Гидрокрекинг тяжелого углеводородного сырья с применением высокодисперсного катализатора

Исследование процесса гидрогенизации тяжелого нефтяного сырья. Возможность разработки нового процесса переработки тяжелых нефтяных остатков, с высоким содержанием смолисто-асфальтеновых и серосодержащих веществ, с получением светлых нефтепродуктов.

Рубрика Производство и технологии
Вид научная работа
Язык русский
Дата добавления 02.11.2018
Размер файла 402,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕСРИТЕТ НЕФТИ И ГАЗА ИМ. И.М. ГУБКИНА

НАУЧНАЯ РАБОТА

«Гидрокрекинг тяжелого углеводородного сырья с применением высокодисперсного катализатора»

Зуйков А.В.

(научный руководитель к.х.н., доцент Чернышева Е.А.)

РГУ нефти и газа имени И.М. Губкина

Актуальность работы. В современной мировой нефтепереработке наиболее актуальной и сложной проблемой является облагораживание и каталитическая переработка нефтяных остатков - гудронов и мазутов, потенциальное содержание которых в нефтях большинства месторождений составляет 20 - 55 %.

Наиболее остро данная проблема ощущается в российской нефтеперерабатывающей промышленности, в которой глубина переработки нефти не превышает на сегодняшний день 72 % и характеризуется выходом большого количества остаточных нефтяных фракций. Хотя за последние годы наблюдается тенденция к снижению доли этих остатков, но, не смотря на это, она продолжает преобладать в ассортименте нефтепродуктов НПЗ России.

Трудности, которые возникают при разработке процессов переработки тяжелых остатков, связаны не с осуществлением самих химических реакций крекинга, а в основном с сопутствующим в каталитических процессах явлениями отложения кокса на поверхности катализатора и необратимого отравления катализаторов металлоорганическими соединениями сырья.

Наиболее важными из показателей качества нефтяных остатков, как сырья для каталитических процессов их облагораживания и переработки, являются содержание металлов (определяющее степень дезактивации катализатора, его расход) и коксуемость (обусловливающая коксовую нагрузку регенераторов каталитического крекинга или расход водорода).

Поэтому, для переработки тяжелого нефтяного сырья, с высоким содержанием металлов, асфальтенов, смол, серосодержащих соединений и различного вида примесей необходимы специальные технологии и процессы, новые каталитические системы, способные эффективно перерабатывать такого вида сырье.

Для решения вышеуказанных проблем целесообразно использовать высокодисперсный катализатор, равномерно распределенный в сырье, формирующийся из исходного соединения - «прекурсора» катализатора в зоне реакции.

Преимуществом высокодисперсных катализаторов в сравнении с традиционными твердофазными катализаторами при гидрогенизации тяжелого углеводородного сырья, является более высокая активность, практическое отсутствие отложений кокса и соединений металлов на поверхности катализатора.

Анализ накопленных экспериментальных данных показывает, что синтез и применение высокодисперсных катализаторов включает пять стадий:

1) Выбор каталитически активного исходного соединения, растворимого в воде или в органической жидкости, представляющей реакционную среду для осуществления заданного процесса. Выбранное соединение в результате химических процессов обезвоживания, восстановления, сульфирования должно переходить к моменту достижения рабочих условий процесса (температуры и давления) в каталитически активную форму. Реакционная среда, как правило, - сырье в жидком состоянии;

2) Приготовление раствора или эмульсии водного раствора исходного соединения в сырье;

3) Нагрев сырья до рабочей температуры, сопровождающийся формированием каталитически активной формы в виде суспензии частиц малых размеров в сырье;

4) Проведение технологического процесса в присутствии высокодисперсного катализатора;

5) Выделение и регенерация из продуктов гидрогенизации исходного соединения.

В качестве исходных соединений использовали эмульсию водного раствора парамолибдата аммония, эмпирическая формула (NH4)6Mo7O24*4Н2О.

Механизм формирования глобулы катализатора из капли эмульсии водного раствора парамолибдата аммония при нагревании сырья показан на рисунке 1 . По мере нагревания водная эмульсия закипает, и диаметр капель уменьшается. По достижении насыщения начинает кристаллизоваться твердая соль (NH4)6Mo7O24. Поверхность растущих кристаллов гидрофильна, они располагаются с внутренней стороны поверхности раздела фаз с последующим формирование сферических глобул соли. В процессе дальнейшего нагрева в среде водорода и сероводорода исходные соединения (твердая соль) превращаются в окислы и сульфидируются с образованием каталитически активной формы катализатора - сульфида металла.

Рис. 1 - Механизм формирования глобулы катализатора

гидрокрекинг углеводородный высокодисперсный катализатор

Цель работы: Исследование процесса гидрогенизации тяжелого нефтяного сырья, установление и оценка показателей процесса с каталитической добавкой и без нее.

Научная новизна: Показана возможность разработки нового процесса переработки тяжелых нефтяных остатков, с высоким содержанием смолисто-асфальтеновых и серосодержащих веществ, с получением дополнительного количества светлых нефтепродуктов.

Применен новый способ проведения каталитического процесса, обладающий значительными превосходствами по сравнению с процессами, в которых применяется твердофазные катализаторы.

Экспериментальная часть. Объектом исследования является тяжелый остаток - гудрон западно-сибирской нефти.

Опыты проводились на опытно-экспериментальной установке.

Таблица 1 - Физико-химическая характеристика гудрона западно-сибирской нефти

Показатель

Значение

Плотность при 20 0С, кг/м3

0,930

Условная вязкость при 80 0С, 0У

171,5

Содержание серы, % масс.

2,51

Фракционный состав:

нк-180 0С

-

180-350 0С

-

350-500 0С

11,1

остаток, более 500 0С

88,9

Содержание воды, % масс.

отсутствие

Содержание смолисто-асфальтеновых веществ:

не растворимых в гептане при 20 0С

0,58

не растворимых в гептане при 60 0С

0,21

Цвет

Черный

Температура размягчения, 0С

+38

Элементный состав, % масс.

С

85,4

Н

11,28

S

2,51

N

0,5

В первой серии опытов было установлено, что при отсутствии каталитической добавки происходит повышенное коксообразование, реакционная система быстро закоксовывается и установка останавливалась.

Дальнейшие исследования проводились с добавкой прекурсора из расчета 0,05 % масс. на сырье. Условия проведения опытов приведены в таблице 2.

Таблица 2 - Условия проведения опытов

Параметр

Единица измерения

Интервал значений параметра

Давление

МПа

0,7

Температура

420 - 445

Расход водорода

нл/ч

300

Объемная скорость подачи сырья

ч-1

0,7; 1,0; 1,2

Соотношение водород/сырье

нл/л

1000/1

Катализатор, в пересчете на Мо

% масс

0,05

Выход продуктов процесса при проведении холостого опыта (без катализатора) представлен в таблице 3.

Таблица 3 - Выход продуктов процесса при проведении холостого опыта

Наименование

Выход, % масс.

газ

14,40

фр. (НК-180) єС

20,95

фр. (180-350) єС

26,95

фр. (350-500) єС

12,08

> 500 єС

26,56

кокс

7,40

Последующие эксперименты проводились в присутствии катализатора.

Исходное сырье предварительно смешивали с водным раствором прекуросора катализатора, затем диспергировали с получением эмульсии прекурсора в сырье. На рисунке 2 показана гистограмма распределения частиц дисперсной фазы в эмульсии прекурсора в сырье для опыта одного из серии опытов. Как видно из рисунка, в эмульсии содержатся глобулы с размерами от 100 нм до 4 мкм, при этом средний диаметр глобул составляет около 850 нм.

В полученном гидрогенизате, содержащем сформировавщиеся в зоне реакции из прекурсора твердые частицы каталитического компонента и частицы кокса, также определялась дисперсность. Распределение частиц в суспензии гидрогенизата приведено на рисунке 3.

Рисунок 2- Распределение частиц дисперсной фазы в эмульсии сырья с прекурсором катализатора

В результате проведенных исследований было установлено, что с повышением температуры в зоне реакции происходит характерное для термодеструктивных процессов увеличение степени конверсии исходного сырья. Характер зависимости представлен на графике 1.

Рисунок 3- Распределение частиц дисперсной фазы в суспензии гидрогенизата

График 1

Представляется интересным рассмотреть зависимость изменения выходов фракций от температуры в продуктах реакции.

Увеличение выхода кокса и одновременное снижение выхода фракции газойля 350-500 0С, является следствием возрастания роли реакций уплотнения, так как эта фракция содержит максимальное количество коксогенных компонентов вторичного происхождения. Затем, так как реакции уплотнения являются высоко эндотермичными, то доля реакций каталитической деструкции сырья до низкомолекулярных компонентов, входящих в состав углеводородного газа и бензиновой фракции НК-180 0С снижается. Данным обстоятельством по-видимому, обусловлено увеличение выхода компонентов дизельной фракции 180 - 350 0С.

Данные зависимости приведены на графике 2.

График 2

Получаемый гидрогенизат анализировался на содержание серы. Установлено, что с увеличением конверсии сырья содержание серы в гидрогенизате снижается. Данная закономерность является следствием увеличения степени гидрирования серосодержащих соединений.

График 3

Не мало важным является рассмотреть зависимость от изменения температуры таких физических показателей свойств гидрогенизата, как плотность и вязкость.

На графике 4 приведены зависимости плотности и вязкости от температуры в зоне реакции.

Из графика видно, что с увеличением температуры происходит равномерное снижение плотности и вязкости полученного гидрогенизата. Данное обстоятельство можно объяснить увеличением степени превращения тяжелой части сырья при повышении температуры и, следовательно, снижением содержания высокомолекулярных компонентов в гидрогенизате.

График 4

В условиях пилотной установки существенное влияние на результаты гидроконверсии оказывает объемная скорость подачи сырья, определяемая как отношение объемного расхода сырья к объему реакционной зоны.

Проведенные исследования показали, что увеличение объемной скорости приводит к снижению конверсии сырья, тем самым увеличивая выход остатка не превращенного сырья.

Данная зависимость представлена на графике 5.

График 5

Зависимость выхода продуктов реакции от объемной скорости подачи сырья приведена на графике 6.

Максимальная производительность сырьевого дозатора была ограничена, поэтому провести исследования в области более высокой объемной скорости в настоящий момент не возможно. Все опыты проведены в области низкой объемной скорости , что приводило к повышенному коксообразованию в реакционной системе.

График 6

В области низкой объемной скорости более глубоко протекают реакции разложения вторичных продуктов и реакции конденсации и уплотнения с образованием кокса.

Практическая ценность и реализация в промышленности: Результаты данной работы могут быть использованы при разработке нового процесса глубокой переработке нефти. Промышленная реализация данного процесса может быть осуществлена на установках висбрекинга и гидрокрекинга, при условии проведения на них соответствующей реконструкции.

Таким образом, исследования показали, что введение в сырье прекурсора, содержащего каталитический компонент, существенно улучшает работу пилотной установки: снижает коксообразование и повышает продолжительность непрерывной работы установки. Добавка прекурсора в сырье способствует повышению конверсии и выхода легких и средних дистиллятов. Повышение конверсии приводит к снижению плотности и вязкости гидрогенизата, а также увеличению степени обессеривания продуктов реакции.

Проведенные исследования показывают возможность разработки нового промышленного процесса, который позволит увеличить глубину переработки нефти и количество товарных топлив на НПЗ России.

Роль исполнителя: Поиск и изучение литературы по данной работе, подготовка и постановка эксперимента. Выполнение эксперимента, анализ полученных данных и их объяснение. Оформление и написание научной работы.

Размещено на Allbest.ru

...

Подобные документы

  • Висбрекинг как наиболее мягкая форма термического крекинга, процесс переработки мазутов и гудронов. Основные задачи висбрекинга на современных нефтеперерабатывающих заводах: сокращение производства тяжелого котельного топлива, расширение ресурсов сырья.

    курсовая работа [2,5 M], добавлен 04.04.2013

  • Виды нефтяных фракций (светлые дистилляты, мазут). Условные наименования нефтяных фракций. Направления переработки нефти. Классификация товарных нефтепродуктов, их использование как сырья. Моторные топлива в зависимости от принципа работы двигателей.

    презентация [69,3 K], добавлен 26.06.2014

  • Тяжелые нефтяные остатки и их химический состав. Закономерности переработки нефтяных шламов с получением модифицированных битумов. Установка переработки нефтяных шламов с получением модифицированных битумов и связующих для бытового твёрдого топлива.

    диссертация [1,6 M], добавлен 20.09.2014

  • Роль отечественной науки в модернизации технологий переработки углеродного сырья. Технологическая структура нефтеперерабатывающей промышленности. Критические факторы, мотивирующие к созданию новых технологий. Совершенствование выпускаемой продукции.

    реферат [25,5 K], добавлен 21.12.2010

  • Физико-химическая характеристика нефти. Первичные и вторичные процессы переработки нефти, их классификация. Риформинг и гидроочистка нефти. Каталитический крекинг и гидрокрекинг. Коксование и изомеризация нефти. Экстракция ароматики как переработка нефти.

    курсовая работа [71,9 K], добавлен 13.06.2012

  • Вещественный состав маггемитовых руд и особенности нового типы железорудного сырья. Изучение химизма процесса восстановления и использования надрудной толщи. Технологические свойства руд и их переработки. Идентификация вредных производственных факторов.

    дипломная работа [1,0 M], добавлен 01.11.2010

  • История, состав, сырье и продукция завода. Промышленные процессы гидрооблагораживания дистиллятных фракций. Процессы гидрокрекинга нефтяного сырья. Гидроочистка дизельных топлив. Блок стабилизации и вторичной перегонки бензина установки ЭЛОУ-АВТ-6.

    отчет по практике [8,1 M], добавлен 07.09.2014

  • Назначение и описание процессов переработки нефти, нефтепродуктов и газа. Состав и характеристика сырья и продуктов, технологическая схема с учетом необходимой подготовки сырья (очистка, осушка, очистка от вредных примесей). Режимы и стадии переработки.

    контрольная работа [208,4 K], добавлен 11.06.2013

  • Описание наиболее выгодного способа переработки алюминиевой руды. Термические способы производства глинозема. Сущность способа спекания. Спекание как способ переработки сырья с высоким содержанием кремнезема. Описание реакции, протекающей при спекании.

    курсовая работа [1,1 M], добавлен 01.11.2010

  • Требования к товарным нефтепродуктам. Материальные балансы установок, описание технологической установки гидрокрекинга. Обоснование выбора схемы завода, расчёт октанового числа бензина смешения. Специфика нефтепродуктов, расчёт глубины переработки нефти.

    курсовая работа [1,5 M], добавлен 17.10.2021

  • Описание технологической схемы установки каталитического крекинга Г-43-107 (в одном лифт-реакторе). Способы переработки нефтяных фракций. Устройство и принцип действия аппарата. Назначение реактора. Охрана окружающей среды на предприятиях нефтехимии.

    курсовая работа [2,3 M], добавлен 12.03.2015

  • Термические процессы переработки нефтяного сырья, особенности технологии производства игольчатого кокса и установки замедленного коксования. Материальный баланс процесса и тепловой баланс камеры коксования. Автоматический контроль и техника безопасности.

    дипломная работа [245,6 K], добавлен 08.04.2012

  • Процесс обработки шкур с помощью специальных дубителей. Влияние количества дубящих веществ на температуру сваривания коллагена. Дубление овчинного сырья и примеры обработок шкур. Особенности дубления пушно-мехового сырья. Отходы процесса дубления.

    курсовая работа [70,0 K], добавлен 17.04.2011

  • Сырьё, условия проведения и химизм процесса пиролиза, особенности технологического оформления. Расчёт материального баланса и теплового эффекта процесса пиролиза. Расчёт трубчатого реактора пиролиза, камеры конвекции и закалочно-испарительного аппарата.

    курсовая работа [1,1 M], добавлен 13.10.2013

  • Виды и схемы переработки различных видов древесного сырья: отгонка эфирных масел, внесение отходов в почву без предварительной обработки. Технология переработки отходов фанерного производства: щепа, изготовление полимерных материалов; оборудование.

    курсовая работа [1,6 M], добавлен 13.12.2010

  • Основные формы комбинирования в промышленности. Комбинирование на основе комплексной переработки сырья в отраслях и на предприятиях, занятых переработкой органического сырья (нефти, угля, торфа, сланцев). Комбинирование в нефтяной промышленности.

    презентация [940,9 K], добавлен 22.03.2011

  • Описание наименований и технологии получения нефтяных фракций. Особенности и направления переработки нефти. Классификация товарных нефтепродуктов. Моторные топлива в зависимости от принципа работы двигателей. Нефтяные масла, энергетические топлива.

    презентация [69,2 K], добавлен 21.01.2015

  • Повышение качества кокса. Снижение содержания серы и золы в коксе, улучшение его микроструктуры. Гидрообеесеривание нефтяных остатков. Прокалка нефтяного кокса. Добавление к сырью коксования высокоароматических продуктов нефтепереработки и нефтехимии.

    дипломная работа [1,8 M], добавлен 15.04.2012

  • Применение мембранных процессов для фракционирования и концентрирования молочных продуктов. Схема переработки молока с использованием микро- и нанофильтрации. Регулирование концентрации белка. Электродиализ как способ деминерализации молочного сырья.

    курсовая работа [1,1 M], добавлен 01.04.2014

  • Характеристика сырья для производства яблочного сока. Описание процесса изготовления и подробности массово технологического процесса (дробления) - принципиальная схема переработки. Сорта яблок, пригодных для центрифугирования и их пищевая ценность.

    практическая работа [10,3 K], добавлен 26.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.