Основы материаловедения

Материаловедение как наука, изучающая металлические и неметаллические материалы, применяемые в технике, объективные закономерности зависимости их свойств от химического состава, структуры, способов обработки и условий эксплуатации. Свойства сплавов.

Рубрика Производство и технологии
Вид учебное пособие
Язык русский
Дата добавления 14.12.2018
Размер файла 5,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Марки меди: M1 (99,9%), Тпл = 1083 оС; МО (99,95%), Ткип = 2360°С; МОО (99,99%). В технической меди могут присутствовать вредные примеси: висмут (? 0,002%), свинец (? 0,005%), сера, кислород, которые уменьшают пластичность меди.

Чистая медь имеет малую прочность, поэтому её легируют кадмием (Cd), что приводит к незначительной потере электропроводности при сохранении достаточно высокой прочности. Проводимость таких сплавов составляет 80-90% от проводимости чистой меди. Сплав, упрочненный наклепом, имеет проводимость 98% от проводимости меди.

Алюминий (А1) имеет электросопротивление больше, чем у меди в 1,7 раза, но он легче. Для линий передач применяют сплав альдрей (0,4% Mg, 0,6% Si, 0,25% Fe). К таким сплавам относятся АД000, АД0.

Большую прочность имеют биметаллы системы Fe - A1. Биметаллический провод (стальной провод, покрытый медью) используют при передаче переменных токов повышенной частоты.

Железо (Fe) имеет электросопротивление в 6-7 раз ниже электросопротивления меди. Сплавы железа (сталь с 0,1 - 0,15% С) применяются для шин, рельсов электрических железных дорог и метро.

17.6 Сплавы с высоким электросопротивлением

Сплавы с высоким электросопротивлением применяют для изготовления элементов сопротивления реостатов и нагревательных элементов. Структура таких сплавов формируется на базе твердых растворов и к ним предъявляются следующие требования:

- они должны обладать высоким удельным электросопротивлением;

- должны иметь малый температурный коэффициент электросопротивления;

- должны обладать высокой окалиностойкостью (жаропрочностью);

- в них должны отсутствовать структурные превращения при нагревах и охлаждениях.

Для элементов сопротивления реостатов применяются сплавы:

- манганин - МНМц 3-12 (11,5-13% Mn, 2,5-3,5% Ni, остальное Сu);

- константан - МНМц 40-1,5 (1-2%. Mn, 39-41% Ni, остальное Сu).

Эти сплавы имеют малый коэффициент электросопротивления: манганин в интервале температур от - 60 до +80°С и константан в интервале температур от - 60 до + 350°С.

Для нагревательных элементов применяют сплавы:

железоалюминиевые: фехраль - Х13Ю4 (? 0,15% С, 13% Сu, 4% Al), хромалъ - ОХ23Ю5 (? 0,05% С, 23% Сr, 5% Al);

никелевые: ферронихром - X15H60 (25% Fe), нихром - Х20Н80. Сплав для деталей нагревательных приборов выпускается в виде проволоки или ленты.

17.7 Сплавы с заданным коэффициентом теплового расширения

К сплавам с заданным коэффициентом теплового расширения относятся железо-никелевые сплавы:

сплав ИНВАР - 36Н (? 0,05% С и 35-37% Ni). Он почти не расширяется при температуре от -60 до +100°С и применяется в специальных приборах (альтиметрах, барографах) высокой точности, работающих при переменных нагрузках и климатических изменениях температуры;

сплав КОВАР - 29НК (0,03% С, 29% Ni, 17-18% Со). Он имеет низкий коэффициент теплового расширения в интервале температур от -70 до + 420 оС и применяется для деталей, впаиваемых в стекло при создании вакуумноплотных спаев.

сплав платинит - H42 (42-48% Ni, остальное Fe). Он имеет коэффициент теплового расширения, равный коэффициенту теплового расширения платины и стекла.

Технические железоникелевые сплавы относятся к сталям аустенитного класса.

17.8 Сплавы с заданными упругими свойствами

В приборостроении для изготовления упругих элементов (пружин) требуется материал, обладающий высоким значением упругих свойств, достаточной пластичностью, прямолинейным кодом изменения модуля упругости в широком интервале температур, а также немагнитностью и коррозионной стойкостью.

К таким сплавам относятся:

- сплав 40KXHM (0,07-0,12% С, 15-17% Ni, 19-21% Cr, 6,4-7,4% Мо, 39-41% Со). Это высокопрочный, с высокими упругими свойствами, немагнитный, коррозионностойкий в агрессивных средах сплав, который применяется для заводных пружин часовых механизмов, а также для витых цилиндрических пружин, работающих при температурах до 400 оС;

- сплав 42НХТЮ (< 0,05% С, ~42% Ni). Это высокопрочный сплав с низким температурным коэффициентом модуля упругости при температуре до 100 оС, который применяется для упругих чувствительных элементов, работающих до температуры +100 оС.

18. Цветные металлы и сплавы

18.1 Медные сплавы

Медные сплавы делятся на две группы:

латуни. Это сплавы меди с цинком. Цинк повышает прочность и пластичность сплава. Максимальной пластичностью обладает сплав с 30% Zn.

Латуни (в особенности однофазные) легко поддаются деформации и поэтому из латуни изготавливают катаный полуфабрикат (листы, ленты, профили и т.д.). Латуни с содержанием цинка до 40% пластичны, хорошо обрабатываются давлением в горячем состоянии, коррозионностойки.

Кроме простых латуней - сплавов только меди и цинка, применяют специальные латуни, в которых для придания тех или иных свойств дополнительно вводят различные элементы: свинец для улучшения обрабатываемости (автоматная латунь ЛС59, содержащая 40% Zn и 1-2% Pb), олово для повышения сопротивления коррозии в морской воде (морская латунь), алюминий и никель для повышения механических свойств.

Практически применяемые латуни в зависимости от структуры при комнатной температуре разделяются на две категории:

б - латуни, содержащие меди не менее 61%. Марки этих латуней Л62, Л68 и др. Их изготавливают в виде тонких листов, лент др. б - Латуни с более высоким содержанием меди (Л80) имеют цвет золота, и их применяют для ювелирных и декоративных изделий. Латуни, содержащие высокий процент меди, называют томпаком.

- б + в - латуни, содержащие 55 - 61% меди. Наиболее распространенная марка Л59, из которой изготавливают прутки, а из них с помощью обработки резанием - различные детали.

Латуни с содержанием цинка до 40% - пластичны, хорошо обрабатываются давлением в горячем состоянии, коррозионностойки.

бронзы. Это сплавы меди с оловом, алюминием, кремнием и другими элементами, обладающие хорошими литейными свойствами (малой усадкой) и использующиеся как антифрикционные сплавы.

Маркировка бронзы: БрОЦС8-4-3, содержащая 8% Sn, 4% Zn, 3% Pb, остальное - медь.

В зависимости от вида легирующего элемента различают:

- оловянистые бронзы, содержащие до 5% Sn. Они устойчивы к действию атмосферы, морской воды;

- алюминиевые бронзы, содержащие 9-11% А1. Они обладают хорошими технологическими и механическими свойствами. Их применяют для изготовления зубчатых колес, сальников, деталей турбин;

- кремнистые бронзы, содержащие 1-3% А1. Они обладают хорошими литейными и антикоррозионными свойствами, высокой упругостью, выносливостью;

бериллиевые бронзы, содержащие 2-2,5% Ве; 0,5% Ni, остальное медь. Эти бронзы относятся к разряду дорогих и используются в приборостроении для изготовления пружин, мембран и др.

- медно-никелевые сплавы, в которых основным легирующим элементом является никель. Эти сплавы можно разделить на конструкционные и электротехнические.

К первой группе относятся коррозионно-стойкие и высокопрочные сплавы типа мельхиор (МНЖМц30-1-1), нейзильбер (МНЦ15-20), куниаль (МНА13-3). В качестве дополнительных легирующих элементов в них добавляют Mn, Al, Zn, Fe, Co, Pb. Изготавливают из этих сплавов украшения, столовые и чайные приборы.

- сплав монель, содержащий 66% Ni + 28% Cu + Mn + Fe. Он применяется для изготовления монет, хирургического инструмента, так как обладает высокой коррозионной стойкостью, прочностью, хорошей обрабатываемостью.

18.2 Алюминиевые сплавы

Алюминий - один из наиболее легких конструкционных металлов (с = 2,7 кг/м3). Он обладает высокой пластичностью. В чистом виде алюминий имеет небольшую прочность, кристаллическую решётку ГЦК с параметром а = 0,404 Нм и обладает высокой коррозионной стойкостью из-за образования на поверхности пленки, содержащей химическое соединение Al2O3.

Алюминий и его сплавы используют в качестве проводниковых материалов (провода в быту). Электропроводность равна 34*10 Ом-1* см-1, что составляет 57% от электропроводности меди. В электротехнике используют алюминий марок A00 (99,7%), А0 (99,6%) и Al (99,5%).

По технологическому признаку алюминиевые сплавы делятся на деформируемые (термически не упрочняемые и упрочняемые) и литейные (рис. 18.1).

Рис. 18.1. Классификация алюминиевых сплавов по диаграмме состояния (а) и технологические свойства сплавов с ограниченной растворимостью (б - г)

Как видно из рисунка 18.1. различные участки диаграммы соответствуют:

1 - сплавам, не упрочняемым термической обработкой;

2 - сплавам, упрочняемым термической обработкой;

3 - изменению пластичности;

I - образованию рассеянных пор;

II - образованию сконцентрированных пор.

К деформируемым алюминиевым сплавам относятся:

- сплавы алюминия с марганцем АМц (АМц3) и сплавы алюминия с магнием АМг (Амг6). Марганец и магний повышают прочность алюминия в три раза. Используют эти сплавы при изготовлении сварных емкостей для горючего, азотной и других кислот, трубопроводов, средне-нагруженных деталей конструкций;

- дюралюмины - сплавы алюминия с медью (2,2-4,8%), магнием (0,4-2,4%), марганцем (0,4-0,8%). Это термически упрочняемые сплавы. Обозначение дюралюминов: Д1, Д6, Д16 (номера условные).

Для защиты дюралюминов от коррозии используют так называемое плакирование (покрытие тонким защитным слоем из чистого алюминия);

сплав В95 - наиболее прочный алюминиевый сплав (2% Си, 2,5% Mg, 0,5% Mn; 6% Zn, 0,15% Сr, 0,5% Si, 0,5% Fe) и используется он для изготовления элементов летательных аппаратов;

- ковочные сплaвы (АК) для деталей, изготавливаемых ковкой и давлением. Обозначение: АК1, АК5 (номер условный).

Эти сплавы обладают способностью сохранять механические свойства при повышенных температурах.

К литейным алюминиевым сплавам относятся сплавы алюминия с кремнием (так называемые силумины), содержащие 4-13% Si.

Силумины маркируют: АЛ2, АЛ13 (порядковый номер). Применяют такие сплавы для изготовления литых деталей приборов, корпусов турбонасосов, тонкостенных отливок сложной формы.

В настоящее время вводится единая цифровая маркировка алюминиевых сплавов. Первая цифра обозначает основу всех сплавов (алюминию присвоена цифра 1); вторая - главный легирующий элемент или группа главных легирующих элементов; третья или третья со второй - соответствует старой маркировке; четвертая цифра - нечетная (включая 0) указывает, что сплав деформируемый, четная - что сплав литейный.

Например, сплав Д1 обозначают 1110, Д16 - 1160, АК4 1140, Амг5 - 1550, АК6 - 1360 и т.д. Некоторые новые сплавы имеют только цифровую маркировку - 1915, 1925 и др.

18.3 Магниевые сплавы

В качестве легирующих добавок в магниевых сплавах используют алюминий, цинк и марганец, растворяющиеся в магнии. Растворимость падает с уменьшением температуры, что позволяет применять для этих сплавов термическую обработку, заключающуюся в закалке с последующим старением.

Магниевые сплавы делятся на деформируемые (МА) и литейные (МЛ). Эти сплавы очень легкие и используются для изготовления деталей в авиастроении.

18.4 Титан и его сплавы

Титан - это серебристо-белый металл с малой плотностью (4,5 г/см3) и высокой температурой плавления (1672 оС), имеющий две аллотропические модификации: б - низкотемпературную с плотноупакованной гексагональной решёткой и в - высокотемпературную с кубической объёмноцентрированной решёткой. Температура перехода б - в равна 882 оС.

Для улучшения прочностных и пластических свойств титан легируется различными элементами, содержание которых, в общей сложности, не превышает 10 -15%. Легирующие элементы смещают температуру аллотропического превращения титана. Алюминий, кислород, азот, углерод стабилизируют б - фазу; железо, молибден, тантал, вольфрам, хром, марганец, никель стабилизируют в - фазу;

Титан имеет высокую коррозионную стойкость в большом количестве агрессивных сред, превосходя в этом отношении нержавеющую сталь. При нагреве до 500 оС титан становится активным и поглощает из атмосферы газы (кислород, азот, водород), что сильно влияет на его механические свойства.

Технический титан маркируется в зависимости от содержания примесей: BT1-00 (сумма примесей менее 0,398%), ВТ1-0 (сумма примесей менее 0,55%).

Титановые сплавы классифицируются:

- по технологии изготовления на деформируемые, литейные и изготовленные методами порошковой металлургии. Для маркировки деформируемых титановых сплавов используется буквенно-цифровой код:

- ОТ4-0, ОТ4-1, ОТ4 - сплавы, в которых основными легирующими добавками являются алюминий и марганец;

- ВТ5, ВТ5-1, ВТ3-1, ВТ6, ВТ9 и т.д. - сплавы, легированные алюминием или алюминием и вольфрамом.

Стоящие за буквами цифры являются условным порядковым номером.

Особенности маркировки литейных титановых сплавов - наличие буквы Л в конце обозначения марки: ВТ5Л, ВТ3-1Л и др.

Для изготовления деталей методом порошковой металлургии используют сплавы ВТ5, ВТ5-1, ОТ4 и др. Порошковые сплавы маркируются так же, как и деформируемые.

Литейные сплавы титана обладают более низкими механическими свойствами, чем соответствующие деформируемые;

- по способу упрочнения на термически упрочняемые и не упрочняемые термической обработкой;

- по структуре на однофазные б - сплавы (не содержат b-стабилизаторов); псевдо - а - сплавы (коэффициент b - стабилизации не более 0,25); (a + b) - сплавы (коэффициент b-стабилизации от 0,3 до 0,9); псевдо-b-сплавы (коэффициент b-стабилизации от 1,4 до 4,4) и b-сплавы (коэффициент b-стабилизации > 2,5).

Преимуществом титановых сплавов, по сравнению с техническим титаном, являются следующие свойства:

- сочетание высокой прочности (ув = 800-1500 МПа) с хорошей пластичностью (д = 18-25%);

- малая плотность и высокая удельная прочность (ув/г до 40);

- хорошая жаропрочность (до 600-700 оС);

- высокая коррозионная стойкость;

- низкая пластичность при комнатной температуре;

- высокая чувствительность к поверхностным дефектам.

Все титановые сплавы подвергаются термообработке, ХТО и ТМО и для повышения их износостойкости возможно применение цементации и азотирования.

Основными недостатками титана и его сплавов являются:

- высокая способность при повышенных температурах к взаимодействию со всеми газами, а также с материалами плавильных печей;

- невысокие антифрикционные свойства;

- плохая обрабатываемость резанием;

- невысокая жесткость конструкции из-за низкого значения модуля упругости.

Титановые сплавы используют в авиа- и ракетостроении (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа, фюзеляжа), в химической промышленности (компрессоры, клапаны, вентили), в изготовлении криогенной техники.

18.5 Антифрикционные сплавы

Антифрикционные сплавы применяют для изготовления подшипников качения и скольжения. К таким сплавам предъявляются следующие требования:

- низкий коэффициент трения;

- хорошая прирабатываемость;

- микрокапиллярность для смазки;

- хорошая теплопроводность.

К антифрикционным сплавам относятся:

- свинцовистые бронзы (до 25-30% РЬ) (БрС30 И БРОС5-25;

- антифрикционные чугуны (чугун с перлитной основой и повышенным количеством графита);

- баббиты - сплавы олова с сурьмой и медью (Б88, Б89), а также сплавы свинца с кальцием и натрием (Б16, БКА).

Список использованных источников

1. Гуляев, А.П. Металловедение: учебник для вузов / А.П. Гуляев. - М.: Металлургия, 1986. - 541 с.

2. Мозберг, Р.К. Материаловедение: учебник для вузов / Р.К. Мозберг. - М.: Металлургия, 1991. - 500 с.

3. Лахтин, Ю.М. Основы металловедения: учебник для вузов / Ю.М. Лахтин. - М.: Металлургия, 1988. - 400 с.

4. Новиков, И.И. Теория термической обработки: учебник для вузов / И.И. Новиков. - М.: Металлургия, 1988. - 479 с.

5. Конструкционные материалы: Справочник / под ред. Б.Н. Арзамасова. - М.: Машиностроение, 1990. - 687 с.

6. Арзамасов, Б.Н. Материаловедение: учебник для вузов / Б.Н. Арзамасов. - М.: Машиностроение, 1986. -383 с.

7. Башнин, Ю.А. Технология термической обработки / Ю.А. Башнин, Б.К. Ушаков, А.Г. Секей. - М.: Металлургия, 1986. - 424 с.

8. Гольдштейн, М.И. Специальные стали / М.И. Гольдштейн, С.В. Грачев, Ю.Г. Веслер. - М.: металлургия, 1985. - 407 с.

Размещено на Allbest.ru

...

Подобные документы

  • Современные тенденции в развитии материаловедения мебельной промышленности. Древесные породы, применяемые в плотничных работах. Физические и механические свойства древесины. Круглые лесоматериалы, клееные деревянные конструкции, полимерные материалы.

    курсовая работа [518,0 K], добавлен 10.02.2016

  • Материаловедение как наука, изучающая строение и свойства металлов и устанавливающая связь между ними. Абсолютная величина трансляции. Понятие наклепа, компонентов, эвтевтики. Компоненты - химически индивидуальные вещества, образовывающие сплав.

    шпаргалка [56,1 K], добавлен 19.03.2011

  • Применение металлов и сплавов в городском хозяйстве. Понятие о металлических и неметаллических материалах, способы их изготовления, области применения, технологии производства, способы обработки и использования. Стандартизация конструкционных материалов.

    методичка [831,2 K], добавлен 01.12.2009

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Рассмотрение правил проведения макро- и микроанализа металлов и сплавов, определению твердости, исследованию структур и свойств сталей и чугунов, цветных сплавов и пластмасс. Практические вопросы термической и химико-термической обработки металлов.

    учебное пособие [4,4 M], добавлен 20.06.2012

  • Понятие о металлических сплавах. Виды двойных сплавов. Продукты, образующиеся при взаимодействии компонентов сплава в условиях термодинамического равновесия. Диаграммы состояния двойных сплавов, характер изменения свойств в зависимости от их состава.

    контрольная работа [378,1 K], добавлен 08.12.2013

  • Условия эксплуатации и особенности литейных свойств сплавов. Механические свойства стали 25Л, химический состав и влияние примесей на ее свойства. Последовательность изготовления отливки. Процесс выплавки стали и схема устройства мартеновской печи.

    курсовая работа [869,1 K], добавлен 17.08.2009

  • Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.

    реферат [27,1 K], добавлен 18.05.2011

  • Изучение закономерностей изменения электрических свойств двухкомпонентных сплавов в зависимости от их состава. Внешний вид и схема установки. Величина, оценивающая рост сопротивления материала (проводника) при изменении температуры на один градус.

    лабораторная работа [576,3 K], добавлен 11.04.2015

  • Пластические массы (пластмассы) как основной тип неметаллических материалов. Основные технологические и эксплуатационные свойства пластмасс. Термопластичные и термореактивные материалы. Классификация пластмасс в зависимости от их основного назначения.

    реферат [16,6 K], добавлен 10.01.2010

  • Понятие неметаллические материалы. Состав и классификация резин. Народнохозяйственное значение каучука. Резины общего и специального назначения. Вулканизация, этапы, механизмы и технология. Деформационно-прочные и фрикционные свойства резин и каучуков.

    курсовая работа [104,7 K], добавлен 29.11.2016

  • История стоматологического материаловедения, предмет, задачи, методы исследования. Охрана труда и техника безопасности в стоматологии, оборудование рабочего места зубного техника. Свойств зуботехнических материалов. Требования гигиены при протезировании.

    шпаргалка [164,9 K], добавлен 09.02.2011

  • Свойства металлов и сплавов. Двойные сплавы. Металлы применяемые в полиграфии. Технические требования к типографским сплавам. Важнейшие свойства типографских сплавов. Металлы для изготовления типографских сплавов. Диаграммы состояния компонентов.

    реферат [32,5 K], добавлен 03.11.2008

  • Зависимость свойств литейных сплавов от технологических факторов. Основные свойства сплавов: жидкотекучесть и усадка. Литейная форма для технологических проб. Графики зависимости жидкотекучести, линейной и объемной усадки от температуры расплава.

    лабораторная работа [44,6 K], добавлен 23.05.2014

  • Классификация цветных металлов, особенности применения и обработки. Эффективные методы защиты цветного металла от атмосферной коррозии. Алюминий и алюминиевые сплавы. Металлические проводниковые и полупроводниковые материалы, магнитные материалы.

    курсовая работа [491,9 K], добавлен 09.02.2011

  • Используемые и перспективные материалы ядерных энергетических установок. Особенности холодной консолидации порошковых материалов. Предварительная подготовка компонентов сплавов; формование заготовок; исследование структуры и коррозионных свойств образцов.

    курсовая работа [2,9 M], добавлен 16.04.2012

  • Основные понятия литейного производства. Особенности плавки сплавов черных и цветных металлов. Формовочные материалы, смеси и краски. Технология изготовления отливок. Виды и направления обработки металлов давлением. Механизмы пластической деформации.

    презентация [4,7 M], добавлен 25.09.2013

  • Титановые сплавы - материалы, плохо поддающиеся обработке резанием. Общие сведения о существующих титановых сплавах. Уровни механических свойств. Выбор инструментальных материалов для токарной обработки титановых сплавов. Нанесение износостойких покрытий.

    автореферат [1,3 M], добавлен 27.06.2013

  • Синтетические изопреновые каучуки. Молекулярная структура, фракционный состав и физико-химические свойства. Теоретические основы и методы определения упруго-гистерезисных свойств резин в динамических условиях нагружения. Зависимость свойств от структуры.

    контрольная работа [908,7 K], добавлен 21.06.2015

  • Исследование основных литейных свойств сплавов, изучение способа получения отливок без дефектов и описание технологии отлива детали под давлением. Изучение схемы прокатного стана и механизма его работы. Анализ свариваемости различных металлов и сплавов.

    контрольная работа [317,4 K], добавлен 20.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.