, абсорбционный, адсорбционный и конденсационный методы.
Компрессионный метод
Сущность компрессионного метода заключается в сжатии газа компрессорами и последующем его охлаждении в холодильнике. Уже при сжатии тяжелые компоненты газа частично переходят из газовой фазы в жидкую. С понижением температуры выход жидкой фазы из сжатого газа возрастает.
Компрессионный метод применяют для отбензинивания «жирных» газов, в которых содержится более 1000 г/м! тяжелых углеводородов. Оптимальным для нефтяных газов является давление компримирования 2...4 МПа.
Рис. 1. Принципиальная технологическая схема ГПЗ: 1 - узел замера количества газа; 2 - установка очистки газа; 3 - компрессорная станция; 4 - отбензиниваюшие установки; 5 - компрессорная станция 2-й ступени; 6 - газофракциоиирующие установки; 7 - товарный парк; 8 - пункт отгрузки жидкой продукции. I - пункт приема газа; II - сухой газ потребителям; III - жидкая продукция потребителям
Абсорбционный метод
Сущность абсорбционного метода состоит в поглощении тяжелых углеводородов из газовых смесей жидкими поглотителями (абсорбентами). В качестве таких поглотителей могут быть использованы керосин, дизельный дистиллят, масла.
При физической абсорбции поглощаемые углеводороды не образуют химических соединений с абсорбентами. Поэтому обычно физическая абсорбция обратима, т.е. поглощенные компоненты можно выделить из абсорбентов. Этот процесс называется десорбцией. Чередование процессов абсорбции и десорбции позволяет многократно применять один и тот же поглотитель.
Количество поглощенных газов при абсорбции увеличивается с повышением давления и понижением температуры. Чем больше молярная масса компонентов газа, тем в большем количестве он поглощается одной и той же жидкостью.
Принципиальная схема абсобционно-десорбционного процесса приведена на рис. 2. Исходный (сырьевой) газ I подается в нижнюю часть абсорбера 1. Поднимаясь вверх, газ контактирует с абсорбентом, стекающим по тарелкам абсорбера вниз, в результате чего (вследствие массообмена) целевые компоненты из газа переходят в жидкость. Очищенный газ II выходит из верхней части абсорбера, а насыщенный абсорбент IV - из нижней части.
Насыщенный абсорбент поступает в гидравлическую турбину 7, где совершает полезную работу, приводя в действие насос 3. В результате его давление снижается от давления абсорбции до давления десорбции. Далее насыщенный абсорбент нагревается в подогревателе 5 и поступает в верхнюю часть десорбера 6. В нижнюю часть десорбера 6 подается горячий десорбирующий агент (острый водяной пар) VI. В результате нагрева насыщенного абсорбента происходит процесс десорбции. Испарившиеся целевые компоненты V выходят через верхнюю часть десорбера, а регенерированный абсорбент - через нижнюю часть. Регенерированный абсорбент после рекуперации теплоты в теплообменнике 5 через промежуточную емкость 4 и холодильник 2 насосом 3 возвращается в абсорбер 1.
Применение абсорбционного метода наиболее рационально для отбензинивания газов, содержащих от 200 до 300 г тяжелых углеводородов в 1 м3.
Адсорбционный метод
Адсорбцией называется процесс поглощения одного или нескольких компонентов из газовой смеси твердым веществом - адсорбентом. Процессы адсорбции обычно обратимы. На этом основан процесс десорбции - выделение из адсорбента поглощенных им веществ.
В качестве адсорбентов применяются пористые твердые вещества, имеющие большую удельную поверхность - от сотен до десятков сотен квадратных метров на грамм вещества. Другой важнейшей характеристикой адсорбентов является их адсорбционная активность (или адсорбционная емкость) равная количеству целевых компонентов (в масс. %, граммах и т.п.), которое может быть поглощено единицей массы адсорбента.
Адсорбционная активность адсорбентов зависит от состава газа, давления и температуры. Чем выше молярная масса газа и давление, а также чем ниже температура, тем адсорбционная активность выше.
В качестве адсорбентов при разделении газовых смесей используют активированный уголь, силикагель и цеолиты.
Принципиальная схема отбензинивания газов адсорбционным методом приведена на рис. 3.
На отбензинивание подается газ, от которого предварительно отделена капельная влага. Это связано с тем, что попадание капельной жидкости в слой адсорбента вызывает его разрушение и снижение адсорбционной активности. Пройдя слой адсорбента, например, в адсорбере 1, сырьевой газ очищается от целевых компонентов. Для регенерации адсорбента в адсорбере 2 отбирается поток регенерационного газа III в количестве 15...30 % от расхода сырьевого газа. Регенерационный газ нагревается в подогревателе 3 и поступает в адсорбер 2, где адсорбированные компоненты переходят из слоя адсорбента в нагретый газ. По выходе из адсорбера регенерационный газ охлаждается: сначала потоком отбензинен-ного газа в холодильнике 4, а затем водой в холодильнике 5. Выпадающий при этом конденсат собирается в конденсатосборни-ке 6, а отбензиненный газ направляется на доочистку в работающий адсорбер 1.
По мере насыщения адсорбента в адсорбере 1 он выводится на регенерацию, а в работу включается адсорбер 2.
Для регенерации адсорбента применяют также пропарива-ние адсорберов острым водяным паром с последующим охлаждением выходящего влажного пара и отделением углеводородов.
Адсорбционный способ отбензинивания углеводородных газов применяют при содержании тяжелых компонентов от 50 до 100 г/м;).
Рис. 2.Принципиальная схема абсорбционно-десорбционного процесса;
1 -- абсорбер; 2 - холодильник; 3 - насос; 4 - промежуточная емкость; 5 -подогреватель; 6 - десорбер; 7 - гидравлическая турбина.
I- сырьевой газ; II - газ, освобожденный от целевых компонентов; Ill-регенерированный абсорбент; IV- насыщенный абсорбент; V - целевые компоненты; VI - десорбирующий агент
Рис. 3 Принципиальная схема абсорбционного отбензинивания газовой смеси: 1, 2 - абсорберы; 3 - подогреватель; 4, 5 - холодильники; 6 - конденсато-сборник I - отсепарированный от жидкости сырьевой газ; II- отбензиненный газ; Ш-регенерационный газ; IV- сконденсированные тяжелые углеводороды;
Конденсационный метод
Сущность конденсационного метода заключается в сжижении тяжелых углеводородных компонентов газа при отрицательных температурах. Применяют две разновидности конденсационного метода отбензинивания газов: низкотемпературная конденсация (НТК) и низкотемпературная ректификация (НТР).
Процесс низкотемпературного отбензинивания состоит из 3-х стадий:
а) компримирования газа до давления 3...7 МПа;
б) охлаждения сжатого и осушенного газа до температуры -Ю...-80°С;
в) разделения образовавшейся газожидкостной смеси углеводородов на нестабильный газовый бензин и «сухой» газ.
Две первые стадии процесса при применении НТК и НТР одинаковы. Отличие между ними заключается в третьей стадии.
В схеме НТК (рис. 4) газожидкостная смесь под давлением 3...4 МПа проходит систему холодильников 1-3 после чего разделяется в сепараторе 4. Образовавшийся конденсат после использования в качестве хладагента в холодильниках 1,2 подается в деэтанизатор 5, а сухой газ - в газопровод.
В конденсате кроме высококипящих углеводородов (C.(HS + высшие) присутствуют метан и этан, которые при его хранении, транспортировании и переработке, являются нежелательной примесью. Метан и этан отгоняют от углеводородного конденсата в деэтанизаторе 5 путем нагрева в кипятильнике 6. Углеводородные пары, отходящие с верха деэтанизатора, частично конденсируются в пропановом холодильнике 7 и направляются в рефлюксную емкость 8. Отсюда несконденсировавшийся газ отводится потребителям, а жидкая фаза насосом 9 закачивается в верхнюю часть деэтанизатора в качестве орошения. Деэтанизированный нестабильный бензин с низа деэтанизатора направляют на газофракционирующую установку. В схеме низкотемпературной ректификации в отличие от схемы НТК в ректификационную колонну (деэтанизатор) поступает вся газожидкостная смесь, образовавшаяся в результате компримирования и охлаждения сырьевого газа. То есть сепаратор 4 из схемы, изображенной на рис. 4, исключен.
Рис. 4 Принципиальная схема получения деганизированного бензина в установке НТК: 1-3 - холодильники; 4 - сепаратор; 5 - деэтанизатор; 6 - кипятильник; 7 -пропановый холодильник; 8 - рефлюксная емкость; 9 - насос I - сырьевой газ; II - сухой газ; III - нестабильный бензин; IV- деэтаиизи-рованный нестабильный бензин
Рис. 5 Принципиальные схемы газофракционирования:
а) - двухкомпонентная; б) - трехкомпонентная; в) - четырехкомпонентная
Процесс НТК по сравнению с процессом НТР имеет следующие преимущества:
1) благодаря предварительному отбору газовой фазы в сепараторе 4, деэтанизатор и другие аппараты установки имеют меньшие размеры;
2) вследствие относительно небольшого содержания метана и этана в сырье деэтанизатора конденсацию паров в холодильнике 7 можно осуществлять при сравнительно высоких температурах -5...-10 °С.
Недостатками схемы НТК является то, что часть целевых компонентов теряется с газом, отбираемым из сепаратора 4. Этот недостаток устраняется более глубоким охлаждением сырьевого газа перед сепаратором, что требует больших затрат энергии.
Считается, что схема НТР наиболее рациональна при извлечении пропана в пределах 50 % от потенциала, а схема НТР экономичнее при извлечении свыше 70 % пропана, содержащемся в исходном газе.
4. Газофракционирующие установки
Нестабильный бензин, получаемый на отбензинивающих установках методами компрессии, абсорбции, адсорбции и охлаждения (НТК, НТР) состоит в общем случае из углеводородов от этана до гептана включительно. Это связано с тем, что при фазовых переходах и сорбции тяжелые углеводороды увлекают за собой легкие.
Поскольку нестабильный газовый бензин не находит непосредственного применения в народном хозяйстве из него получают стабильный газовый бензин и технически чистые индивидуальные углеводороды - пропан, бутаны, пентаны, гексан.
Процесс разделения нестабильного газового бензина на отдельные компоненты называется фракционированием. В основе фракционирования лежит метод ректификации. Поскольку требуется обеспечить четкое разделение исходного сырья на компоненты, температура кипения которых различается незначительно, фракционирование осуществляют в несколько ступеней, на каждой из которых сырье разделяется на два компонента: высококипящий и низкокипящий.
Процесс разделения двухкомпонентной смеси ректификацией выглядит следующим образом. Сырье, которое надо разделить, подается в среднюю часть колонны на тарелку питания. Введенная в колонну жидкая смесь стекает по контактным устройствам в нижнюю часть колонны, называемую отпарной. Навстречу потоку жидкости поднимаются пары, образовавшиеся в результате кипения жидкости в кубе колонны. В процессе противоточного движения паровая фаза обогащается низкокипящим компонентом, а жидкая -высококипящим.
Газофракционирующие установки бывают двух типов: одноколонные и многоколонные. Одноколонные установки называют стабилизационными. Они предназначены для разделения нестабильного газового бензина на стабильный газовый бензин и сжиженный газ (рис. 5 а). На многоколонных ГФУ из нестабильного бензина выделяют стабильный бензин и фракции индивидуальных углеводородов. Для разделения нестабильного бензина на три компонента требуется две колонны (рис. 5 б): в первой колонне выделяется один целевой компонент, а в следующей - второй и третий. Рассуждая аналогично легко показать, что для разделения смеси на п фракций требуется (п-1)-на ректификационная колонна. Таким образом, для получения стабильного газового бензина и всех возможных технически чистых углеводородов (пропан, бутаны, пентаны, гексан) требуется 6 колонн.
СПИСОК ЛИТЕРАТУРЫ
1.Абдурашитов С.А., Тупиченков А.А. Трубопроводы для сжиженных газов,- М.: Недра, 1965.- 215с.
2. Бобрицкий И.В., Юфин В.А. Основы нефтяной и газовой промышленности.- М.: Недра, 1988.- 200 с.
3. Бобровский С.А., Яковлев Е.И. Газовые сети и газохранилища. -М.: Недра, 1980.-413 с.
4. Бородавкин П.П., Березин В.Л. Сооружение магистральных трубопроводов.- М.: Недра, 1987.- 471 с.
5. Гаврилов В.П. Черное золото планеты.- М.: Недра, 1990.-160 с.
6. Гужов С.С. Как ищут и добывают нефть и газ.- М.: Недра, 1973.-144 с.
7. Зорькин Л.М., Суббота М.И., Стадник Е.В. Метан в нашей жизни.- М.: Недра, 1986.-151 с.
8. Калинин А.Г., Левицкий А.З., Никитин Б.А. Технология бурения разведочных скважин на нефть и газ.- М.: Недра, 1998.- 440 с.
9. Короткий P.M., Лобанов В.А., Нейдинг М.М. Рудники Нептуна.- Л.: Судостроение, 1986.- 152 с.
10. Кострин К.В. Почему нефть называется нефтью.- М.: Недра, 1967.-158 с.
11. Кострин К.В. Человек соревнуется с природой.- Уфа: Башкнигоиздат, 1975.-183 с.
12. Межирицкий Л.М. Оператор нефтебазы.- М.: Недра, 1976.-239с.
13. Нечваль М.В., Новоселов В.Ф., Тугунов П.И. Последовательная перекачка нефтей и нефтепродуктов по магистральным трубопроводам.- М.: Недра, 1976.- 221 с.
14. Плитман И.Б. Справочное пособие для работников автозаправочных и автогазонаполнительных станций.-М.: Недра, 1982.- 189с.
15. Рыбаков К.В., Митягин В.А. Автомобильные цистерны для нефтепродуктов: устройство и особенности эксплуатации.- М.: Транспорт, 1989.- 400 с.
16. Середа Н.Г., Муравьев В.М. Основы нефтяного и газового дела.- М.: Недра, 1980.- 287 с.
17. Техника и технология транспорта и хранения нефти и газа/ Ф.Ф. Абузова, Р.А. Алиев, В.Ф. Новоселов и др.- М.: Недра, 1992.- 320 с.
18. Трубопроводный транспорт нефти и газа / Р.А. Алиев, В.Б. Белоусов, А.Г. Немудров и др.- М.: Недра, 1988.- 368 с.
19. Хотимский Б.Г., Топорский В.Г., Махолин О.А. Нефть вчера и сегодня.- Л.: Недра, 1977.-175 с.
20. Цыркин Е.Б., Олегов С.Н. О нефти и газе без формул.- Л.: Химия, 1989.-160 с.
21. Элияшевский И.В. Технология добычи нефти и газа.- М.: Недра, 1976.-256 с.
Размещено на Allbest.ru
...Подобные документы
Классификация углеводородных газов. Процесс очистки газов от механических примесей. Осушка газа от воды гликолями. Технология удаление сероводорода и углекислого газа. Физико-химические свойства абсорбентов. Процесс извлечения тяжелых углеводородов.
презентация [3,6 M], добавлен 26.06.2014Подготовка газов к переработке, очистка их от механических смесей. Разделение газовых смесей, низкотемпературная их ректификация и конденсация. Технологическая схема газофракционной установки. Специфика переработки газов газоконденсатных месторождений.
дипломная работа [628,4 K], добавлен 06.02.2014Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.
реферат [175,4 K], добавлен 11.02.2014Компрессоры, используемые для транспортировки газов. Предел взрываемости нефтяного газа. Расчет годового экономического эффекта от внедрения блочных компрессорных установок для компрессирования и транспорта нефтяного газа. Удельный вес газа на нагнетании.
курсовая работа [2,7 M], добавлен 28.11.2010Характеристика природного газа, турбинных масел и гидравлических жидкостей. Технологическая схема компрессорной станции. Работа двигателя и нагнетателя газоперекачивающего агрегата. Компримирование, охлаждение, осушка, очистка и регулирование газа.
отчет по практике [191,5 K], добавлен 30.05.2015Понятие нефтяных попутных газов как смеси углеводородов, которые выделяются вследствие снижения давления при подъеме нефти на поверхность Земли. Состав попутного нефтяного газа, особенности его переработки и применения, основные способы утилизации.
презентация [693,7 K], добавлен 10.11.2015Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.
контрольная работа [208,4 K], добавлен 11.06.2013Технология переработки компонентов природного газа и отходящих газов С2-С5 нефтедобычи и нефтепереработки в жидкие углеводороды состава С6-С12. Особенности расчета технологических параметров ректификационной колонны, ее конденсатора и кипятильника.
контрольная работа [531,6 K], добавлен 06.11.2012Характеристика современного состояния нефтегазовой промышленности России. Стадии процесса первичной переработки нефти и вторичная перегонка бензиновой и дизельной фракции. Термические процессы технологии переработки нефти и технология переработки газов.
контрольная работа [25,1 K], добавлен 02.05.2011Общая характеристика и классификация массообменных процессов, их использование в промышленности. Схема абсорбции с рециркуляцией жидкости и газа. Зависимость растворимости некоторых газов в жидкостях. Тепловой эффект растворения газа, его измерение.
контрольная работа [1,8 M], добавлен 22.05.2012Изучение классификации методов осушки природных газов. Состав основного технологического оборудования и механизм работы установок подготовки газа методом абсорбционной и адсорбционной осушки. Анализ инновационного теплофизического метода осушки газа.
доклад [1,1 M], добавлен 09.03.2016Централизации технологических объектов подготовки газа. Конфигурации трубопроводных коммуникаций и расчет рабочего давления. Очистка от механических примесей. Общая оценка процесса осушки газа, способы выделения из него сероводорода и двуокиси углерода.
реферат [992,0 K], добавлен 07.06.2015История развития рынка сжиженного природного газа, его современное состояние и перспективы развития. Технология производства и транспортировки сжиженного природного газа, обзор перспективных проектов по созданию заводов по сжижению газа в России.
реферат [2,5 M], добавлен 25.12.2014Геолого-промысловая характеристика Ямбургского газоконденсатного месторождения. Продукция, исходное сырье, реагенты. Условия образования газовых гидратов. Предупреждение образования гидратов природных газов и борьба с ними. Снижение затрат на добычу газа.
дипломная работа [4,6 M], добавлен 31.03.2011Расчет материального и теплового балансов и оборудования установки адсорбционной осушки природного газа. Физико-химические основы процесса адсорбции. Адсорбенты, типы адсорберов. Технологическая схема установки адсорбционной осушки и отбензинивания газа.
курсовая работа [1,5 M], добавлен 24.05.2019Применение газов в технике: в качестве топлива; теплоносителей; рабочего тела для выполнения механической работы; среды для газового разряда. Регенераторы и рекуператоры для нагрева воздуха и газа. Использование тепла дымовых газов в котлах-утилизаторах.
контрольная работа [431,9 K], добавлен 26.03.2015Анализ общих сведений по Уренгойскому месторождению. Тектоника и стратиграфия. Газоносность валанжинского горизонта. Свойства газа и конденсата. Технологическая схема низкотемпературной сепарации газа. Расчет низкотемпературного сепаратора очистки газа.
дипломная работа [1,7 M], добавлен 09.06.2014Характеристика Уренгойского газоконденсатного месторождения. Описание оборудования для очистки и одоризации газа. Рассмотрение источников и основных производственных опасностей на месторождении. Определение себестоимости газа, расчет заработной платы.
дипломная работа [4,5 M], добавлен 21.10.2014Оценка способов покрытия пика неравномерности потребления газа. Технологическая схема отбора и закачки газа в хранилище. Емкости для хранения сжиженного газа. Назначение, конструкция, особенности монтажа и требования к размещению мобильного газгольдера.
курсовая работа [788,3 K], добавлен 14.01.2018Глубокая осушка углеводородных газов: адсорбционная и абсорбционная. Извлечения тяжёлых углеводородов: абсорбционное; низкотемпературная сепарация и конденсация. Изучение процессов извлечения гелия, стабилизации и переработки газовых конденсатов.
курсовая работа [149,8 K], добавлен 30.05.2013