Добыча нефти и газа
Современные методы добычи нефти: сбор с поверхности водоемов, извлечение из колодцев, обработка песчаника, пропитанного нефтью. Физика продуктивного пласта. Разработка нефтяных и газовых месторождений. Фонтанный и насосный способы эксплуатации скважин.
Рубрика | Производство и технологии |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 22.10.2018 |
Размер файла | 6,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Горизонтальный газонефтяной сепаратор гидроциклонного типа (рис. 35) состоит из технологической емкости 1 и нескольких одно-точных гидроциклонов 2. Конструктивно однотонный циклон представляет собой вертикальный цилиндрический аппарат с тангенциальным вводом газонефтяной смеси, внутри которого расположены направляющий патрубок 3 и секция перетока 4. В одноточном гидроциклоне смесь совершает одновременно вращательное движение вокруг направляющего патрубка и нисходящее движение, образуя нисходящий вихрь. Нефть под действием центробежной силы прижимается к стенке циклона, а выделившийся и очищенный от капель жидкости газ движется в центре его. В секции перетока нефть и газ меняют направление движения с вертикального на горизонтальное и поступают раздельно в технологическую емкость. Далее газовый поток проходит каплеотбойник 5, распределительные решетки 6 и выходит из сепаратора. Нефть по наклонным полкам 7 стекает в нижнюю часть емкости. Ее уровень поддерживается с помощью регулятора 8.
Обезвоживание
При извлечении из пласта, движении по насосно-компрессор-ным трубам в стволе скважины, а также по промысловым трубопроводам смеси нефти и воды, образуется водонефтяная эмульсия - механическая смесь нерастворимых друг в друге и находящихся в мелкодисперсном состоянии жидкостей.
В эмульсиях принято различать дисперсионную (внешнюю, сплошную) среду и дисперсную (внутреннюю, разобщенную) фазу. По характеру дисперсионной среды и дисперсной фазы различают два типа эмульсий: “нефть в воде” и “вода в нефти”. Тип образующейся эмульсии, в основном, зависит от соотношения объемов фаз, а также от температуры, поверхностного натяжения на границе “нефть-вода” и др.
Одной из важнейших характеристик эмульсий является диаметр капель дисперсной фазы, так как от него зависит скорость их осаждения.
Для разрушения эмульсий применяются следующие методы:
- гравитационное холодное разделение;
- внутритрубная деэмульсация;
- термическое воздействие;
- термохимическое воздействие;
- электрическое воздействие;
- фильтрация;
- разделение в поле центробежных сил.
Рис. 35.Горизонтальный газонефтяной сепаратор гидроциклонного типа: 1 - емкость; 2 - однотонный гидроциклон; 3 - направляющий патрубок; 4 - секция перетока; 5 -каллеотбойник; 6 - распределительные решетки; 7 - наклонные полки; 8 - регулятор уровня
Рис. 36 Принципиальная схема отстойника непрерывного действия
Гравитационное холодное разделение применяется при высоком содержании воды в пластовой жидкости. Отстаивание производится в отстойниках периодического и непрерывного действия.
В качестве отстойников периодического действия обычно используются сырьевые резервуары, аналогичные резервуарам для хранения нефти. После заполнения таких резервуаров сырой нефтью вода осаждается в их нижнюю часть.
В отстойниках непрерывного действия отделение воды осуществляется при непрерывном прохождении обрабатываемой смеси через отстойник. Принципиальная схема отстойника непрерывного действия приведена на рис. 36.
Длина отстойника определяется из условия, что от нефти должны отделиться капли заданного размера.
Сущность метода внутритрубной деэмульсации заключается в том, что в смесь нефти и воды добавляется специальное вещество - деэмульгатор в количестве 15...20 г на тонну эмульсии. Деэмульгатор разрушает бронирующую оболочку на поверхности капель воды и обеспечивает тем самым условия для их слияния при столкновениях. В последующем эти укрупнившиеся капельки относительно легко отделяются в отстойниках за счет разности плотностей фаз.
Термическое воздействие заключается в том, что нефть, подвергаемую обезвоживанию, перед отстаиванием нагревают. При нагревании, с одной стороны, уменьшается прочность бронирующих оболочек на поверхности капель, а, значит, облегчается их слияние, с другой стороны, уменьшается вязкость нефти, в которой оседают капли, а это увеличивает скорость разделения эмульсии.
Нагревают эмульсию в резервуарах, теплообменниках и трубчатых печах до температуры 45...80 °С.
Термохимический метод заключается в сочетании термического воздействия и внутритрубной деэмульсации.
Электрическое воздействие на эмульсии производится в аппаратах, которые называются электродегидраторами. Под действием электрического поля на противоположных концах капель воды появляются разноименные электрические заряды. В результате капельки притягиваются друг к другу и сливаются. Затем они оседают на дно емкости.
Фильтрация применяется для разрушения нестойких эмульсий. В качестве материала фильтров используются вещества, не смачиваемые водой, но смачиваемые нефтью. Поэтому нефть проникает через фильтр, вода нет.
Разделение в поле центробежных сил производится в центрифугах, которые представляют собой вращающийся с большим числом оборотов ротор. В ротор по полому валу подается эмульсия. Здесь она под действием сил инерции разделяется, так как капли воды и нефти имеют различные плотности.
При обезвоживании содержание воды в нефти доводится до!...2%.
Обессоливание
Обессоливание нефти осуществляется смешением обезвоженной нефти с пресной водой, после чего полученную искусственную эмульсию вновь обезвоживают. Такая последовательность технологических операций объясняется тем, что даже в обезвоженной нефти остается некоторое количество воды, в которой и растворены соли. При смешении с пресной водой соли распределяются по всему ее объему и, следовательно, их средняя концентрация в воде уменьшается.
При обессоливании содержание солей в нефти доводится до величины менее 0,1 %.
Стабилизация
Под процессом стабилизации нефти понимается отделение от нее легких (пропан-бутанов и частично бензиновых) фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке.
Стабилизация нефти осуществляется методом горячей сепарации или методом ректификации. При горячей сепарации нефть сначала нагревают до температуры 40...80 °С, а затем подают в сепаратор. Выделяющиеся при этом легкие углеводороды отсасываются компрессором и направляются в холодильную установку. Здесь тяжелые углеводороды конденсируются, а легкие собираются и закачиваются в газопровод.
При ректификации нефть подвергается нагреву в специальной стабилизационной колонне под давлением и при повышенных температурах (до 240 °С). Отделенные в стабилизационной колонне легкие фракции конденсируют и перекачивают на газофракциониру-ющие установки или на ГПЗ для дальнейшей переработки.
К степени стабилизации товарной нефти предъявляются жесткие требования: давление упругости ее паров при 38 ° С не должно превышать 0,066 МПа (500 мм рт. ст.).
8. Установка комплексной подготовки нефти
Процессы обезвоживания, обессоливания и стабилизации нефти осуществляются на установках комплексной подготовки нефти (УКПН).
Принципиальная схема УКПН с ректификацией приведена на рис. 3
Работает УКПН следующим образом. Холодная “сырая” нефть из резервуаров ЦСП насосом 1 через теплообменник 2 подается в отстойник 3 непрерывного действия. Здесь большая часть минерализованной воды оседает на дно аппарата и отводится для дальнейшей подготовки с целью закачки в пласт (III). Далее в поток вводится пресная вода (V), чтобы уменьшить концентрацию солей в оставшейся минерализованной воде. В электродегидраторе 4 производится окончательное отделение воды от нефти и обезвоженная нефть через теплообменник 5 поступает в стабилизационную колонну 6. За счет прокачки нефти из низа колонны через печь 10 насосом 11 ее температура доводится до 240 °С. При этом легкие фракции нефти испаряются, поднимаются в верхнюю часть колонны и далее поступают в конденсатор-холодильник Здесь пропан-бутановые и пентановые фракции в основном конденсируются, образуя так называемую широкую фракцию, а несконденсировавшиеся компоненты отводятся для использования в качестве топлива. Широкая фракция откачивается насосом 9 на фракционирование, а частично используется для орошения в колонне 6. Стабильная нефть из низа колонны насосом 12 откачивается в товарные резервуары. На этом пути горячая стабильная нефть отдает часть своего тепла сырой нефти в теплообменниках 1,5.
Нетрудно видеть, что в УКПН производятся обезвоживание, обессоливание и стабилизация нефти. Причем для обезвоживания используются одновременно подогрев, отстаивание и электрическое воздействие, т.е. сочетание сразу нескольких методов.
9. Системы промыслового сбора природного газа
Существующие системы сбора газа классифицируются:
- по степени централизации технологических объектов подготовки газа;
- по конфигурации трубопроводных коммуникаций; , - по рабочему давлению.
По степени централизации технологических объектов подготовки газа различают индивидуальные, групповые и централизованные системы сбора.
Рис. 3 Принципиальная схема установки комплексной подготовки нефти:
1, 9,11,12 - насосы; 2,5 - теплообменники; 3 - отстойник; 4 - электродегидратор; 6 - стабилизационная колонна; 7 - конденсатор-холдодильник; 8 - емкость орошения; 10 - печь
I - холодная "сырая" нефть; II - подогретая "сырая" нефть; III - дренажная вода; IV - частично обезвоженная нефть; V - пресная вода; VI - обезвоженная и обессоленная нефть; VII - пары легких углеводородов; VIII - несконденсировавшиеся пары; IX - широкая фракция (сконденсировавшиеся пары); X - стабильная нефть
При индивидуальной системе сбора (рис. 38 а) каждая скважина имеет свой комплекс сооружений для подготовки газа (УПГ), после которого газ поступает в сборный коллектор и далее на центральный сборный пункт (ЦСП). Данная система применяется в начальный период разработки месторождения, а также на промыслах с большим удалением скважин друг от друга. Недостатками индивидуальной системы являются: 1) рассредоточенность оборудования и аппаратов по всему промыслу, а, следовательно, сложности организации постоянного и высококвалифицированного обслуживания, автоматизации и контроля за работой этих объектов; 2) увеличение суммарных потерь газа по промыслу за счет наличия большого числа технологических объектов и т.д.
При групповой системе сбора (рис. 38 б) весь комплекс по подготовке газа сосредоточен на групповом сборном пункте (ГСП), обслуживающем несколько близко расположенных скважин (до 16 и более). Групповые сборные пункты подключаются к промысловому сборному коллектору, по которому газ поступает на центральный сборный пункт и далее потребителю.
Групповые системы сбора получили широкое распространение, так как их внедрение позволяет увеличить мощность и коэффициент загрузки технологических аппаратов, уменьшить число объектов контроля, обслуживания и автоматизации, а в итоге -снизить затраты на обустройство месторождения.
При централизованной системе сбора (рис. 38 в) газ от всех скважин по индивидуальным линиям или сборному коллектору поступает к единому центральному сборному пункту, где осуществляется весь комплекс технологических процессов подготовки газа и откуда он направляется потребителям.
Применение централизованных систем сбора позволяет осуществить еще большую концентрацию технологического оборудования, за счет применения более высокопроизводительных аппаратов уменьшить металлозатраты и капитальные вложения в подготовку газа.
В каждом конкретном случае выбор системы сбора газа обосновывается технико-экономическим расчетом.
По конфигурации трубопроводных коммуникаций различают бесколлекторные и коллекторные газосборные системы. При бесколлекторной системе сбора газ (подготовленный или нет) поступает на ЦПС со скважин по индивидуальным линиям. В коллекторных газосборных системах отдельные скважины подключаются к коллекторам, а уже по ним газ поступает на ЦСП.
Рис. 3 8. Системы сбора газа на промыслах;
а) - индивидуальная; б) - групповая;в) - централизованная, УПГ - установка подготовки газа; ГСП - групповой сборный пункт; ЦСП - централизованный сборный пункт
Рис. 39. Формы коллекторной газосборной сети: Подключение скважин: а) - индивидуальное; б) - групповое
Различают линейные, лучевые и кольцевые коллекторные газосборные системы (рис. 39).
Линейная газосборная сеть состоит из одного коллектора и применяется при разработке вытянутых в плане месторождений небольшим числом (2...3) рядов скважин. Лучевая газосборная сеть состоит из нескольких коллекторов, сходящихся в одной точке в виде лучей. Кольцевая газосборная сеть представляет собой замкнутый коллектор, огибающий большую часть месторождения и имеющий перемычки. Кольцевая форма сети позволяет обеспечить бесперебойную подачу газа потребителям в случае выхода из строя одного из участков коллектора.
По рабочему давлению системы сбора газа делятся на вакуумные (Р<0,1 МПа), низкого давления (0,1<Р<0,6 МПа), среднего давления (0,6<Р< 1,6 МПа) и высокого давления (Р >1,6 МПа).
10. Промысловая подготовка газа
Природный газ, поступающий из скважин, содержит в виде примесей твердые частицы (песок, окалина), конденсат тяжелых углеводородов, пары воды, а в ряде случаев сероводород и углекислый газ. Присутствие в газе твердых частиц приводит к абразивному износу труб, арматуры и деталей компрессорного оборудования, засорению контрольно-измерительных приборов. Конденсат тяжелых углеводородов оседает в пониженных точках газопроводов, уменьшая их проходное сечение. Наличие водяных паров в газе приводит к коррозии трубопроводов и оборудования, а также к образованию в трубопроводах гидратов - снегоподобного вещества, способного полностью перекрыть сечение труб.
Сероводород является вредной примесью. При его содержании большем, чем 0,01 мг в 1 л воздуха рабочей зоны, он ядовит. А в присутствии влаги сероводород способен образовывать растворы сернистой и серной кислот, резко увеличивающих скорость коррозии труб, арматуры и оборудования.
Углекислый газ вреден тем, что снижает теплоту сгорания газа, а также приводит к коррозии оборудования. Поэтому его целесообразно отделить на промыслах.
Задачами промысловой подготовки газа являются его очистка от мехпримесей, тяжелых углеводородов, паров воды, сероводорода и углекислого газа.
Очистка газа от механических примесей
Для очистки природного газа от мехпримесей используются аппараты 2-х типов:
- работающие по принципу “мокрого” улавливания пыли (масляные пылеуловители);
- работающие по принципу “сухого” отделения пыли (циклонные пылеуловители);
На рис. 40 представлена конструкция вертикального масляного пылеуловителя. Это вертикальный цилиндрический сосуд со сферическими днищами. Пылеуловитель состоит из трех секций: промывочной А (от нижнего днища до перегородки 5), в которой все время поддерживается постоянный уровень масла; осадительной Б ( от перегородки 5 до перегородки 6), где газ освобождается от крупных частиц масла, и отбойной (скрубберной) секции В (от перегородки 6 до верхнего днища), где происходит окончательная очистка газа от захваченных частиц масла.
Пылеуловитель работает следующим образом. Очищаемый газ входит в аппарат через патрубок 10. Натекая на козырек 9, он меняет направление своего движения. Крупные же частицы мехпримесей, пыли и жидкости по инерции продолжают двигаться горизонтально. При ударе о козырек их скорость гасится и под действием силы тяжести они выпадают в масло. Далее газ направляется в контактные трубки 4, нижний конец которых расположен в 20...50 мм над поверхностью масла. При этом газ увлекает за собой масло в контактные трубки, где оно обволакивает взвешенные частицы пыли.
В осадительной секции скорость газа резко снижается. Выпадающие при этом крупные частицы пыли и жидкости по дренажным трубкам 11 стекают вниз. Наиболее легкие частицы из осадительной секции увлекаются газовым потоком в верхнюю скрубберную секцию В. Ее основной элемент - скруббер, состоящий из нескольких рядов перегородок 8, расположенных в шахматном порядке. Проходя через лабиринт перегородок, газ многократно меняет направление движения, а частицы масла по инерции ударяются о перегородки и стекают сначала на дно скрубберной секции, а затем по дренажным трубкам 11 в нижнюю часть пылеуловителя.
Очищенный газ выходит из аппарата через газоотводящий патрубок
Осевший на дно пылеуловителя шлам периодически (раз в 2...3 месяца) удаляют через люк 12. Загрязненное масло через трубку 1 сливают в отстойник. Взамен загрязненного в пылеуловитель по трубе 2 доливается очищенное масло. Контроль за его уровнем ведется по шкале указателя уровня 3.
Рис. 40. Вертикальный масляный пылеуловитель; 1 - трубка для слива загрязненного масла; 2 - трубка для долива свежего масла; 3 - указатель уровня; 4 - контактные трубки; 5, б - перегородки; 7 - патрубок для вывода газа; 8 - скруббер; 9 - козырек; 10 - патрубок для ввода газа; 11 - дренажные трубки; 12 - люк для удаления шлама
Рис. 41. Циклонный пылеуловитель; 1 - корпус; 2 - патрубок для ввода газа; 3 - циклон 4,5 - перегородки; б - патрубок для удаления шлам; 7 - патрубок для вывода газа; 8 - винтовые лопасти
Наряду с “мокрым” для очистки газов от твердой и жидкой взвеси применяют и “сухое” пылеулавливание. Наибольшее распространение получили циклонные пылеуловители.
Схема, поясняющая работу циклонного пылеуловителя, приведена на рис. 41. Газ входит в аппарат через патрубок 2 и попадает в батарею циклонов 3. Под действием центробежной силы твердые и жидкие частицы отбрасываются к периферии, затормаживаются о стенку циклона и выпадают в нижнюю часть аппарата, откуда выводятся через патрубок 6. А очищенный газ, изменяя направление движения, попадает в верхнюю часть аппарата, откуда выводится через патрубок
В товарном газе содержание мехпримесей не должно превышать 0,05 мг/м3.
Осушка газа
Для осушки газа используются следующие методы:
- охлаждение;
- абсорбция;
- адсорбция.
Пока пластовое давление значительно больше давления в магистральном газопроводе газ охлаждают, дросселируя излишнее давление. При этом газ расширяется и в соответствии с эффектом Джоуля-Томсона охлаждается.
Если пластовое давление понижено, то охлаждение газа производится на установках низкотемпературной сепарации. Эти установки очень сложны и дороги.
Технологическая схема абсорбционной осушки газа с помощью диэтиленгликоля (ДЭГ), приведена на рис. 42.
Газ, требующий осушки, поступает в абсорбер 1. В нижней скрубберной секции он очищается от взвешенных капель жидкости и поднимается вверх, проходя через систему тарелок. Навстречу газу по тарелкам стекает концентрированный раствор ДЭГ, закачиваемый в абсорбер насосом 2 из емкости 3. Раствор ДЭГ поглощает пары воды. Далее газ проходит через верхнюю скрубберную секцию, где освобождается от захваченных капель раствора и выходит из аппарата.
Остальная часть технологической схемы служит для восстановления абсорбента. Использованный раствор ДЭГ, содержащий 2...2,5 % воды, отбирается с нижней глухой тарелки абсорбера 1, подогревается в теплообменнике 4 встречным потоком регенерированного раствора и направляется в выветриватель 5, где освобождается от неконденсирующихся газов. Далее раствор снова подогревается в теплообменнике 6 и поступает в десорбер (выпарную колонну) Выпарная колонна состоит из двух частей: собственно колонны тарельчатого типа, в которой из раствора ДЭГ, стекающего вниз выпаривается влага встречным потоком острого водяного пара и паров ДЭГ (верхняя основная часть колонны) и кипятильника (нижняя часть колонны), где происходит нагревание раствора до температуры 150...160 "С и испарение воды. Водяной пар из десорбера поступает в конденсатор-холодильник 8, где он конденсируется и собирается в емкости 9. Часть полученной воды насосом 10 закачивается в верхнюю часть колонны, чтобы несколько снизить там температуру и уменьшить испарение, а, соответственно, и унос ДЭГ. Регенерированный горячий раствор ДЭГ прокачивается через теплообменники 6 и 4, холодильник 12 и поступает в емкость 3.
Рис. 42. Принципиальная схема осушки газа методом абсорбции;
1 - абсорбер; 2,10,11 - насосы; 3,9 - емкости;
4,6 - теплообменники; 5 - выветриватель; 7 - десорбер;
8 - конденсатор - холодильник; 12-холодильник
Рис. 43. Принципиальная схема осушки газа методом адсорбции:
1,2 - адсорберы; 3-регулятор давления типа "после себя"; 4 - холодильник; 5 - емкость; 6 - газодувка; 7 - подогреватель газа
Работа десорбера основана на различной температуре кипения воды и абсорбента: для ДЭГ она равна 244,5 °С, а для триэтиленгликоля (ТЭГ) 287,4 °С. Диэтиленгликоль понижает точку росы газа на 25...35 градусов, а триэтиленгликоль - на 40...45. Обе жидкости обладают малой вязкостью, неагрессивны в коррозионном отношении, очень слабо растворяют природные газы и имеют низкую упругость паров, что облегчает их регенерацию.
Недостатками абсорбционной осушки газа являются унос абсорбента и относительная сложность его регенерации.
Технологическая схема осушки газа методом адсорбции приведена на рис. 43. Влажный газ поступает в адсорбер 1, где он проходит снизу вверх через слой адсорбента - твердого вещества, поглощающего пары воды и далее выводится из аппарата. Процесс осушки газа осуществляется в течение определенного (12...16 ч) времени. После этого влажный газ пускают через адсорбер 2, а адсорбер 1 отключают и выводят на регенерацию. Для этого через регулятор давления 3 типа “после себя” из газовой сети отбирается сухой газ, и воздуходувкой 6 подается в подогреватель 7, где газ нагревается до температуры 180...200 "С. Далее он подается в адсорбер 1, где отбирает влагу от адсорбента, после чего поступает в холодильник 4. Сконденсировавшаяся вода собирается в емкости 5, а газ используется для осушки повторно и т. д. Процесс регенерации адсорбента продолжается 6...7 ч. После этого в течение около 8 ч адсорбер остывает.
Осушку газа адсорбентами проводят, как правило, в тех случаях, когда необходимо достичь точку росы менее - 30 °С. В качестве адсорбентов используют бокситы, хлористый кальций в твердом виде, цеолиты, силикагель и др.
Очистка газа от сероводорода
Очистка газа от сероводорода осуществляется методами адсорбции и абсорбции.
Принципиальная схема очистки газа от H2S методом адсорбции аналогична схеме осушки газа адсорбционным методом. В качестве адсорбента используются гидрат окиси железа и активированный уголь.
Принципиальная схема очистки газа от H2S методом абсорбции приведена на рис. 44. Очищаемый газ поступает в абсорбер 1 и поднимается вверх через систему тарелок. Навстречу газу движется концентрированный раствор абсорбецта. Роль жидкого поглотителя в данном случае выполняют водные растворы этаноламинов: моно-этаноламина (МЭА), диэтаноламина (ДЭА) и триэтаноламина. Температура кипения при атмосферном давлении составляет соответственно МЭА - 172 °С, ДЭА - 268 "С, ТЭА - 277 °С.
Абсорбент вступает в химическую реакцию с сероводородом, содержащимся в газе, унося продукт реакции с собой. Очищенный газ выводится из аппарата через скрубберную секцию, в которой задерживаются капли абсорбента.
На регенерацию абсорбент подается в выпарную колонну 2 через теплообменник 3. В нижней части колонны он нагревается до температуры около 100 °С. При этом происходит разложение соединения сероводорода с абсорбентом после чего H2S, содержащий пары этаноламинов, через верх колонны поступает в холодильник 4. В емкости 5 сконденсировавшиеся пары абсорбента отделяются от сероводорода и насосом 6 закачиваются в выпарную колонну. Газ же направляется на переработку.
Горячий регенерированный абсорбент из нижней части колонны 2 насосом 7 подается для нового использования. По пути абсорбент отдает часть своего тепла в теплообменнике 3, а затем окончательно остужается в холодильнике 8.
Из полученного сероводорода вырабатывают серу.
Работа этаноламиновых газоочистных установок автоматизирована. Степень очистки газа составляет 99 % и выше. Недостатком процесса является относительно большой расход абсорбента.
Очистка газа от углекислого газа
Обычно очистка газа от СО2 проводится одновременно с его очисткой от сероводорода, т.е. этаноламинами (рис. 44).
Рис. 44. Принципиальная схема очистки газа от сероводорода:
1 - абсорбер;2 - выпарная колонна (десорбер); 3 - теплообменник; 4, 8 - холодильник; 5 - емкость - сепаратор; 6,7 - насосы
Рис. 45. Принципиальная схема очистки газа от двуокиси углерода водой под давлением:
1 - реактор; 2 - водоотделитель; 3,6 - насосы; 4 -- экспанзер; 5 - дегазационная колонна
При высоком содержании СО2 ( до 12... 15 %) и незначительной концентрации сероводорода применяют очистку газа водой под давлением (рис. 45). Газ, содержащий СО2 подается в реактор 1, заполненный железными или керамическими кольцами Рашига, которые орошаются водой под давлением. Очищенный газ проходит затем водоотделитель 2 и идет по назначению.
Вода, насыщенная углекислым газом, насосом 3 подается в экспанзер 4 для отделения СО2 методом разбрызгивания. Для полного удаления СО^ вода подается в дегазационную градирню 5, откуда насосом 6 возвращается в емкость 1.
Выделяемый углекислый газ используется для производства соды, сухого льда и т. п.
11. Система подготовки и закачки воды в продуктивные пласты
При разработке нефтяных и газовых месторождений значительные объемы воды расходуются на поддержание пластового давления, что позволяет продлить период фонтанирования скважин и значительно увеличить коэффициенты нефтегазоотдачи. Ориентировочный расход воды для добычи одной тонны нефти составляет в среднем: 1,5...2 м! - при площадном заводнении и 2...2,5 MJ - при законтурном заводнении.
Воды, используемые для закачки в пласт. Необходимость их подготовки
Для поддержания пластового давления в залежь можно нагнетать как природные (пресные или слабоминерализованные), так и сточные (дренажные) воды, состоящие в основном, из пластовых (-85 %), пресных (~ 10 %) и ливневых (~ 5 %) вод.
Природные и сточные воды могут содержать примеси органического и неорганического происхождения. В природных водах могут содержаться различные газы, механические примеси, гидрозакись Fe(OH)2 и гидроокись Ре(ОН)3 железа, а также микроорганизмы, в той или иной степени влияющие на процесс заводнения пластов. В сточных водах, кроме того, могут присутствовать капельки нефти, а также большое количество солей, доходящее до 300 г/л.
Частицы водорослей, ила и соединения железа, содержащиеся в нагнетаемой воде, закупоривают поровые каналы продуктивного пласта, снижая приемистость нагнетательных скважин. Присутствующие же в закачиваемой воде микроорганизмы могут образовать нежелательные соединения. Так, сульфатовосстанавливающие бактерии при своей жизнедеятельности вырабатывают сероводород в количестве до 100 мг/л. В последующем этот коррозионно-активный газ вместе с нефтью извлекается на поверхность и подвергает разрушению трубопроводы, аппараты и оборудование.
Сероводород вместе с углекислым газом может присутствовать в пластовых водах и в растворенном состоянии. Углекислый газ, находящийся в воде приводит к разрушению защитных окисных пленок на металле, чем интенсифицирует его коррозию. Растворенный в поверхностной воде кислород также является нежелательным компонентом, поскольку он является обязательным элементом реакции кислородной деполяризации, протекающей при электрохимической коррозии трубопроводов и оборудования.
Присутствие солей в закачиваемых в пласт водах также может стать причиной образования коррозионно-активных компонентов. Так, при взаимодействии сульфатов кальция CaSO1 с метаном может образовываться сероводород.
Согласно существующим правилам и инструкциям, вода, предназначенная для закачки в пласты, должна содержать не более 2 мг/л взвешенных твердых частиц и 0,3 мг/л железа.
Подготовка воды для закачки в пласт
Подготовка вод, закачиваемых в пласт, предусматривает: 1) осветление мутных вод коагулированием; 2) декарбонизацию; 3) обезжелезивание; 4) ингибирование.
Осветление мутных вод коагулированием осуществляется с целью удаления очень мелких взвешенных частиц, которые практически не осаждаются под действием силы тяжести. Для этого в воду добавляют реагенты (сернокислый алюминий, хлорное железо, железный купорос и др.), называемые коагулянтами. В результате реакции коагуляции происходит укрупнение взвешенных частиц и образуются хлопьевидные соединения, которые оседают в воде.
Декарбонизация выполняется с целью удаления из воды бикарбонатов кальция и магния. В противном случае, отлагаясь в пласте, соли кальция и магния могут существенно затруднить фильтрацию нефти и газа. Сущность декарбонизации состоит в подщелачивании воды гашеной известью с тем, чтобы вызвать коагуляцию ненужных примесей.
Обезжелезиванием называется удаление солей железа из воды с целью предотвращения загрязнения фильтрующих поверхностей скважин железистыми осадками. Для этого применяют аэрацию, известкование и другие методы.
В ходе аэрации - процесса обогащения воды кислородом воздуха - из солей железа образуется нерастворимый гидрат окиси железа, оседающий в воде в виде хлопьев. Однако при аэрации из воды удаляются не все соли железа, а сам процесс требует использования весьма громоздкого и сложного оборудования. Кроме того, аэрация повышает коррозионную активность воды.
При известковании в воду добавляют известковое молоко, что также приводит к образованию нерастворимого осадка гидрата окиси железа.
Ингибированием называется обработка воды ингибиторами -веществами, замедляющими процесс коррозии. По направленности действия различают ингибиторы сероводородной, кислородной и углекислотной коррозии.
Реагенты-бактерициды используют для подавления жизнедеятельности сульфатовосстанавливающих бактерий. Одним из наиболее эффективных реагентов является формалин.
Типовая схема установки подготовки природных вод показана на рис. 46. Насос 1 забирает воду и подает ее в смеситель 3. По пути дозировочное устройство 2 вводит в нее коагулянт. В смесителе 3 коагулянт интенсивно перемешивается с водой, после чего обработанная вода поступает в осветлитель 4, где образуются и задерживаются хлопья. Окончательная очистка воды от хлопьев осуществляется в фильтре 5, откуда она самотеком направляется в резервуары 6. Затем насос 7 перекачивает воду на кустовые насосные станции (КНС), которые через нагнетательные скважины закачивают ее в пласт. Насос 8 служит для периодической очистки фильтра 5 от взвешенных частиц путем прокачки через него чистой воды.
Для предупреждения коррозии и стабилизации химического состава воды в нее при помощи дозировочных насосов добавляют реагент гексаметафосфат натрия в количестве 2...3 г/м:!. С целью уничтожения бактерий и других микроорганизмов применяют обработку воды хлором - ее хлорирование.
В отличие от природных сточные воды могут содержать нефть, углекислый газ, сероводород и микроорганизмы. Соответственно их подготовка предусматривает: 1) отстаивание от нефти и газа; 2) уничтожение микроорганизмов.
Для подготовки сточных вод на промыслах используют схемы открытого и закрытого типа.
Рис. 46. Принципиальная схема установки подготовки природных вод:
1,7,8 - насос; 2 - дозировочное устройство; 3 - смеситель; 4 - осветлитель; 5 - фильтр; 6 - резервуары
I - неподготовленные природные воды; II - коагулянт;
III - подготовленная вода на кустовые насосные станции;
IV - вода для очистки фильтра
Принципиальная схема установки очистки пластовых сточных вод открытого типа приведена на рис. 4 Отделенная при подготовке нефти вода сбрасывается по водоводу в песколовку 1 для удаления механических примесей. Далее вода, содержащая нефть, поступает в нефтеловушку 2, где за счет низкой скорости движения смеси капельки нефти успевают всплыть и откуда она периодически откачивается насосом 3 на УКПН. Далее вода с остаточным содержанием нефти (диаметр капель 70...80 мкм) самотеком поступает в два параллельно соединенных пруда-отстойника 4, в которых скорость воды не превышает 8 мм/с, в результате чего в ней всплывают практически все оставшиеся капельки нефти. Из прудов-отстойников вода самотеком поступает в приемную камеру 5, из которой забирается насосом 6 и через попеременно работающие фильтры 7 подается в емкость чистой воды 8. Затем эта вода насосом 9 откачивается на КНС. По мере загрязнения фильтры отключают и ставят на промывку чистой водой из емкости 8 с помощью насоса 10. Загрязненную после промывки воду сбрасывают в илонакопитель 11.
Схема водоподготовки открытого типа позволяет очищать пластовые и ливневые сточные воды в одном потоке независимо от состава, давления и газонасыщенности воды, а также совместно закачивать их в нагнетательные скважины. Обычно ее рекомендуют использовать для сточных вод с большим содержанием сероводорода и углекислого газа, а кроме того, для более глубокой очистки воды от капелек нефти и механических примесей. Однако на сооружение нефтеловушек и прудов-отстойников затрачиваются значительные средства. Кроме того, в результате контакта с кислородом воздуха увеличивается коррозионная активность воды.
Принципиальная схема установки очистки пластовых сточных вод закрытого типа приведена на рис. 48. Отделенная от нефти в отстойнике предварительного сброса (ОПС) вода по линии сброса 1 направляется в резервуар-отстойник 2, а частично обезвоженная нефть (до 5 %), пройдя УПН, поступает в теплоизолированные отстойники 3. Процесс отделения воды в них ускоряется, благодаря произведенному в УПН нагреву и вводу ПАВ. Отделенная горячая вода поступает на прием насоса 4 и снова подается в отстойник предварительного сброса УПН, что позволяет уменьшить расход деэмульгатора и температуру нагрева эмульсии. Из резервуара-отстойника 2 пластовая сточная вода забирается насосом 5 и подается на КНС.
Применение закрытой системы очистки позволяет интенсифицировать процесс подготовки воды с применением отстоя и фильтрования под давлением, существенно снизить агрессивность сточной воды путем исключения ее контакта с кислородом воздуха, использовать остаточное давление, существующее в системе подготовки нефти. К недостаткам закрытых систем относится необходимость строительства блока для параллельной очистки поверхностных ливневых стоков.
Рис. 4 Схема установки очистки пластовых вод открытого типа:
1 - песколовка; 2 - нефтеловушка; 3,6,9,10 - насосы; 4 - пруд-отстойник;
5 - приёмная камера; 7 - фильтр; 8 - емкость чистой воды; 11 - илонакопитель;
I - загрязнённая вода; II - мехпримеси; III - нефть на УКПН; IV - вода на КНС
Рис. 48. Схема установки очистки пластовых сточных вод закрытого типа:
1 - линия сброса воды из отстойника; 2 - резервуар-отстойник; 3 -- теплоизолированный отстойник; 4,5 - насосы;
I - холодная "сырая" нефть; II - обезвоженная нефть; III - горячая вода с ПАВ; IV - подготовленная вода на КНС
Сооружения для нагнетания воды в пласт
К сооружениям для нагнетания воды в пласт относятся кустовые насосные станции (КНС), водораспределительные пункты (ВРП), высоконапорные водоводы (ВВ) и нагнетательные скважины.
Кустовые насосные станции предназначены для закачки воды через нагнетательные скважины в продуктивные пласты с целью поддержания пластового давления. Они оснащаются центробежными насосами марки ЦНС (центробежный насос), сведения о которых приведены в табл. 6.
Таблица 6 Сведения о некоторых насосах КНС
Показатели |
Величина показателей для насосов |
|||
ЦНС 180-1050 |
ЦНС 180-1900 |
ЦНС 500- 1900 |
||
Номинальная подача, м3/ч |
180 |
180 |
500 |
|
Номинальный напор, м |
1050 |
1900 |
1900 |
|
Число ступеней |
8 |
15 |
8 |
|
К.п.д., % |
73 |
73 |
80 |
Как видно из табл. 6 первая цифра в марке насоса - его номинальная подача в кубических метрах в час, а вторая - номинальный напор в метрах. Отметим также, что столь высокие напоры насосы ЦНС создают, благодаря большому числу ступеней.
КНС сооружают как в капитальном исполнении, так и в блочном. Во втором случае продолжительность строительства уменьшается в 5 раз и более, а капиталовложения снижаются на 16 %.
Блочные кустовые насосные станции (БКНС) изготавливают по типовому проекту. На подготовленной площадке их монтируют из блоков заводского изготовления массой от 11 до 30 т.
Водораспределительные пункты строят для сокращения протяженности высоконапорных водоводов. Они предназначены для распределения воды, поступающей от КНС между несколькими нагнетательными скважинами.
Высоконапорные водоводы служат для транспортирования воды от КНС до нагнетательных скважин. Их протяженность зависит от принятой системы распределения воды по скважинам, числа нагнетательных скважин и расстояния между ними, а также от числа КНС. Сведения о диаметрах и толщине стенки высоконапорных водоводов приведены в табл.
Таблица 7
Основные сведения о высоконапорных водоводах
Наружный |
Марка |
Толщина стенки (мм) при рабочем давлении |
|||
диаметр, мм |
стали |
(МПа) |
|||
10 |
15 |
20 |
|||
108 |
6 |
9 |
11 |
||
114 |
7 |
9 |
11 |
||
159 |
9 |
12 |
16 |
||
168 |
Ст. 2 и 10 |
9 |
14 |
16 |
|
219 |
12 |
16 |
20 |
||
273 |
14 |
20 |
25 |
||
325 |
16 |
24 |
30 |
||
108 |
5 |
7 |
9 |
||
114 |
6 |
8 |
10 |
||
159 |
7 |
10 |
14 |
||
168 |
Ст. 4 и 20 |
8 |
11 |
14 |
|
219 |
10 |
14 |
18 |
||
273 |
12 |
18 |
22 |
||
325 |
14 |
20 |
25 |
Как видно, при относительно небольшом диаметре высоконапорные водоводы имеют стенки повышенной толщины.
Нагнетательные скважины конструктивно не отличаются от эксплуатационных скважин для добычи нефти или газа. Единственное - в оборудование устья входит регулятор расхода закачиваемой воды.
12. Защита промысловых трубопроводов и оборудования от коррозии
Коррозия металла - это процесс, вызывающий разрушение или изменение его свойств в результате химического или электрохимического воздействия окружающей среды.
Промысловые трубопроводы и оборудование подвержены химической и электрохимической коррозии. По химическому механизму металл корродирует в среде агрессивных газов - H2S и СОГ Значительно более распространена электрохимическая коррозия -окисление металлов в электропроводных средах, сопровождающееся образованием электрического тока. Термином “электрохимическая коррозия” объединяют следующие виды коррозионных процессов:
- коррозия в электролитах - коррозия металлов в жидких средах, проводящих электрический ток (минерализованная вода);
- почвенная коррозия - коррозия подземных металлических сооружений под воздействием почвенной влаги;
- атмосферная коррозия - коррозия металлов в атмосфере воздуха, содержащего пары воды;
- электрокоррозия - коррозия металлических сооружений под воздействием блуждающих токов;
- биокоррозия - коррозия, вызванная жизнедеятельностью микроорганизмов, вырабатывающих вещества, ускоряющие коррозионные процессы.
Для защиты трубопроводов и оборудования от наружной коррозии используются пассивные и активные средства и методы. Подробно они рассматриваются ниже в п. 12.
Особенностью промысловых металлических сооружений, внутри которых находится продукция скважин, является интенсивная внутренняя коррозия. Для борьбы с ней используют: 1) нанесение на внутреннюю поверхность промысловых трубопроводов и оборудования защитных покрытий; 2) введение в поток транспортируемой среды ингибиторов коррозии; 3) технологические методы.
Применение внутренних защитных покрытий
Качественные защитные покрытия не только изолируют поверхность металла от контакта с коррозионной средой, но также предотвращают отложение солей и парафина, защищают трубы от абразивного износа, уменьшают гидравлическое сопротивление трубопроводов и, следовательно, энергетические затраты на транспортировку продукции скважин.
В нефтяной и газовой промышленности наибольшее применение в качестве защитных покрытий получили силикатные (стекло, стеклоэмаль) и полимерные (эпоксидные смолы, полиэтилен) материалы.
Силикатные покрытия наносят либо путем непосредственного контакта поверхности трубы с расплавом стекломассы, либо напыляют в виде порошка-шликера. Полимерные покрытия получают нанесением на трубы лакокрасочных материалов, порошковых материалов, находящихся в состоянии расплава и методом футерования.
Лакокрасочными называют материалы для получения покрытий, представляющие собой растворы, дисперсии и порошки. Основным их компонентом является пленкообразователь (эпоксидный, полиуретановый, каучуковый, фторопластовый и др.). Кроме того, в состав материала покрытия входит ряд других компонентов, от которых зависит прочность, пластичность, сплошность, прилипае-мость и другие свойства покрытия (пигменты, наполнители, пластификаторы, отвердители, добавки для улучшения смачивания и растекания по поверхности, прочие).
В зависимости от состава и назначения лакокрасочные материалы подразделяются на лаки, грунтовки, шпатлевки и краски (эмали). Лаки представляют собой растворы пленкообразователей в органических растворителях. Грунтовки, шпатлевки и краски - это пигментированные составы на основе различных пленкообразователей. Краски, изготовленные на лаках, получили название эмали, а на олифе - масляные краски.
Покрытие на основе лакокрасочных материалов в большинстве случаев представляет собой многослойную систему, состоящую из грунтовочных и покрывных слоев. Грунтовки наносят непосредственно на защищаемую поверхность после ее предварительной зачистки. Они улучшают прилипаемость и противокоррозионные свойства покрытия. Шпатлевки используют для выравнивания поверхности. Из-за меньшей прилипаемости к металлу их обычно наносят на грунтовку. Покрывные слои (эмали и лаки) обеспечивают стойкость и непроницаемость всей системы к внешней среде.
Недостатком лакокрасочных материалов, содержащих летучие растворители, является необходимость их многослойного нанесения на поверхность труб для перекрытия пор, образующихся в полимерной пленке в процессе испарения растворителя. Неудобством является необходимость сушки каждого слоя при комнатной или повышенной температуре. Кроме того, испарение растворителей загрязняет окружающую среду, ухудшает санитарно-гигиенические условия труда, повышает уровень пожаровзрывоопасности.
Порошкообразные материалы, применяемые для получения защитных покрытий, также представляют собой смесь пленкообразователей с необходимыми компонентами (пигменты, пластификаторы, стабилизаторы, отвердители и др.). Пленкообразование из порошкообразных материалов происходит в результате оплавления порошка на поверхности изделия.
Использование порошков позволяет получить однослойные сравнительно тонкие беспористые противокоррозионные покрытия, устойчивые к механическим повреждениям. При их применении сокращается цикл окраски, снижается процент брака по сравнению с материалами на основе органических растворителей, уменьшается расход материала и энергии, а также загрязнение окружающей среды, снижается стоимость покрытия.
Находят также применение гранулированные полимерные материалы, которые наносят на поверхность труб в виде расплава.
Технология футерования труб основана на предварительном протаскивании полиэтиленовых оболочек через обжимающую фильеру, что приводит к временному уменьшению их диаметра. После свободного введения деформированной оболочки внутрь трубы за счет эффекта “памяти” оболочка восстанавливает свою форму, чем обеспечивается ее плотное прилегание к металлу в последующем.
Дополнительное закрепление оболочки по концам трубы осуществляется специальными наконечниками, одновременно обеспечивающими возможность сварки стальных труб без нарушения целостности полиэтиленового покрытия.
Трубы, футерованные полиэтиленом, сочетают в себе химическую стойкость полиэтилена и механическую прочность стали, что позволяет резко увеличить срок службы промысловых трубопроводов. Технология футерования высокопроизводительна, не требует специальной подготовки поверхности труб.
Применение ингибиторов
Ингибиторами коррозии называют вещества, введение которых в агрессивную среду тормозит процесс коррозионного разрушения и изменения механических свойств металлов и сплавов.
Механизм защитного действия ингибиторов заключается либо в образовании на поверхности металлов защитных пленок, либо в подавлении электродных реакций, протекающих в процессе электрохимической коррозии.
К ингибиторам коррозии в нефтяной и газовой промышленности предъявляются следующие требования:
- высокая эффективность защиты;
- нетоксичность;
- взрыво- и пожаробезопасность;
- небольшая (по сравнению с получаемой экономией) стоимость;
- отсутствие отрицательного влияния на основной технологический процесс и др.
Эффект от применения ингибиторов характеризует параметр, называемый степенью защиты, численно равный отношению уменьшения скорости коррозии к ее первоначальной величине.
Различают однократную и регулярную обработки промысловых объектов ингибиторами. В первом случае внутреннюю поверхность трубопроводов и аппаратов подвергают воздействию концентрированного раствора ингибитора (например, его прокачкой между двух поршней); какое-то время эффект последействия сохраняется. При регулярной обработке ингибиторы вводятся в коррозионно-активную среду с помощью дозирующих устройств: в газе - распыливаются форсунками, в жидкость - вводятся в виде растворов. При этом ингибиторы бывают водорастворимые и угле-водородорастворимые - действующие только соответственно в воде и в жидком углеводороде.
Сведения о некоторых типах ингибиторов, применяемых в условиях промыслов, приведены в табл. 8. Видно, что при относительно небольших дозировках их использование позволяет уменьшить скорость коррозии в несколько раз.
Применение ингибиторов - один из универсальных, технологически и экономически целесообразных методов защиты металлов от коррозии. При небольших капитальных затратах замедляется коррозионное разрушение конструкций, даже если они длительное время находились в эксплуатации. Положительной отличительной чертой применения ингибиторов является также то, что их введение в любой точке технологического процесса оказывает защитное действие и на оборудование последующих технологических этапов.
Технологические методы
Обязательным условием протекания электрохимической коррозии является контакт металла с водой. В промысловых трубопроводах, по которым перекачивается обводненная нефть или влажный газ, такой контакт можно в значительной степени ограничить следующими путями:
- предотвращением выпадения воды из потока;
- удалением уже образовавшихся скоплений воды;
- уменьшением содержания воды в потоке.
При совместном движении в трубах нефти, газа и пластовой воды их взаимное расположение (структурная форма потока) может быть различным. Если скорости перекачки низкие, то газ движется вдоль верхней образующей трубы, нефть непосредственно под ним, а вода - вдоль нижней образующей. Здесь - в месте постоянного контакта металла с водой - создаются благоприятные условия для протекания электрохимической коррозии. Увеличением скорости потока за счет уменьшения диаметра труб можно добиться того, что вся вода (если ее не очень много) будет взвешена в газонефтяном потоке в виде капель, т.е. коррозия будет исключена.
При транспортировке влажного газа с температурой ниже точки росы в потоке образуются капли воды и конденсата. Чтобы они не оседали в газопроводе, должны поддерживаться такие скорости, при которых капли будут удерживаться турбулентными пульсациями газа. Данный результат также достигается некоторым уменьшением диаметра газопровода на этапе проектирования.
Если скопления воды в пониженных точках трассы промысловых трубопроводов все-таки образуются, то их надо периодически удалять. Это может быть сделано двумя способами: самим потоком перекачиваемой среды, либо пропуском специальных очистных поршней. В первом случае необходимо временно увеличить расход перекачиваемой среды. Тогда сначала от скоплений воды будут отрываться и уноситься отдельные капли, а при дальнейшем увеличении расхода все скопление начнет движение в виде пробки. Во втором -могут быть использованы либо механические скребки, либо специальные гелевые пробки. Однако для запуска механических средств нужны специальные камеры, которые на промысловых трубопроводах не сооружаются. Гелевые же очистные пробки можно формировать в самих трубопроводах. Кроме того, они отличаются лучшей проходимостью через местные сужения и крутые повороты.
Чем меньше содержание воды в нефтегазоводяном потоке, тем меньшая скорость потока необходима, чтобы перевести воду во взвешенное состояние. Поэтому предварительный сброс воды в системе промыслового сбора является одним из способов предотвращения внутренней коррозии трубопроводов.
К технологическим методам защиты от коррозии относится также применение коррозионно-стойких сталей и сплавов. Коррози-онно-устойчивыми являются трубы из алюминиевых сплавов Д16Т и Д16АТ, а также сталей 2X13, Х8, Х13, Х9М.
13. Стадии разработки залежей
При разработке нефтяной залежи различают четыре стадии:
I - нарастающая добыча нефти;
II - стабилизация добычи нефти;
III - падающая добыча нефти;
IV - поздняя стадия эксплуатации залежи.
На первой стадии нарастание объемов добычи нефти обеспечивается в основном введением в разработку новых эксплуатационных скважин в условиях высоких пластовых давлений. Обычно в этот период добывается безводная нефть, а также несколько снижается пластовое давление.
Вторая стадия - стабилизация нефтедобычи - начинается после разбуривания основного фонда скважин. В этот период добыча нефти сначала несколько нарастает, а затем начинает медленно снижаться. Увеличение добычи нефти достигается: 1) сгущением сетки скважин; 2) увеличением нагнетания воды или газа в пласт для поддержания пластового давления; 3) проведением работ по воздействию на призабойные зоны скважин и по повышению проницаемости пласта и др.
Задачей разработчиков является максимально возможное продление второй стадии. В этот период разработки нефтяной залежи в продукции скважин появляется вода.
Третья стадия - падающая добыча нефти - характеризуется снижением нефтедобычи, увеличением обводненности продукции скважин и большим падением пластового давления. На этой стадии решается задача замедления темпа падения добычи нефти методами, применявшимися на второй стадии, а также загущением закачиваемой в пласт воды.
В течение первых трех стадий должен быть осуществлен отбор 80...90 % промышленных запасов нефти.
Четвертая стадия - поздняя стадия эксплуатации залежи -характеризуется сравнительно низкими объемами отбора нефти и большими отборами воды. Она может длиться достаточно долго - до тех пор пока добыча нефти будет оставаться рентабельной. В этот период широко применяются вторичные методы добычи нефти по извлечению оставшейся пленочной нефти из пласта.
...Подобные документы
Описание основных способов добычи нефти. Характеристика оборудования для эксплуатации нефтяных скважин фонтанным способом: арматура, запорные и регулирующие устройства, фланцевые соединения. Особенности и принцип действия газлифтной эксплуатации скважин.
реферат [8,7 M], добавлен 17.05.2012Фонтанный способ добычи нефти. Оборудование при фонтанном способе добычи нефти. Эксплуатация скважин газлифтным методом, применяемое оборудование. Установки погружных насосов с электроприводом. Вспомогательное скважинное оборудование, классификация ВШНУ.
курсовая работа [4,0 M], добавлен 29.06.2010История бурения скважин и добычи нефти и газа. Происхождение термина "нефть", ее состав, значение, образование и способы добычи; первые упоминания о газе. Состав нефтегазовой промышленности: значение; экономическая характеристика основных газовых баз РФ.
курсовая работа [1,6 M], добавлен 14.07.2011Характеристика оборудования для добычи и замера дебита нефти, газа, воды и капитального ремонта скважин. Конструкции установок штангового глубинного насоса. Схема и принцип работы автоматических групповых замерных установок. Дожимная насосная станция.
реферат [852,0 K], добавлен 11.11.2015Средства, методы и погрешности измерений. Классификация приборов контроля технологических процессов добычи нефти и газа; показатели качества автоматического регулирования. Устройство и принцип действия термометров сопротивления и глубинного манометра.
контрольная работа [136,3 K], добавлен 18.03.2015Характеристика месторождения Акшабулак Восточный. Необходимость обеспечения заданного отбора нефти при максимальном использовании естественной пластовой энергии и минимально возможной себестоимости нефти. Выбор способа механизированной добычи нефти.
дипломная работа [3,0 M], добавлен 19.09.2014Характеристика геологического строения Самотлорского месторождения и продуктивных пластов. Гидродинамические исследования водонагнетательных скважин. Свойства нефти, газа и воды в пластовых условиях. Методы контроля за разработкой нефтяных месторождений.
курсовая работа [59,6 K], добавлен 14.11.2013Производство и использование для добычи нефти установок электроцентробежных погружных насосов. Состояние нефтяной промышленности РФ. Разработки по повышению показателей работы насоса и увеличение наработки на отказ. Межремонтный период работы скважин.
реферат [262,7 K], добавлен 11.12.2012Разработка нефтяных месторождений на предприятии Нефтегазодобывающее управление "Повхнефтегаз". Способы бурения и добычи нефти, основное и вспомогательное оборудование. Эксплуатация насосов в осложненных условиях. Подземный и капитальный ремонт скважин.
отчет по практике [1,7 M], добавлен 27.03.2019Физико-химические свойства нефти, газа, воды исследуемых месторождений нефти. Технико-эксплуатационная характеристика установки подготовки нефти Черновского месторождения. Снижение себестоимости подготовки 1 т. нефти подбором более дешевого реагента.
дипломная работа [1,5 M], добавлен 28.03.2017Нефть как один из основных и практически безальтернативных источников энергии. Коммерческая добыча и переработка нефти в России. Первое письменное упоминание о получении нефти в шестнадцатом веке. Рост и упадок советской нефтяной промышленности.
реферат [21,2 K], добавлен 05.11.2014Характеристика Киняминского месторождения. Подсчет балансовых и извлекаемых запасов нефти и газа. Анализ структуры фонда скважин и показателей их эксплуатации. Технологии воздействия на пласт и призабойную зону пласта. Оценка капитальных вложений.
курсовая работа [264,4 K], добавлен 21.01.2014Использование энергии взрыва для интенсификации скважной добычи геотехнологическим способом. Характеристика газлифтного способа добычи нефти. Принципиальная схема гидродобычи, опыт эксплуатации скважин плунжерным лифтом и установкой с перекрытым выкидом.
реферат [162,6 K], добавлен 30.01.2015Понятие о нефтяной залежи. Источники пластовой энергии. Приток жидкости к перфорированной скважине. Режимы разработки нефтяных месторождений. Конструкция оборудования забоев скважин. Кислотные обработки терригенных коллекторов. Техника перфорации скважин.
презентация [5,1 M], добавлен 24.10.2013Экономическая эффективность зарезки боковых стволов на нефтегазовом месторождении "Самотлор". Выбор способа и интервала зарезки. Характеристика и анализ фонда скважин месторождения. Устьевое и скважинное оборудование. Состав и свойства нефти и газа.
дипломная работа [1,3 M], добавлен 21.06.2013Основные проектные решения по разработке Барсуковского месторождения. Состояние разработки и фонда скважин. Понятия о сборе, транспорте и подготовке нефти и газа на месторождении. Характеристика сырья, вспомогательных материалов и готовой продукции.
курсовая работа [2,6 M], добавлен 26.08.2010Гипотезы происхождения нефти. Содержание химических элементов в составе нефти. Групповой состав нефти: углеводороды и остальные соединения. Фракционный состав, плотность. Классификация природных газов. Особенности разработки газонефтяного месторождения.
презентация [2,4 M], добавлен 31.10.2016Добыча нефти и газа. Определение параметров характеристики оборудования, необходимых для условий эксплуатации. Расчёты на прочность деталей. Реакции опор от натяжения цепи. Транспортировка, монтаж, техническое обслуживание и ремонт оборудования.
дипломная работа [241,8 K], добавлен 09.01.2014Карьерный и шахтный способы разработки месторождений высоковязких нефтей. Технологии снижения вязкости. Стоимость добычи и рыночная стоимость "тяжелой" нефти. Циклическая паростимуляция и гравитационное дренирование с паровым воздействием (SAGD).
презентация [2,5 M], добавлен 29.05.2019Периоды разработки газовых месторождений. Системы размещения скважин по площади газоносности месторождений природных газов. Разработка газоконденсатных, газогидратных и многопластовых газовых месторождений. Коэффициенты конденсатоотдачи, компонентоотдачи.
реферат [55,4 K], добавлен 17.01.2011