Моделирование механизма резания лесопильных рам с параллельными силовыми потоками и синхронизирующим элементом
Устройство лесопильных рам, существенным недостатком которых являются неуравновешенные силы инерции подвижных масс кривошипно-шатунного механизма. Работа лесопильных рам с планетарными преобразователями вращательного движения в возвратно-поступательное.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 29.11.2018 |
Размер файла | 316,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МОДЕЛИРОВАНИЕ МЕХАНИЗМА РЕЗАНИЯ ЛЕСОПИЛЬНЫХ РАМ С ПАРАЛЛЕЛЬНЫМИ СИЛОВЫМИ ПОТОКАМИ И СИНХРОНИЗИРУЮЩИМ ЭЛЕМЕНТОМ
Кузнецов А.И.,
Новоселов В.Г.
Важнейшим звеном в лесопильном производстве являются лесопильные рамы. Их существенным недостатком являются неуравновешенные силы инерции подвижных масс кривошипно-шатунного механизма, вызывающие вибрацию. Этот недостаток устранен в механизмах лесопильных рам (ЛРВ-2, РУН63) с планетарными преобразователями вращательного движения в возвратно-поступательное. Кинематическая схема механизма приведена на рисунке 1. На схеме индексами Л и П обозначены соответствующие симметричные элементы левого и правого преобразователей и их приводов.
Рисунок 1 - Кинематическая схема механизма резания лесопильной рамы с планетарным преобразователем: 1П, 1Л - роторы электродвигателей; 2П, 2Л - ведущие шкивы приводов; 3П, 3Л - ведомые шкивы приводов; 4П, 4Л - водила; 5П, 5Л - сателлиты; 6 - траверса, 7- пильная рамка; 8 - синхронизирующий вал.
В этих механизмах полностью уравновешиваются вертикальные и горизонтальные силы, действующие на фундамент. Однако при смене скорости и направления движения пильной рамки происходит перекладка зазоров в зубчатых парах. Вследствие этого может возникать ударная нагрузка на зубья и происходить их постепенное разрушение.
Кроме того, механизм имеет достаточно сложную структурную и кинематическую схему, включающую два замкнутых силовых контура:
· синхронизирующий вал - правый и левый преобразователи - траверса пильной рамки;
· синхронизирующий вал - правый и левый приводы - электрическая сеть.
Ввиду различия механических характеристик асинхронных двигателей, неравенства фактических передаточных отношений ременных передач и упругого скольжения в них, кинематических погрешностей в зубчатых передачах планетарных преобразователей неизбежно возникновение паразитных потоков мощностей и дополнительных нагрузок на звенья механизма и его приводов. В частности, в практике эксплуатации наблюдаются усталостные изломы синхронизирующих валов.
Учесть эти факторы и их влияние на динамические нагрузки и на надежность механизма можно, имея адекватную динамическую модель. Для механизма с планетарным преобразователем разработанная нами [1, 2] динамическая модель представлена на рисунке 2.
Рисунок 2 - Динамическая модель механизма резания лесопильной рамы с планетарным преобразователем
Данная динамическая модель описывается системой дифференциальных уравнений:
(1, 2)
(3, 4)
(5, 6)
(7)
(8)
где ИiЛ, ИiП - моменты инерции, щiЛ, щiП и цiЛ, цiП - угловые скорости и углы поворота вращающихся звеньев левого (Л) и правого (П) преобразователей и приводов; MijЛ, MijП - реакции связей; M4Л, M4П - моменты сил сопротивления приведенные водилам.
Реакция нестационарной электромагнитной связи ротора и статора двигателей приводов определяется из дифференциальных уравнений связи [3]:
(9)
(10)
где щ0 - угловая скорость магнитного поля статора; p - число пар полюсов статора; ТЭ - электромагнитная постоянная времени; ш - вспомогательная переменная; MК - критический момент двигателя.
Упруго - диссипативные реакции валов двигателей, синхронизирующего вала и траверсы Mij определяются по общей формуле:
(11)
где Cij - коэффициент жесткости упругой связи между i - тым и j - тым звеном; bij - коэффициент неупругого (диссипативного) сопротивления связи между i - тым и j - тым звеном; ij - угол относительного поворота i - того и j - того звена.
Упругопластическая характеристика ременной передачи аппроксимируется дифференциальным уравнением [4]:
(12)
где d, g, l, r - аппроксимирующие коэффициенты; D2Л(П), D3Л(П) - расчетные диаметры ведущего и ведомого шкивов левого и правого приводов.
Поскольку, получить решение данной системы дифференциальных уравнений в аналитическом виде невозможно, будем исследовать данную модель методами численного моделирования.
Для решения поставленной задачи удобно использовать пакет визуально-ориентированного программирования Simulink, входящий в состав системы Matlab. Модель механизма резания лесопильных рам с параллельными силовыми потоками и синхронизирующим валом представлена на рисунке 3.
Рисунок 3 - модель механизма резания
Исследуемая модель представлена системой с входящими в неё подсистемами на рисунке 4, часть, которых, в свою очередь, содержит внутренние подсистемы. Каждая подсистема представляет собой самостоятельную структурную единицу и при необходимости может использоваться для исследования других моделей.
Рисунок 4 - Подсистема «Преобразователь»
Рисунок 5 - Уравнения (6, 7) в блоке Differential Equation Editor
Для обмена информацией между подсистемами, последние используют порты ввода и вывода. При моделировании механической модели удобно использовать для связи элементов такие параметры как момент и угловую скорость. Подсистемы, в математическом описании которых используются обыкновенные дифференциальные уравнения, могут моделироваться в специализированном блоке Differential Equation Editor (рисунок 5) в математическом виде. Среда Simulink содержит множество блоков для генерирования различных сигналов, среди них имеется блок «From File» с помощью которого задавались горизонтальные и вертикальные силы резания, полученные в результате натурного эксперимента из источника [5]. Для вывода результатов эксперимента используются средства: блоки «scope» и «XY Graph» - для отображения информации виде графика, блок «To File» - вывод результатов в файл и другие.
Экспериментирование над моделью, построенной в пакете Simulink, позволяет оперативно и наглядно представлять результаты численного эксперимента при изменении различных параметров и свойств модели, и тем самым определить оптимальное их сочетание.
планетарный шатунный лесопильный рама
Библиографический список
1. Новоселов В.Г, Кузнецов А.И Исследование модернизированного планетарного механизма резания лесопильной рамы с гибким звеном.// Изв. вузов. Лесной журн., 2005, №3, - С.84-90
2. Новоселов В.Г, Кузнецов А.И Динамическая модель механизма резания лесопильной рамы с планетарным преобразователем.// Наука и образование на службе лесного комплекса: Матер. меж. нар. науч.-практ. конф. Т.2. - Воронеж: Воронеж. гос. лесотехн. акад., 2005. - С. 99 - 103
3. Левин А.И. Математическое моделирование в исследованиях и проектировании станков. - М.: Машиностроение, 1978. - 184 с.
4. Новоселов В.Г. Моделирование крутильно-вращательных колебаний в приводе оборудования.// Виброакустические процессы в оборудовании целлюлозно-бумажных производств. - Екатеринбург: УГЛТА, 1995. - С. 118-124.
5. Белошейкин В.С Улучшение эксплуатационных показателей бесфундаментных лесопильных рам.// Дис. канд. техн. наук: 05.21.05 - Л. 1988. - 232 с.
Размещено на Allbest.ru
...Подобные документы
Конструкция винтового механизма, используемого для преобразования вращательного движения в поступательное. Кинематические закономерности в зубчато-реечном механизме. Принципы работы кулачкового, кривошипно-шатунного, кулисного и храпового механизмов.
презентация [4,6 M], добавлен 09.02.2012Структурный анализ кривошипно-ползунного механизма. Построение планов положения, скоростей, ускорений и кинематических диаграмм. Определение результирующих сил инерции и уравновешивающей силы. Расчет момента инерции маховика. Синтез кулачкового механизма.
курсовая работа [522,4 K], добавлен 23.01.2013Структурный анализ кривошипно-ползунного механизма, который преобразует возвратно-поступательное движение ползуна (поршня) во вращательное движение кривошипа. Планы скоростей и ускорений. Определение сил тяжести и инерции. Условные обозначения звеньев.
курсовая работа [2,4 M], добавлен 27.03.2013Порядок проведения структурного и кинематического анализа рычажного механизма для преобразования вращательного движения кривошипа в возвратно-поступательное движение ползуна. Силовой анализ плоско-рычажного механизма, расчет параметров маховика.
курсовая работа [195,7 K], добавлен 07.06.2010Краткая характеристика кривошипно-шатунного механизма. Подвижные детали: поршни, шатун, коленчатый вал, маховик. Устройство и принцип работы блока цилиндров и головки цилиндров. Технология ремонта: мойка и очистка, разборка, дефектация, испытания.
контрольная работа [19,9 K], добавлен 04.04.2012Структурный анализ кривошипно-шатунного механизма. Силовой анализ и расчет ведущего звена механизма. Построение рычага Жуковского Н.Е. Определение передаточного отношения привода рычажного механизма. Синтез планетарного редуктора с одинарным сателлитом.
курсовая работа [388,0 K], добавлен 25.04.2015Преобразование возвратно-поступательного движения поршней во вращательное движение коленчатого вала в двигателях внутреннего сгорания. Назначение, характеристика и элементы кривошипно-шатунного механизма; принцип осуществления рабочего процесса двигателя.
презентация [308,4 K], добавлен 07.12.2012Понятие и описание особенностей таких деталей как: блок и головка цилиндров, шатун и коленчатый вал, маховик и картер, крепление двигателя. Все эти элементы являются составляющими кривошипно-шатунного механизма. Характеристика и описание этого механизма.
лабораторная работа [15,8 K], добавлен 10.02.2009Кулисный механизм как основа брикетировочного автомата. Определение основных размеров звеньев кривошипно-кулисного механизма. Построение планов положений и скоростей механизма. Определение момента инерции маховика и размеров кулачкового механизма.
курсовая работа [685,9 K], добавлен 19.01.2012Основные части кривошипно-шатунного механизма автомобильного двигателя и их назначение. Характеристика неподвижных и подвижных деталей. Устройство блока цилиндров, шатунно-поршневой группы, шатуна, группы коленчатого вала, их роль в движении автомобиля.
презентация [1,2 M], добавлен 28.12.2015Схема рычажного механизма. Классификация кинематических пар. Определение степени подвижности механизма. Синтез механизма. Силовой расчёт рычажного механизма. Определение силы полезного сопротивления. Определение сил инерции и моментов сил инерции звеньев.
курсовая работа [2,3 M], добавлен 10.01.2009Расчет кулисных механизмов. Изучение "Механизма перемещения кормушек", предназначенного для получения возвратно-поступательного движения стержня из вращательного движения ведущего звена. Применение механизмов, подобных данному в автотракторной технике.
курсовая работа [68,1 K], добавлен 08.07.2011Схема кривошипно-шатунного механизма двигателя внутреннего сгорания и действующих в нем усилий. Его устройство и схема равнодействующих моментов. Расчет сил инерции. Диаграмма износа шатунной шейки коленчатого вала. Способы уравновешивания его значений.
контрольная работа [108,6 K], добавлен 24.12.2013Сущность механизма пресса, предназначенного для реализации возвратно-поступательного движения ползуна. Кинематический, силовой, динамический анализ механизма. Определение реакций в кинематических парах группы Ассура и уравновешивающей силы по Жуковскому.
курсовая работа [89,3 K], добавлен 15.08.2011Цикл движения шестизвенного кривошипно-ползунного механизма. Разбивка передаточного отношения редуктора по ступеням. Подбор чисел зубьев. Расчет делительных диаметров и построение схемы. Кинематическое исследование кривошипно-ползунного механизма.
курсовая работа [1,5 M], добавлен 18.02.2012Расчёт динамики кривошипно-шатунного механизма для дизеля 12Д49. Расчет сил и крутящих моментов в отсеке V-образного двигателя, передаваемых коренными шейками, нагрузок на шатунные шейки и подшипники. Анализ уравновешенности V-образного двигателя.
курсовая работа [318,4 K], добавлен 13.03.2012Кинематический анализ мальтийского механизма. Определение угловой скорости и ускорения креста. Кинематический анализ планетарной передачи, кривошипно-ползунного механизма. Приведение моментов инерции звеньев и определение момента инерции маховика.
контрольная работа [368,7 K], добавлен 10.10.2011Определение мощности электродвигателя. Выбор типа электродвигателя. Определение момента инерции маховика (метод К.Э. Рериха). Работа сил резания. Расчет диаметра вала по вращающему моменту от двигателя. Анализ механизма резания лесопильной рамы.
реферат [239,8 K], добавлен 20.09.2012Основные элементы кривошипно-шатунного механизма двигателя: цилиндры (гильзы), поршни (с поршневыми кольцами и пальцами), шатуны с подшипниками, коленчатый вал и маховик. Признаки работоспособного состояния механизма. Расчет давления в системе смазки.
презентация [4,7 M], добавлен 11.11.2013Проектирование зубчатой передачи привода распределительного вала. Расчет требуемого момента инерции маховых масс двигателя. Исследование силового нагружения кривошипно-ползунного механизма. Конструирование кулачкового механизма привода впускного клапана.
курсовая работа [545,6 K], добавлен 30.12.2013