О повышении эффективности эксплуатации городских систем теплоснабжения на основе ПАВ-технологий

Применение технологий, базирующихся на кондиционировании теплоносителя молекулами поверхностно-активных веществ, для решения проблемы повышения коррозионной стойкости конструкционных материалов, снижения скорости образования термобарьерных отложений.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 29.11.2018
Размер файла 677,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Московский энергетический институт (технический университет)

О повышении эффективности эксплуатации городских систем теплоснабжения на основе ПАВ-технологий

Д.т.н. В.А. Рыженков, к.т.н. А. В. Куршаков, А.В. Рыженков, инженер,

к.т.н. И.П. Пульнер, главный инженер

к.т.н. С.Н. Щербаков, директор филиала № 7 «Юго-Западный»

ОАО «Московская объединенная энергетическая компания»

Введение

Актуальнейшими современными проблемами в отечественной теплоэнергетике, в том числе в городских системах теплоснабжения, в настоящее время являются повышение надежности, долговечности и энергоэффективности тепловых сетей, генерирующего и теплообменного оборудования, запорно-регулирующей арматуры и трубопроводов. В рамках этого решаются такие задачи как повышение коррозионной стойкости конструкционных материалов, снижение скорости образования новых и эффективное удаление имеющихся термобарьерных отложений с поверхностей теплообмена, снижение гидравлических потерь при транспортировке теплоносителя, снижение затрат при проведении ремонтно-профилактических работ и ряд других задач.

Одним из перспективных способов комплексного подхода в решении вышеупомянутых проблем является применение разработанных в Московском энергетическом институте (техническом университете) ПАВ-технологий, базирующихся на кондиционировании теплоносителя молекулами поверхностно-активных веществ (ПАВ).

Использование ПАВ-технологий в теплоэнергетике

теплоноситель кондиционирование технология термобарьерный

В мировой практике немало примеров использования ПАВ в качестве высокоэффективных ингибиторов коррозии. Достаточно отметить, что в Российской Федерации на сегодняшний день действуют регламенты (руководящие документы - РД) по защите от стояночной (атмосферной) коррозии теплоэнергетического оборудования ТЭС и теплосетей (РАО «ЕЭС России»), а также АЭС с ВВЭР (Росатом) с применением ПАВ из класса пленкообразующих аминов [1,2].

Известно, что использование ПАВ в тепловых сетях ряда стран позволило кардинально решить проблему повышения надежности и ресурса теплотехнического оборудования на основе практически полного блокирования коррозионных процессов [3, 4].

В последние годы в научном центре «Износостойкость» МЭИ (ТУ) впервые было обнаружено, что кондиционирование теплоносителя молекулами ПАВ приводит к повышению внутреннего относительного КПД центробежных насосов до 4%, снижению гидравлического сопротивления магистральных и разводящих трубопроводов на 25-30%. Эти эффекты связаны с формированием на металлических поверхностях плотно упакованных, строго ориентированных слоев молекул ПАВ, которые за счет «сглаживания» их шероховатости снижают степень турбулизации потока в пристенных слоях потока.

В представленной статье приводятся результаты применения одного из вариантов ПАВ-технологии в системе городского теплоснабжения на примере автономного участка теплосетей одной из квартальных тепловых станций (КТС) Филиала № 7 «Юго-Западный» ОАО «МОЭК» в период отопительного сезона 2006-2007 гг.

Автономный участок системы теплоснабжения включает в себя водогрейный котел ПТВМ-50, два котла КВГМ-20, общей мощностью 90 ккал/ч, магистральные теплотрассы и вводы с трубопроводами различного диаметра (80-500 мм), а также распределительные трубопроводы и системы отопления зданий и сооружений с общим объемом 2141 м3. Схема теплоснабжения присоединенных к тепловым сетям станции потребителей -закрытая двухтрубная. В качестве теплоносителя используется вода с температурным графиком 150-70 ОC.

Реализация ПАВ-технологии осуществлялась с использованием специально разработанной мобильной установки, общий вид которой представлен на рис. 1. Основное назначение этой установки заключается в обеспечении кондиционирования теплоносителя молекулами применяемого ПАВ по специальному технологическому регламенту. Длительность кондиционирования теплоносителя молекулами ПАВ определяется протяженностью и разветвленностью автономного участка, а также неравномерной интенсивностью подпитки.

Процесс кондиционирования заканчивается после достижения расчетных концентраций молекул ПАВ в теплоносителе в различных точках схемы (в пределах КТС, а также на ЦТП и ИТП).

В процессе реализации ПАВ-технологии удалось обеспечить достаточно эффективную сорбцию молекул ПАВ на внутренние поверхности трубопроводов и теплотехнического оборудования и сформировать на них строго-ориентированные, упорядоченные молекулярные слои, являющиеся гарантированной преградой для доступа молекул кислорода и углекислоты к металлу.

Известно, что в процессе движения к поверхности металла молекулы ПАВ благодаря своей повышенной активности способствуют разрыхлению и отслаиванию отложений и продуктов коррозии, которые, как правило, присутствуют на функциональных поверхностях оборудования систем теплоснабжения. Это обстоятельство было зафиксировано при реализации ПАВ-технологии на выбранном автономном участке системы теплоснабжения. В качестве иллюстрации на рис. 2 представлено распределение концентраций железа в пределах КТС за период с 13 марта 2007 г. по 21 марта 2007 г. Пробы теплоносителя отбирались из пробоотборных точек, расположенных непосредственно за котлом. Общее количество удаленного железа (в пересчете на Fe2O3) из экранов и конвективных пучков только одного котла ПТВМ-50 составило более 60 кг.

При этом были зафиксированы локальные «всплески» концентраций хлоридов в теплоносителе. В подаваемой сетевой воде максимальная концентрация хлоридов достигала 2,0 мг-экв/кг, в возвращаемой - до 0,5 мг-экв/кг, что свидетельствует о десорбции накопленных в процессе эксплуатации ионов хлора из микротрещин, пор и каверн поверхностного слоя металла.

Водородный показатель сетевой воды pH (как в прямом, так и в обратном трубопроводах) в течение всего периода мониторинга оставался практически неизменным. Измеренные значения находятся в диапазоне 8,89-9,08.

Как уже упоминалось выше, формирование на внутренних поверхностях трубопроводов молекулярных слоев ПАВ должно приводить к изменению режима течения теплоносителя. Для определения влияния поверхностных молекулярных слоев ПАВ на эпюры скоростей в трубопроводах теплосетей был разработан специальный зонд, схема которого представлена на рис. 3. Принцип действия зонда основан на измерении динамического напора потока на различном удалении от стенки трубопровода путем последовательного переключения трубок Пито. Динамический напор фиксировался дифманометром ДСП-160М1, к одному входу которого подсоединен коллектор трубок Пито, к другому - трубка статического давления.

Зонд был установлен в ЦТП на напорном трубопроводе диаметром 125 мм с соблюдением всех условий для минимизации погрешности измерений, связанных с нестационарностью потока.

На рис. 4 представлены профили скоростей, зафиксированные 22 января 2007 г. (до кондиционирования теплоносителя молекулами ПАВ) и 15 марта 2007 г., в дни, когда температура наружного воздуха и расходы прямой сетевой воды на КТС в момент измерений совпадали при t=+3 ОC и G=810 т/ч (см. кривые 1 и 2). На этом же рисунке для сравнения приведен классический профиль скоростей потока в абсолютно гладкой трубе. Анализ приведенных на рис. 4 профилей скоростей потока показывает, что значение средней скорости в процессе кондиционирования теплоносителя молекулами ПАВ увеличилось на 7,4%, естественно это приведет к адекватному изменению расхода теплоносителя.

С целью определения изменения перепадов давления при кондиционировании теплоносителя молекулами ПАВ на входе и выходе тепловых пунктов с зависимой (ЦТП1Т) и независимой (ЦТП2Т) схемой присоединения были установлены образцовые манометры (кл. 0,15). Также как и при измерении локальных скоростей для сравнения были выбраны даты (22.01.07 г. и 15.03.07 г.) с совпадающими температурами наружного воздуха, с расходом подаваемой сетевой воды на КТС. Измерения давления на ЦТП1Т производились при полностью открытом запорно-регули-руемом клапане. Было зафиксировано устойчивое снижение перепада давлений с 0,3333 МПа до 0,3291 МПа, т.е. на ~1,3%. Соответственно, на ЦТП2Т перепад давлений на бойлере снизился с 0,3289 МПа до 0,3177 МПа, т.е. на~3,5%.

Удаление отложений с функциональных поверхностей трубопроводов и теплотехнического оборудования, а также их гидрофобизация и соответствующее повышение КПД сетевых насосов привело к изменению частоты вращения их роторов. На рис. 5 представлено распределение частот вращения роторов сетевых насосов за период с 22.01.07 г. по 22.03.07 г.

Разброс перепадов частот достигал 5,2 Гц. Такой характер кривых связан с тем, что регулирование режима работы котлов КТС как с помощью рециркуляционных насосов (клапанов рециркуляции), так и путем подмеса части обратной сетевой воды в подающую линию через клапан перемычки обеспечивался дежурным оператором вручную, а электропривод сетевых насосов с частотно-регулирующим преобразователем настроен на фиксированное давление в подающем трубопроводе тепловой сети на выходе из КТС.

Представленные на рис. 5 результаты показывают, что частоты вращения роторов сетевых насосов при кондиционировании теплоносителя молекулами ПАВ в период с 22.01.07 г. по 22.03.07 г. снизились с 41,1 до 39,2 Гц, т.е. на 4,75%.

Для непрерывно работающих двух сетевых насосов с суммарной электрической мощностью 630 кВт (2x315 кВт) экономия электроэнергии при этом может составить ~153 тыс. кВт.ч при средней продолжительности отопительного периода в г. Москве 213 суток.

Несомненно, что с практической точки зрения более важным является удельный показатель q, вычисляемый как отношение использованного в водогрейном котле (котлах) топлива (в данном случае газа - тыс. м3) к количеству тепла (Гкал), отданному потребителю (на все ЦТП). Мониторинг этих показателей на КТС проводится в автоматическом режиме с почасовой частотой их регистрации.

На рис. 6 приведены данные об изменении среднесуточного удельного потребления газа q [тыс. м3/Гкал] на КТС в период с 01.12.06 г. по 24.03.07 г.

Представленные на рис. 6 результаты, несмотря на некоторый разброс значений q, показывают вполне отчетливую тенденцию снижения удельного потребления газа в период кондиционирования теплоносителя молекулами ПАВ.

В верхней правой части рис. 6 приведено изменение значений q при работе КТС в аналогичный период в 2006 г. (с 29.02.06 г. по 24.03.06 г.). По сравнению с тем же периодом в 2007 г. значение q уменьшилось на 11,7%.

При теплопроизводительности равной 90 Гкал/ч за отопительный сезон (для Московского региона) на КТС было выработано 460080 Гкал тепла. С учетом, что значение q до проведения работ по кондиционированию теплоносителя молекулами ПАВ составляет 0,132 тыс. м3/Гкал, за этот период израсходовано 60730,56 тыс. м3газа. По результатам, представленным на рис. 6, величина q уменьшилась до значения 0,1215, т.е. на 8,7%. Таким образом, экономия газа составит 5283,6 тыс. м3. С учетом действующих тарифов ОАО «МОЭК» в 2007 г. (1 тыс. м3 газа средней калорийности 8009 ккал/м3 стоит 1613,5 руб.) экономический эффект от внедрения ПАВ-техноло-гии на КТС составляет ~8,53 млн руб.

По окончании отопительного сезона и останова КТС на котле ПТВМ-50 была проведена вырезка верхней трубы конвективного пучка. Средняя удельная загрязненность образцов после применения ПАВ-технологии составила 145 г/м2, что свидетельствует о достаточно высокой чистоте поверхностей нагрева котла с учетом его длительной эксплуатации. Основными компонентами отложений (более 98%) являлись оксиды железа (Fe2O3, Fe3O4). Поверхность образцов характеризуется высокой степенью гидрофобности, что свидетельствует о наличии на них плотноупакованных молекулярных слоев ПАВ (рис. 7).

Коррозионная стойкость внутритрубной поверхности конвективного пучка котла ПТВМ-50 определялась по стандартной методике («капельным» методом РД 34.37.409-96). Анализ полученных результатов показал, что коррозионная стойкость трубных поверхностей с молекулярными слоями ПАВ оказалась в 4,7 раза выше аналогичного показателя поверхности трубы в состоянии поставки.

Рис. 7 Фотография внутренней поверхности вырезанного образца трубы конвективного пучка котла ПТВМ-50 после применения ПАВ-технологии с явным эффектом гидрофобности поверхности

Выводы

В процессе апробации ПАВ-технологии в закрытых тепловых сетях Филиала № 7 «Юго-Западный» ОАО «МОЭК» были зафиксированы следующие основные результаты.

1. Перепад давлений по теплосети на тепловых пунктах с независимой схемой подключения снизился на 3,45%, с зависимой - на 1,3%.

2. Среднее значение скорости и соответственно расход теплоносителя при прочих равных условиях увеличились на 7,4%.

3. Удельный расход газа на КТС в период кондиционирования теплоносителя молекулами ПАВ снизился на 8,7%.

4. Среднее значение частоты вращения сетевых насосов снизилось на 4,75%.

5. Общее количество удаленных из трактов котла ПТВМ-50 отложений составило около 60 кг (в пересчете на Fe2O3). Зафиксирован процесс десорбции хлоридов с трубных поверхностей.

6. Образованная в процессе дозирования ПАВ молекулярная защитная пленка на трубных поверхностях котла повысила их коррозионную стойкость в 4,7 раза.

Каких-либо отклонений от нормативных эксплуатационных показателей, а также качества теплоносителя зафиксировано не было.

Предварительные оценки показывают, что экономический эффект от внедрения ПАВ-технологии на КТС с тепловой мощностью 90 Гкал/ч за один отопительный сезон (только за счет экономии газа, а также электроэнергии, потребляемой сетевыми насосами) может составить более 8,7 млн руб./год. В масштабах теплоэнергетической компании ОАО «МОЭК» этот показатель может составить более 1,6 млрд руб./год.

Полученные результаты позволяют сделать вывод о том, что апробированная в натурных условиях ПАВ-технология способствует повышению надежности, долговечности и экономичности систем теплоснабжения и может быть рекомендована для широкого внедрения.

Литература

1. Методические указания по консервации теплоэнергетического оборудования с применением пленкообразующих аминов. Дополнение к РД 34.20.591-97 РАО «ЕЭС России». М., 1998.

2. Типовой технологический регламент «Консервация оборудования и трубопроводов вторых контуров АЭС с ВВЭР с использованием пленкообразующих аминов». РД ЭО 0408-02 Росатом. М.: 2002.

3. Акользин П.А., Королев Н.А. Применение пленкообразующих аминов для защиты от коррозии теплосилового оборудования. М.: БТИ ОРГРЭС, 1961.

4. Kuba Y., Prochaska Z. 25 Jahre Erfahrungen mit der Dogierung von Amin zum Schutz von Kondensatnetzen in der CSSR// Energie-anwendung. 1979. Bd. 28. Jg. №2. S. 60-65.

5. Nikuradse J., Stromungsgesetze in rauhen Rohren. Forschg. Arb. Ing. - Wes (выпуск 361, 1933).

Размещено на Allbest.ru

...

Подобные документы

  • Сфера использования технологий, основанных на разработках программного обеспечения. Автоматизированные системы подачи материалов. Применение систем автоматизированного проектирования. Значение прогресса технологий для повышения производительности труда.

    реферат [28,1 K], добавлен 27.11.2012

  • Анализ принципа действия и технологических схем ЦТП. Расчет тепловых нагрузок и расходов теплоносителя. Выбор и описание способа регулирования. Гидравлический расчет системы теплоснабжения. Определение расходов по эксплуатации системы теплоснабжения.

    дипломная работа [639,3 K], добавлен 13.10.2017

  • Разработка принципов и технологий лазерной обработки полимерных композиционных материалов. Исследование образца лазерной установки на основе волоконного лазера для отработки технологий лазерной резки материалов. Состав оборудования, подбор излучателя.

    курсовая работа [1,3 M], добавлен 12.10.2013

  • Особенности производства огнеупорных материалов. Пылегазовые выбросы технологических агрегатов. Аэродинамические проблемы эксплуатации пылеуловителей. Реальные поля скоростей. Преимущества аэродинамической оптимизации систем и аппаратов пылеулавливания.

    контрольная работа [1,4 M], добавлен 30.09.2010

  • Разработка конструкции химического аппарата с перемешивающими устройствами. Расчет обечаек, крышек корпуса аппарата на прочность и устойчивость, с учетом термо-стойкости и коррозионной стойкости материала. Выбор и расчет мешалки, муфты и подшипников.

    курсовая работа [2,4 M], добавлен 09.09.2013

  • Горение полимеров и полимерных материалов, методы снижения горючести в них. Применение, механизм действия и рынок антипиренов. Наполнители, их применение, распределение по группам. Классификация веществ, замедляющих горение полимерных материалов.

    реферат [951,6 K], добавлен 17.05.2011

  • Расчет тепловых нагрузок района города. График регулирования отпуска теплоты по отопительной нагрузке в закрытых системах теплоснабжения. Определение расчетных расходов теплоносителя в тепловых сетях, расход воды на горячее водоснабжение и отопление.

    курсовая работа [269,3 K], добавлен 30.11.2015

  • Исследование методов регулирования тепла в системах централизованного теплоснабжения на математических моделях. Влияние расчетных параметров и режимных условий на характер графиков температур и расходов теплоносителя при регулировании отпуска тепла.

    лабораторная работа [395,1 K], добавлен 18.04.2010

  • Специфика эксплуатации электродвигателей на предприятиях агропромышленного комплекса. Повышение уровня квалификации обслуживающего и ремонтного персонала. Компьютеризация и применение новейших информационных технологий в производственном процессе.

    реферат [60,3 K], добавлен 23.04.2019

  • Определение понятия и классификация свойств конструкционных материалов, из которых изготовляются детали конструкций, воспринимающих силовую нагрузку. Стеклокристаллические материалы, производство стали, классификация, графитизация и маркировка чугунов.

    контрольная работа [651,4 K], добавлен 14.01.2011

  • Классификация, маркировка, состав, структура, свойства и применение алюминия, меди и их сплавов. Диаграммы состояния конструкционных материалов. Физико-механические свойства и применение пластических масс, сравнение металлических и полимерных материалов.

    учебное пособие [4,8 M], добавлен 13.11.2013

  • Исследования процессов взаимодействия образцов конструкционных материалов ЯЭУ с жидкометаллическими теплоносителями. Моделирование взаимодействия реакторных сталей на установке ЭУ "ВД". Использование метода вращающегося диска для натриевого теплоносителя.

    дипломная работа [1,2 M], добавлен 03.01.2014

  • Основные виды неметаллических конструкционных материалов. Древесные материалы, их общая характеристика и классификация. Антифрикционные сплавы на основе цветных металлов, их назначение, маркировка, основные области применения и условия эксплуатации.

    контрольная работа [80,7 K], добавлен 20.07.2012

  • Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.

    доклад [277,6 K], добавлен 26.09.2009

  • Анализ потребления в регионе тепловой энергии в зимний период. Расчет экономической эффективности замены отводящих трубопроводов. Определение расхода и скорость движения теплоносителя. Рекомендации по отводящим трубопроводам. Описание источника теплоты.

    дипломная работа [169,2 K], добавлен 10.04.2017

  • Понятие и особенность рынка технологий, его основные сегменты. Состав и структура рынка технологий: субъекты, объекты, инфраструктура. Уровни структуры современного рынка. Группы участников рынка технологий, которые предлагают и приобретают технологии.

    презентация [138,4 K], добавлен 18.04.2010

  • Анализ необходимости строительства цехов по переработке оленины с наличием соответствующих технологий и оборудования для высококачественной переработке мяса и другой продукции. Пути снижения скорости износа рабочих органов перерабатывающего оборудования.

    статья [259,0 K], добавлен 24.08.2013

  • Особенности технологии производства изложниц. Классификация эксплуатационных дефектов, требования к материалу. Экспериментальные исследования способов повышения стойкости изложниц в условиях их эксплуатации на металлургическом комбинате "Криворожсталь".

    дипломная работа [91,6 K], добавлен 08.04.2009

  • Понятие технологии как науки о производстве, способах переработки сырья и материалов в средства производства и предметы потребления. Экономическая природа технологий. Виды и классификация технологий. Классификация отраслей по технологическому уровню.

    презентация [161,0 K], добавлен 18.04.2010

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.