Аэроионификация как способ интенсификации отверждения лакокрасочных покрытий образованных водными лаками
Характеристики и способы интенсификации отверждения лакокрасочных покрытий на основе органических растворителей. Исследование процесса полимеризации вододисперсионных акриловых лаков. Анализ влияния молекулярного кислорода на скорость пленкообразования.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 29.11.2018 |
Размер файла | 23,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Уральский государственный лесотехнический университет (УГЛТУ)
Аэроионификация как способ интенсификации отверждения лакокрасочных покрытий образованных водными лаками
Air ionization as intensification way of drying coatings based on water lacquers
Жданов Н.Ф., Газеев М.В., Жданова И.В., Тихонова Е.В.
Екатеринбург, РФ)
Использование водных лакокрасочных материалов (ЛКМ) в настоящее время получает все большее распространение, поскольку образованные ими покрытия по своим декоративным и эксплуатационным характеристикам значительно превосходят показатели покрытий на основе органических растворителей [1]. Продолжительное время отверждения покрытий на основе вододисперсионных ЛКМ ввиду низкой скорости испарения воды является их недостатком. С целью ускорения этого процесса применяют различные способы интенсификации отверждения лакокрасочных покрытий (ЛКП): конвективный, радиационно-химический, терморадиационный и др. Все эти способы обладают рядом недостатков [2].
В лаборатории кафедры механической обработки древесины УГЛТУ проведен эксперимент.
Цель эксперимента - сокращение времени отверждения ЛКП, образованных вододисперсионными акриловыми ЛКМ [2, 3]. Для этого применялось электроэффлювиальное аэроионизационное устройство (ЭЭАУ), предназначенное для осуществления процесса ионизации.
В результате действия устройства происходит формирование активных форм кислорода (отрицательные аэроионы кислорода воздуха). По данным экспериментальных исследований было установлено, что образующиеся активные формы кислорода (АФК) приводят к ускорению процесса пленкообразования покрытий, т.е. АФК являются инициаторами отверждения ЛКП.
Известно, что процесс пленкообразования ЛКП на основе водных лакокрасочных материалов происходит в результате радикальной окислительной полимеризации, т.е. в реакции полимеризации участвует кислород воздуха. Скорость радикальной полимеризации зависит от концентрации кислорода, которая определяется глубиной слоя, вязкостью полимеризующейся системы и степенью ее структурирования [4, 5].
Радикальная полимеризация обычно включает несколько химических стадий: инициирование, рост цепи, обрыв цепи [6]. Инициирование радикальной полимеризации состоит в создании в реакционной системе свободных радикалов, способных начать реакционные цепи. Наиболее распространенный и применяемый метод в данном случае основан на осуществлении в среде мономера термического гомолитического распада нестойких веществ - инициаторов. При этом в качестве инициаторов используют различные перекиси (перекись бензоила). В нашем случае формирование первичных радикалов происходит вследствие взаимодействия мономеров с кислородом воздуха и образования перекисей и гидроперекисей.
Кислород в воздухе находится в нейтральном нереакционном состоянии. Его воздействие на отверждаемую систему обусловлено двумя последовательными сменяющимися процессами - ингибированием и инициированием пленкообразования. После нанесения ЛКМ на подложку концентрация кислорода в реакционной системе будет велика, поскольку поверхность контакта кислорода с этой системой большая.
Кислород проникает в покрытие и взаимодействует с частицами ЛКМ. Образуются первичные радикалы, которые вступают в реакцию с кислородом, обладающим большей реакционной способностью, чем мономеры. В результате этого формируются перекисные соединения. Это приведет к ингибированию реакции [5]. В этот период радикальной полимеризации протекают следующие реакции:
Развитие цепи окисления
R· + О2 > RО2·
Рост полимерной цепи
RО2· + М > МRО2·
R· + М > МR·
Обрыв цепи
RО2· + RО2· > неактивные продукты
Основой дисперсной фазы вододисперсионных акриловых ЛКМ являются мономеры эфиров метакриловой и акриловой кислот.
В результате ингибирующего действия кислорода на полимеризацию мономеров этих кислот замедляется реакция образования полимера, происходит заторможенная сополимеризация мономера с кислородом. Перекисные радикалы неактивны в реакции роста цепи, что приводит к резкому снижению длины цепей полимерной перекиси.
Постепенно по мере протекания реакции полимеризации в присутствии кислорода воздуха происходит формирование низкомолекулярного сополимера.
Его образование приводит к увеличению вязкости системы, что затрудняет диффузию кислорода в покрытие: при этом приток кислорода уменьшается и в какой-то момент концентрация кислорода становится настолько незначительной, что кислород перестает играть роль ингибитора полимеризации. Кислород превращается в инициатора реакции полимеризации.
Образовавшиеся в ходе реакции низкомолекулярные сополимеры со строгим чередованием молекул мономера М и кислорода (полимерные перекиси): ··· М - ОО - ( - М - ОО - )n - М - ОО - ··· начинают распадаться, образуя радикалы.
В результате дальнейшего взаимодействия радикалов с мономерами ЛКМ происходит процесс полимеризации.
Воздействие АФК в качестве инициатора при взаимодействии с мономерами пленкообразователя приводит к ускорению процесса отверждения покрытий. АФК являются более активными веществами по сравнению с молекулярным кислородом [7].
Иными словами АФК - это химические катализаторы реакции полимеризации. При этом полимеризация протекает в результате окислительно-восстановительной реакции через стадию свободных радикалов. Отличительной чертой реакции является низкая энергия активации, что позволяет проводить полимеризацию в условиях комнатной температуры. пленкообразование отверждение лакокрасочный
Первичные радикалы, которые образуются в процессе реакции, вступают в дальнейшее взаимодействие с мономерами с последующим формированием пространственно сшитого полимера. Происходит формирование твердого покрытия.
При взаимодействии ЛКМ с АФК (отрицательными аэроионами) этапы инициирующего и ингибирующего воздействия кислорода присутствуют, но обе эти стадии процесса полимеризации протекают при более высоких скоростях. Под действием разницы потенциалов, которая возникает между электроэффлювиальным излучателем (ЭЭИ) и поверхностью подложки с нанесенным ЛКП, образующиеся АФК быстрее проникают в покрытие.
Отрицательные аэроионы притягиваются к положительно заряженной подложке. Происходит дополнительное ускорение процесса взаимодействия аэроионов с мономерами ЛКП.
Для подтверждения предложенной теории в лаборатории кафедры механической обработки древесины УГЛТУ провели эксперимент по воздействию потока АФК на отверждение ЛКП.
Исследование процесса отверждения ЛКП осуществляли на стеклянных и деревянных подложках, в качестве исследуемых ЛКМ применялись: лаки Балет+ п/глянц., Эколак П и Эколак ТИК, краска Экопласт, грунтовка Экогрунт бел. и б/цв.
Для сравнения проведены испытания, в которых контрольная группа образцов с нанесенным ЛКП помещалась в естественные условия (при отсутствии воздействия на отверждаемое покрытие потока отрицательных аэроионов).
По результатам испытаний установлено, что отверждение ЛКП под действием ЭЭАУ происходит быстрее (рис.1).
Рис.1. Время отверждения ЛКП в естественных условиях и в ЭЭАУ
Для эксперимента искусственно создавался поток воздуха, направляющий АФК от ЭЭИ к поверхности отверждаемого ЛКП.
В ходе испытаний определялась концентрация АФК на различном расстоянии от ЭЭИ. Установлено, что с увеличением расстояния до ЭЭИ концентрация АФК снижается.
Значение концентрации АФК изменяется непропорционально, т.к. на ее величину оказывают сильное влияние скорость и направление потока воздуха. График зависимости концентрации АФК представлен на рис.2.
Результаты определения времени отверждения покрытия при разных значениях скорости подачи воздуха и расстояния от ЭЭИ до поверхности ЛКП представлены на рис. 3.
Рис.2. Зависимость количества АФК от расстояния до ЭЭИ и скорости потока воздуха
Рис.3. Зависимость времени отверждения ЛКП от расстояния до ЭЭИ и скорости потока воздуха
Из графика видно, что малая скорость практически не оказывает влияния на длительность отверждения покрытия, а большая скорость воздуха приводит к отрицательному эффекту - время отверждения увеличивается.
Это объясняется тем, что поток воздуха большой скорости уносит аэроионы от поверхности ЛКП, следовательно происходит снижение их концентрации. Увеличение расстояния от ЭЭИ до поверхности ЛКП также приводит к возрастанию времени его отверждения.
Результаты исследований показали, что на скорость пленкообразования ЛКП влияют как значение концентрации АФК, так и скорость потока воздуха с которым АФК бомбардируют покрытие.
Необходимо проведение дальнейших исследований по нахождению рациональных значений концентрации АФК и скорости воздуха, обеспечивающих максимальное сокращение времени отверждения ЛКП.
Можно сделать вывод, что процесс радикальной полимеризации при взаимодействии АФК с мономерами ЛКП проходит значительно быстрее, чем при воздействии на них молекулярного кислорода, так как АФК обладают большей химической активностью. Таким образом, использование ЭЭАУ позволяет существенно сократить время отверждения ЛКП, что делает его применение перспективным.
Библиографический список
1. Верхоланцев В.В. Водные краски на основе синтетических полимеров - Л.: ХИМИЯ, 1968. - 200 с.
2. Газеев М.В., Жданова И.В., Лещев Е.В. Нетрадиционный подход к отверждению лакокрасочных покрытий на древесине // Урал промышленный - Урал полярный: социально-экономические и экологические проблемы лесного комплекса: Сборник материалов VI Междунар. Науч.-техн. конф. / УГЛТУ. - Екатеринбург, 2007. 438 с.
3. Жданова И.В., Путнева Ю.В., Газеев М.В. Аэроионификация в технологии формирования защитно-декоративных покрытий // Научное творчество молодежи - лесному комплексу России. Мат-лы III всерос. Науч.-техн. конф. / УГЛТУ. - Екатеринбург, 2007. Ч.1. 317 с.
4. Онегин В.И. Формирование лакокрасочных покрытий древесины/Под ред. А.А. Леоновича. - Л.: Изд-во Ленингр. ун-та, 1983. - 148 с.
5. Полимеризационные пленкообразователи. Под ред. Елисеевой В.И. - М.: ХИМИЯ, 1971. - 214 с.
6. Определение кинетических параметров радикальной полимеризации (Преображенский С.А.) // Учебно-методическое пособие по специальности «Химия». - Воронеж, 2005. - 31 с.
7. Чижевский А.Л. Аэроионы и жизнь. Беседы с Циолковским. - М.: МЫСЛЬ, 1999. - 716 с.
Размещено на Allbest.ru
...Подобные документы
Определение и виды лакокрасочных покрытий. Методы их нанесения. Основные свойства лакокрасочных покрытий. Их промежуточная обработка. Защита материалов от разрушения и декоративная отделка поверхности как основное назначение лакокрасочных покрытий.
контрольная работа [172,4 K], добавлен 21.02.2010Патентная документация, методики поиска патентов, обработка найденной информации. Устройство для нанесения лакокрасочных покрытий в электрическом поле. Нанесение лакокрасочных покрытий в электрическом поле. Нанесение порошкообразных материалов.
курсовая работа [136,8 K], добавлен 30.06.2011Значение подготовки поверхности окрашиваемых материалов для получения качественных покрытий. Способы подготовки поверхности перед окраской. Структура многослойных покрытий и процессы пленкообразования. Классификация и хранение лакокрасочных материалов.
реферат [31,4 K], добавлен 11.10.2013Исходные данные для проектирования комплекса производств лакокрасочных материалов и растворителей общей мощностью 7000 т/г. Основание для разработки исходных данных и общие сведения о технологии. Описание принципиальных технологических схем производства.
курсовая работа [83,8 K], добавлен 17.02.2009Создание защитно-декоративных покрытий на основе жидких лакокрасочных и пленочных материалов. Стадии формирования защитно-декоративных покрытий. Технологический процесс отделки деталей или собранного изделия. Основные и вспомогательные материалы.
курсовая работа [72,2 K], добавлен 09.08.2015Контроль за выполнением очистных и окрасочных работ, а также оценка качества работ требованиям стандартов. Коррозия металлов и защита их от коррозии. Защитные свойства лакокрасочных покрытий и оценка степени разрушения ранее окрашенной поверхности.
реферат [28,6 K], добавлен 30.04.2011Влияние технологических факторов на процесс электролитического осаждения цинка на стальной подложке, органических добавок на качество и пористость цинковых покрытий. Зависимость толщины осаждаемых цинковых покрытий от продолжительности электролиза.
презентация [1,1 M], добавлен 22.11.2015Исследование процесса изготовления пигментированных лакокрасочных материалов. Основные характеристики, конструкция и принцип работы используемого оборудования. Краткая характеристика основных видов материалов, используемых в лакокрасочной промышленности.
реферат [426,6 K], добавлен 25.01.2010Виды и свойства керамических покрытий, способы получения. Электронные ускорители низких энергий в технологиях получения покрытий. Нанесение покрытий CVD-методом. Золь-гель технология. Исследование свойств нанесенных покрытий, их возможные дефекты.
курсовая работа [922,9 K], добавлен 11.10.2011Процесс биологической очистки. Условие формирования и функционирования активного ила. Влияние внешних факторов на кинетику окисления загрязнений. Методы интенсификации седиментации иловой смеси. Оценка динамики концентрации растворенного кислорода.
дипломная работа [5,5 M], добавлен 13.10.2017- Исследование процесса движения частиц в газоплазменном потоке при газотермическом нанесении покрытий
Характеристика основных закономерностей процесса газотермического нанесения покрытий. Устройство плазматрон. Преимущества технологии газотермического нанесения покрытий. Моделирование воздействия концентрированного потока энергии на поверхность.
контрольная работа [3,2 M], добавлен 16.06.2013 Разработка защитно-декоративного покрытия шкафа для хранения одежды. Спецификация деталей изделия, характеристика основных и вспомогательных лакокрасочных материалов, определение потребного количества. Технологическая карта процесса, расчет оборудования.
курсовая работа [38,1 K], добавлен 04.10.2014Применение водного красителя кислотного отверждения - растворимого соединения, предназначенного для имитации цвета древесины ценных пород. Технологический режим грунтования облицованных щитов. Расчет потребного количества сушильных камер проходного типа.
курсовая работа [188,7 K], добавлен 17.05.2012Технологии, связанные с нанесением тонкопленочных покрытий. Расчет распределения толщины покрытия по поверхности. Технологический цикл нанесения покрытий. Принципы работы установки для нанесения покрытий магнетронным методом с ионным ассистированием.
курсовая работа [1,4 M], добавлен 04.05.2011Изучение износостойких нанокомпозитных покрытий с использованием методов магнетронного распыления и вакуумно–дугового разряда. Изучение влияния содержания нитрида кремния на твердость покрытия. Измерение микротвердости поверхностного слоя покрытий.
курсовая работа [830,3 K], добавлен 03.05.2016Исследование структуры, фазового состава и свойств покрытий системы Ti–Si–B, полученных электронно-лучевой наплавкой в вакууме и методом электронно-лучевого оплавления шликерной обмазки. Получение и перспективы применения МАХ-материалов на основе титана.
дипломная работа [4,0 M], добавлен 14.06.2013Создание технологической схемы малоотходной технологии производства покрытий. Расчет материальных балансов процессов. Выбор основного и вспомогательного оборудования для процессов получения покрытий, очистки СВ и воздуха. Основы процесса цинкования.
дипломная работа [1,2 M], добавлен 26.10.2014Характеристика, свойства и применение современных износостойких наноструктурных покрытий. Методы нанесения покрытий, химические (CVD) и физические (PVD) методы осаждения. Эмпирическое уравнение Холла-Петча. Методы анализа и аттестации покрытий.
реферат [817,5 K], добавлен 26.12.2013Сфера применения карбидов титана и хрома. Состав и технологические характеристики исходных продуктов и композиционных порошков на их основе. Скорость окисления образцов. Микроструктура плазменного покрытия после изотермической выдержки в течение 28 часов.
статья [211,0 K], добавлен 05.08.2013Повышение износостойкости плазменных покрытий из эвтектических самофлюсующихся сплавов, путём введения в состав серийного материала мелкодисперсной добавки диборида титана. Зависимость количества и размера образующихся фаз от количества вводимой добавки.
статья [1,9 M], добавлен 05.08.2013