Сверхзвуковая сепарация

Дросселяция газа, основанная на применении эффекта Джоуля-Томпсона. Метод низкотемпературной сепарации, применяемый на газоконденсатных месторождениях РФ. Показан процесс формирования сверхзвукового потока с помощью конфузорно-диффузорного сопла Лаваля.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 01.02.2019
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Сверхзвуковая сепарация

Измиков К.И. ИНиГ 5-1

Научный руководитель: доцент Абанов А.Э.

На газоконденсатных месторождениях РФ для подготовки газа к дальнему транспорту применяется метод низкотемпературной сепарации (НТС). Метод состоит в охлаждении потока пластового флюида за счет дросселирования избыточного давления и механического разделения образовавшихся жидкой и газовой фаз.

Дросселяция газа основана на применении эффекта Джоуля-Томпсона. Эффектом Джоуля-Томсона называется изменение температуры газа при адиабатическом дросселировании -- медленном протекании газа под действием постоянного перепада давлений сквозь дроссель (пористую перегородку).

В узком сечении скорость потока возрастает, кинетическая энергия расходуется на внутреннее трение между молекулами. Это приводит к испарению части жидкости и снижению температуры всего потока. После дросселирования смесь газа и выпавшей жидкости входит в низкотемпературный сепаратор. Здесь в результате сепарации выделяются сухой газ высокого давления, нестабильный газовый конденсат и водометанольная смесь. На рисунке 1 изображен клапан КРД-5 используемый для НТС.

Рисунок 1 - Клапан КРД-5

Рабочая среда поступает в напорную часть корпуса и проходит через профилированное отверстие дискового седла, открываемое при повороте золотника, который поворачивается вокруг своей оси с помощью шпинделя, проходящего через графлексовое уплотнение, соединяемого с приводом.

Первым серьезным недостатком НТС является то, что для предотвращения гидратообразования при снижении температуры газового потока необходимо использовать опасные химические реагенты (метанол, смесь этанола и гликоля).

По мере разработки месторождения, при его истощении, следовало бы для поддержания заданного уровня добычи жидких углеводородов из все облегчающегося состава исходной смеси снижать температуру сепарации. На практике же из-за непрерывного снижения свободного перепада давления температура сепарации постоянно растет. Вышесказанное является вторым существенным недостатком системы НТС [3].

Третьим недостатком данной схемы является ее большие габаритные размеры и значительная масса, что крайне нежелательно при добыче газа на море (проектная стоимость одного койко-места на платформе составляет 4 миллиона долларов) [8].

Наличие подвижных частей в клапане НТС и их движение относительно друг друга при частых регулировках уровня открытия клапана вызывают необходимость трудоемкого и высококвалифицированного технического обслуживания. Данный факт указывает на невозможность использования НТС в подводных системах подготовки газа, где доступ персонала к оборудованию затруднен, а в случае больших глубин невозможен. Использование водолазов и подводных роботов связано с рисками и значительными затратами.

Менее распространенным в РФ является способ осушки газа при помощи турбодетандеров (рисунок 2).

Рисунок 2 - Турбодетандер (слева) и его рабочая камера (справа)

Турбодетандеры -- лопаточные машины непрерывного действия, в которых поток проходит через неподвижные направляющие каналы (сопла), преобразующие часть потенциальной энергии газа в кинетическую, и систему вращающихся лопаточных каналов ротора, где энергия потока преобразуется в механическую работу, в результате чего происходит охлаждение газа. За счет двухступенчатого преобразования энергии газа турбодетандер более эффективен по сравнению с клапаном КРД, однако имеет схожие с ним недостатки.

Учитывая изложенное ранее была разработана технология подготовки газа на основе 3S сепарации. 3S сепарация (от англ. super sonic separation) - новейшая технология, предназначенная для извлечения целевых компонентов из природных газов. Технология базируется на охлаждении природного газа в сверхзвуковом закрученном потоке газа.

Сверхзвуковой поток реализуется с помощью конфузорно-диффузорного сопла Лаваля. В таком сопле газ разгоняется до скоростей превышающих скорость распространения звука в газе. При этом за счет перехода части потенциальной энергии потока в кинетическую энергию происходит сильное охлаждение газа. Выделившаяся в результате охлаждения жидкость центробежными силами с ускорением достигающим 106 м/с2 [5] отбрасывается к стенкам выходного раструба, а газ выходит через диффузор. В диффузоре кинетическая энергия, приобретенная потоком, переходит в давление (давление на выходе составляет 70-80 % от входного давления) [6].

На рисунке 3 представлена конструкция 3S сепаратора, на рисунке 4 схема движения газожидкостной смеси в 3S сепараторе.

Рисунок 3 - Принципиальная схема 3S-сепаратора

1 - завихряющее устройство; 2 - сопло Лаваля; 3 - рабочая секция; 4 -двухфазный сепаратор газ-жидкость; 5 - диффузор; 6 - направляющий аппарат

Рисунок 4 - Схема движения газожидкостной смеси в 3S сепараторе

По сравнению с традиционными схемами подготовки газа использование 3S-сепараторов имеет следующие преимущества:

- Позволяет отказаться от использования химикатов для борьбы с гидратообразованием (время пребывания газожидкостной смеси внутри сепаратора составляет тысячные доли секунды, за столь малый промежуток времени гидраты не успевают сформироваться)

- Малая занимаемая площадь и масса установки, высокая транспортабельность и монтажеспособность (сепаратор спроектированный на рабочее давление в 100 бар имеет длину 2 м);

- Упрощение конструкции установки;

- Продление периода бескомпрессорной эксплуатации месторождения;

- Снижение затрат мощности компрессорных станций без снижения производительности (достигает 50-70%) [5];

- Углубленное извлечение пропан-бутанов и этана;

- Предотвращение уноса конденсата из сепараторов НТС за счет увеличения степени извлечения фракций C5+ (30 % рост извлечения при одинаковых энергозатратах) [5];

- Эффективное извлечение CO2 и H2S из кислых природных газов [2];

- В 3S-сепараторе отсутствуют движущие части и, как следствие, нет необходимости в трудоемком и высококвалифицированном текущем обслуживании аппарата;

- Можно использовать на платформах и в подводных системах подготовки газа.

Рисунок 4 - Сравнительный график эффективности

На рисунке 4 изображен сравнительный график эффективности для клапана НТС, турбодетандера и 3S сепаратора. Общий вид 3S сепаратора представлен на рисунке 5.

Первая экспериментальная установка была построена в Канаде. Первая в мире промышленная установка 3-s сепарации была введена в строй в 2005 году в Западной Сибири.

Рисунок 5 - 3S сепаратор

сверхзвуковой сепарация газ

Летом 2007 г. был завершен проект модернизации УКПГ-1 Губкинского месторождения ОАО НК «Роснефть-Пурнефтегаз» на основе 3S-технологии, при этом производительность по газу и конденсату выросла на 50%. Срок окупаемости капитальных вложений на модернизацию составил 6 месяцев [6]. За рубежом данная технология активно используется компанией Shell.

Список литературы

1 Бордачев С.Г., Имаев С.З.Технологические схемы УКПГ на основе 3S - технологии для северных месторождений - Московский физико-технический институт

2 Войтенков Е.В. Применение 3-S технологии для сепарации кислых компонент из природного газа - Институт проблем нефти и газа РАН

3 Полстянов Д.Е. Низкотемпературная сепарация. Пути развития - Материалы XII региональной научно-технической конференции «Вузовская наука - Северо Кавказскому региону».Том первый. Естественные и точные науки. Технические и прикладные науки. Ставрополь: СевКавГТУ, 2008. 298 с.

4 Vladimir Feygin, Salavat Imayev, Vadim Alfyorov, Lev Bagirov, Leonard Dmitriev, John Lacey. Supersonic Gas Technologies - TransLang Technologies Ltd., Calgary, Canada

5 Vadim Alfyorov, Lev Bagirov, Leonard Dmitriev, Vladimir Feygin, Salavat Imayev, John R. Lacey. Supersonic nozzle efficiently separates natural gas components // Oil & Gas Journal / May 23, 2005

6 Melewar Gas Technologies Ltd. Supersonic gas separation - The breakthrough in gas processing

7 Marco Betting, Hugh Epsom. Supersonic separator gains market acceptance // World Oil / April 2007

8 Alain Lepage - Petroleum project management, TPA training course at ASTU

Размещено на Allbest.ru

...

Подобные документы

  • Низкотемпературная сепарация газа, особенности данной технологии, используемое оборудование и материалы. Способ сепарации газожидкостной смеси, подготовка ее к транспорту. Основные факторы, влияющие на исследуемый процесс, его достоинства и недостатки.

    курсовая работа [246,8 K], добавлен 22.01.2015

  • Анализ общих сведений по Уренгойскому месторождению. Тектоника и стратиграфия. Газоносность валанжинского горизонта. Свойства газа и конденсата. Технологическая схема низкотемпературной сепарации газа. Расчет низкотемпературного сепаратора очистки газа.

    дипломная работа [1,7 M], добавлен 09.06.2014

  • Оптимальная система сепарации нефти, газа и воды. Гравитационная сепарация. Соударение и рост капель в типичном коагуляторе с фильтром. Трёхфазный горизонтальный сепаратор. Дегазация жидкости. Факельные газоотделители и вентиляционные скрубберы.

    презентация [4,1 M], добавлен 28.10.2016

  • Сведения об очистке природного газа. Применение пылеуловителей, сепараторов коалесцентных, "газ-жидкость", электростатического осаждения, центробежных и масляных скрубберов. Универсальная схема установки низкотемпературной сепарации природного газа.

    реферат [531,8 K], добавлен 27.11.2009

  • Процесс и типичная схема установки низкотемпературной сепарации. Основные факторы, влияющие на процесс, основные недостатки и достоинства установок. Особенности функционирования жалюзийных, центробежных, сетчатые сепараторов и фильтров-сепараторов.

    реферат [663,9 K], добавлен 04.06.2011

  • Коэффициенты потери энергии. Расчет потока газа в заданных сечениях эжектора на критическом и двух произвольных дозвуковых режимах. Определение газодинамических параметров. Определение расхода газа и размеров сечений сопла и камер, статических давлений.

    курсовая работа [251,7 K], добавлен 14.06.2011

  • Электродинамическая сепарация, методы интенсификации технологического процесса. Извлечение из цветных металлов без разделения потока на две фракции. Извлечение черных и цветных металлов в самостоятельные продукты. Удаление части балластных компонентов.

    курсовая работа [95,7 K], добавлен 18.01.2015

  • Разработка автоматической системы электрообогрева трубопровода сбросной линии газа с предохранительного клапана куста газоконденсатных скважин с целью предотвращения в нем процессов гидратообразования и поддержания его температуры в заданном диапазоне.

    дипломная работа [2,2 M], добавлен 16.04.2015

  • Методика определения полной механической энергии потока воздушного и комбинированного дутья на срезе фурмы доменной печи, потока горнового газа. Листинг программы расчета полных механических энергий потоков комбинированного дутья и горнового газа.

    курсовая работа [1,7 M], добавлен 26.10.2011

  • Попутный нефтяной газ как смесь газов и парообразных углеводородистых и не углеводородных компонентов природного происхождения, особенности его использования и утилизации. Сепарация нефти от газа: сущность, обоснование данного процесса. Типы сепараторов.

    курсовая работа [778,0 K], добавлен 14.04.2015

  • Изучение основных технологий производства продукции обогатительного предприятия. Технологический процесс обогащения руд. Описание процесса мокрой магнитной сепарации. Методы контроля метрологического обеспечения технических процессов и качества продукции.

    отчет по практике [2,1 M], добавлен 27.10.2015

  • Развитие переработки газовых конденсатов. Характеристика углеводородных газов, совершенствование технологии их переработки. Естественные и искусственные углеводородные газы. Сепарация газа (низкотемпературная) как важнейшая промысловая операция.

    реферат [232,2 K], добавлен 27.11.2009

  • Основы высокочастотной плазменной обработки пористых тел. Создание технологии отмочно-зольных процессов производства кожи с применением потока низкотемпературной плазмы пониженного давления, с целью получения кожевенного полуфабриката из шкур индейки.

    дипломная работа [1,8 M], добавлен 06.02.2014

  • Описание конструкции самолета АН-148, его узлы. Прочностной расчет конструкции панели сопла гондолы двигателя, схема его нагружения. Технологический процесс приготовления связующего ЭДТ-69Н. Экономический эффект от внедрения композиционных материалов.

    дипломная работа [1,1 M], добавлен 13.05.2012

  • Комплексный анализ и конструктивно-технологическая характеристика отдельно взятого узла (рубашки сопла) из общей сборки жидкостного ракетного двигателя 5Д12. Технические требования на сборку, наименование и последовательность операций, оборудование.

    курсовая работа [254,3 K], добавлен 09.07.2012

  • Компрессоры, используемые для транспортировки газов. Предел взрываемости нефтяного газа. Расчет годового экономического эффекта от внедрения блочных компрессорных установок для компрессирования и транспорта нефтяного газа. Удельный вес газа на нагнетании.

    курсовая работа [2,7 M], добавлен 28.11.2010

  • Геологическое строение Лебединского месторождения и состав железистых кварцитов. Выбор и обоснование технологической схемы обогащения. Технология транспортировки хвостов. Принципы высокоселективной магнитной сепарации и конструкции магнитных сепараторов.

    дипломная работа [493,7 K], добавлен 12.09.2012

  • Гидравлический расчет газопровода высокого давления. Расчет истечения природного газа высокого давления через сопло Лаваля, воздуха (газа низкого давления) через щелевое сопло. Дымовой тракт и тяговое средство. Размер дымовой трубы, выбор дымососа.

    курсовая работа [657,8 K], добавлен 26.10.2011

  • Схема добычи, транспортировки, хранения газа. Технологический процесс закачки, отбора и хранения газа в пластах-коллекторах и выработках-емкостях. Базисные и пиковые режимы работы подземных хранилищ газа. Газоперекачивающие агрегаты и их устройство.

    курсовая работа [3,8 M], добавлен 14.06.2015

  • Периоды разработки газовых месторождений. Системы размещения скважин по площади газоносности месторождений природных газов. Разработка газоконденсатных, газогидратных и многопластовых газовых месторождений. Коэффициенты конденсатоотдачи, компонентоотдачи.

    реферат [55,4 K], добавлен 17.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.