Титан и его применение в различных отраслях промышленности
Физические, химические свойства титана и его сплавов. Перспективные сферы применения титана, соединений на его основе. Производство из титана корпусов портативных компьютеров, мобильных телефонов, плазменных телевизоров, другого электронного оборудования.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 16.02.2019 |
Размер файла | 20,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ТИТАН И ЕГО ПРИМЕНЕНИЕ В РАЗЛИЧНЫХ ОТРАСЛЯХ ПРОМЫШЛЕННОСТИ
Лысенко М.П., Тлехусеж М.А.
Аннотация
Рассмотрены физические и химические свойства титана и его сплавов. Проанализированы области применения металла и сплавов в различных отраслях промышленности. Выявлены перспективные сферы применения титана и соединений на его основе.
Ключевые слова: титан, сплавы титана, применение титана и его сплавов.
Abstract
Physical and chemical properties of titanium and its alloys are considered. The fields of application of metal and its alloys in various industries are analyzed. Perspective spheres of titanium and titanium-based compounds application are revealed.
Keywords: titanium, titanium alloys, the use of titanium and its alloys.
Титан (Ti) - химический элемент с порядковым номером 22. Принадлежит к четвертой группе периодической таблицы химических элементов, находится в четвёртом периоде. Атомная масса элемента 47,867 а.е.м. Простое вещество титан -- лёгкий прочный металл серебристо-белого цвета, который плавится при температуре 3200 °C и закипает при температуре 3300 °C.
Титан - один из самых популярных элементов. Это название маркетологи дают многим продуктам, независимо от того, действительно ли в них содержится титан. Металл является символом прочности. Он абсолютно устойчив к коррозии и не вызывает аллергию. Однако, это дорогой металл, хотя его руды легкодоступны. Диоксид титана есть везде, например в титановых белилах - одной из самых распространенных белых красок. Диоксид титана добавляют и в краски других цветов для обеспечения матовости и непрозрачности покрытия [1].
Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном [2].
Основными титановыми рудами являются ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5). Наиболее богатыми по содержанию диоксида титана являются рутилсодержащие руды (93-96 %). Ильменитовые содержат 44-70 % диоксида титана, а концентраты из лейкоксеновых руд могут включать до 90 % TiO2. По данным на 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год [3].
Россия обладает вторыми в мире, после Китая, запасами титана. Минеральносырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 % [4].
Цена титана достаточно высокая. Объясняется это тем, что его очень сложно извлекать из добытой руды. Если принять стоимость титана в концентрате за единицу, то стоимость готовой продукции - титанового листа в сотни раз больше. Объясняется это высоким сродством титана многим элементам и прочностью химических связей в его природных соединениях. Отсюда - сложности технологии. Магниетермический способ производства титана разработан в 1940 г. американским учёным У. Кролем [5].
Существует большое количество титановых сплавов. TITAN GRABE 1-4: технически чистый титан, не имеющий никаких примесей, высокого уровня устойчивости к коррозии, включая самые агрессивные среды применения. Эта характеристика дала возможность очень широкого применения чистого титана. Очень тоненькая плёночка оксида около 10 нм, незаметная обычному зрению, быстро покрывает сам материал при реакции с влагой или кислородом. Эдакое автовосстановление поврежденных участков.
TITAN GRABE 5: это самый широко применяемый сплав титана с алюминием (6 %), железом (максимум 0,25 %), ванадием (4 %) и кислородом (максимум 0,2 %). Дополнительные элементы увеличивают прочность сплава, не нарушая термодинамические характеристики и жесткость чистого титана, а вот в показателе устойчивости к коррозии он немного уступает чистому титану, но очень успешен в таких средах, как морская вода, растворы хлора, кислоты. По сути, Titan Grade 5 - это основа 70 % всего объёма выплавляемых титановых сплавов [6].
Титан является универсальным конструкционным материалом, нашедшим свое применение в авиастроении. Например, титановый корпус самолета при полете достигает скорости, намного большей, чем скорость звука. При этом нагревается до температуры свыше 300 °C и не плавится.
Целесообразно применение титана в таких отраслях промышленности, как пищевая, нефтяная, электротехническая. Например, говоря о пищевой промышленности невозможно не отметить, что титан очень стойкий в органических кислотах, в рассолах, маринадах, острых соусах, в пищевых соках, спиртах, во всевозможных приправах. Исследования коррозионной стойкости титановых сплавов продемонстрировали, что титан успешно может найти применение в консервном, чайном, эфиромасличном, сахарном, мясо-молочном, кондитерском, рыбоперерабатывающем, хлебопекарном, пивоваренном, солевом и в других пищевых производствах. [7] В электротехнической промышленности металл применяется для бронирования кабелей, чему способствует его удельная прочность, высокое электрическое сопротивление и немагнитные свойства. Этот металл активно применяют в медицинской сфере при изготовлении медицинских инструментов, пластинок и винтов для крепления костей. Он может находиться в организме животного несколько месяцев, чему способствует образование на титановой пластине внутри организма мышечной ткани. Также титан широко используется в стоматологии.
Титан широко применяется в металлургии в роли легирующего элемента в производстве жаростойких и нержавеющих сталей. Титан добавляют в медь, алюминий, никель с целью повышения прочности последних. Двуокись титана применяется в производстве сварочных электродов, четыреххлористый титан используется в военном деле для организации дымовых завес. В радиотехнике и электротехнике применяется порошкообразный титан в роли поглотителя газов [8].
В производстве потребительской электроники титан также играет важную роль. Из TITAN GRABE 1 производят корпусы портативных компьютеров, мобильных телефонов, плазменных телевизоров и другого электронного оборудования. Из титана изготавливают часы и акустическое оборудование. Такая область применения металла обусловлена его легкостью, прочностью и привлекательным внешним видом готовых изделий. титан сплав оборудование компьютер
Различные сплавы титана находят широкое применение в строительстве. В первую очередь - это сплав титана с цинком, который отличается высокими механическими показателями, устойчивостью к коррозии, высокой жесткостью и пластичностью. В составе сплава содержится до 0,2 % легирующих добавок, выполняющих функции модификаторов структуры. Благодаря алюминию и меди обеспечивается требуемая пластичность. Кроме того, использование меди позволяет повысить предельную прочность материала на растяжение, а сочетание химических элементов способствует снижению коэффициента расширения. Сплав применяется и для производства длинных лент и листов с хорошими эстетическими характеристиками и безопасностью для человека и окружающей среды. Кроме того, этот сплав хорош для изготовления нестандартных архитектурных элементов (куполов, фронтонов, шпилей), декоративных изделий (водостоков, отливов, кровельных коньков и т.д.). Сплав титана с цинком не имеет проблем в пайке, отличается большим сроком службы и способностью самовостанавливаться. Например, несущественные царапины через время устраняются сами по себе [9]. Однако, из-за высокой стоимости металл титан в строительстве применяют только для уникальных сооружений (например, памятник космонавтам у станции метро "ВДНХ" в Москве).
Еще одно соединение - нитрид титана, используется как жаропрочный материал, в частности, из него делают тигли для плавки металлов в бескислородной атмосфере. В металлургии это соединение встречается в виде относительно крупных (единицы и десятки микрон) неметаллических включений в сталях, легированных титаном [10]. Но в основном применяется в качестве износостойкого и декоративного покрытия. Изделия, покрытые им, по внешнему виду похожи на золото и могут иметь различные оттенки, в зависимости от соотношения металла и азота в соединении. Нитрид титана используется для создания износостойких покрытий металлорежущего инструмента. Нанесение покрытия из нитрида титана производится в специальных камерах термодиффузионным методом. При высокой температуре титан и азот реагируют вблизи поверхности покрываемого изделия и диффундируют в саму структуру металла [11].
Чтобы улучшить свойства титановых сплавов, их легируют. Легирующие элементы, входящие в состав промышленных титановых сплавов, образуют с титаном твердые растворы замещения и изменяют температуру аллотропического превращения. Элементы, повышающие температуру превращения, способствуют стабилизации б-твердого раствора и называются б-стабилизаторами, это - алюминий, кислород, азот, углерод. Элементы, понижающие температуру превращения, способствуют стабилизации в-твердого раствора и называются в-стабилизаторами, это - молибден, ванадий, хром, железо. Кроме б- и в- стабилизаторов различают нейтральные упрочнители: олово, цирконий, гафний. В соответствии с влиянием легирующих элементов титановые сплавы при нормальной температуре могут иметь структуру б- или б+в.
Сплавы на основе титана можно подвергать всем видам термической, химикотермической и термомеханической обработки. Упрочнение титановых сплавов достигается легированием, наклепом, термическим воздействием. Часто титановые сплавы легируют алюминием, он увеличивает прочность и жаропрочность, уменьшает вредное влияние водорода, увеличивает термическую стабильность. Для повышения износостойкости титановых сплавов их подвергают цементации или азотированию [12].
Перспективной сферой использования сплавов из титана считается сверхглубокое бурение. Для изучения и добычи подземных богатств есть необходимость проникнуть глубоко под землю - свыше 15 тысяч метров. Буровые трубы из алюминия, например, разорвутся из-за собственной тяжести, и только сплавы из титана могут достигнуть действительно большой глубины [13].
Титан является негорючим строительным материалом. Экологический аспект использования строительных материалов сегодня имеет важное значение. Ученые из Германии провели исследования и доказали, что металл титан и его сплавы безопасны для человека и природы, не вызывают аллергии и мало подвержены коррозии [14].
Все вышеперечисленное факты доказывают, что титан - прочный и лёгкий, универсальный металл. Его называют «металлом будущего». Титан является экологически безопасным и мало подверженным коррозии металлом, поэтому титан и его сплавы находят широкое применение в различных отраслях легкой и тяжелой промышленности.
Список литературы
1. Грей Т. Элементы: путеводитель по периодической таблице / Е. Грэй; пер. с англ. Г. Эрлиха. - М.: АСТ: CORPUS, 2014. - 240 с.
2.Открытие титана. URL: http :// www . chem . msu . su/ rus/ history / element / Ti. html (дата обращения 23.12.18).
3.Титановые руды. URL:http://www.petropavlovsk-io.ru/rus/useful-information/titan/2007/01/23/titan_264.html (дата обращения 26.11.18.)
4. Добыча титана. URL: https://dic.academic.ru/dic.nsf/ruwiki/494 (дата обращения 26.11.18)
5. Цена титана. URL: http://titanen.ru/interesno_o_titane (дата обращения 23.12.18).
6. Сплавы титана. URL: http :// metizmsk . ru/ blog / titan -i- ego - primenenie - krepezh - iz- titana (дата обращения 13.12.18)
7. Применение титана в пищевой промышленности. URL:https://aviatitan.net/108-primenenie-titana-v-pischevoy-promyshlennosti.html (дата обращения 24.12.18)
8. Применение титана. URL:https://www.etalonstal.ru/statii/titan-i-ego-splavy-svoystva-i-sfera-primeneniya/(дата обращения 23.12.18).
9. Свойства сплава титана с цинком. URL:protown.ru/information/hide/5616.html (дата обращения 26.11.18).
10. Нитрид титана. URL: https :// ru. wikipedia . org / wiki (дата обращения 13.12.18).
11. Применение нитрида титана как декоративного покрытия. URL : moyasvarka . ru/ izdeliya / titan - svoistva -i- primenenie . html (дата обращения 26.11.18).
12. Легирование титановых сплавов. URL: http :// www . mtomd . info / archives /1683 (дата обращения 23.12.18).
13. Применение титана в сверхглубоком бурении. URL:titanchik.ru/about/42-sfery-primeneniya-titana.html ( дата обращения 26.11.18).
14. Использование титана с экологической точки зрения. URL: www . metotech . ru/ titan - opisanie . htm (дата обращения 13.12.18)
Размещено на Allbest.ru
...Подобные документы
Титан и его распространенность в земной коре. История происхождения титана и его нахождение в природе. Сплавы на основе титана. Влияние легирующих элементов на температуру полиморфного превращения титана. Классификация титана и его основных сплавов.
реферат [46,4 K], добавлен 29.09.2011Процесс получения титана из руды. Свойства титана и область его применения. Несовершенства кристаллического строения реальных металлов, как это отражается на их свойствах. Термическая обработка металлов и сплавов - основной упрочняющий вид обработки.
контрольная работа [2,3 M], добавлен 19.01.2011Устройство работы доменной печи. Технология производства титана. Свойства титана и область его применения. Углеродистые конструкционные стали обыкновенного качества. Назначение и область применения станков строгальной группы. Лакокрасочные материалы.
контрольная работа [202,6 K], добавлен 14.03.2014Общая характеристика и механические свойства титана как металла. Оценка главных преимуществ и недостатков титановых сплавов, сферы их практического применения и значение в кораблестроении. Батискаф "Алвин": история проектирования и построения, проблемы.
реферат [161,2 K], добавлен 19.05.2015Физико-химические свойства титана и технология его производства. Карботермическая и алюмотермическая выплавка ферротитана. Достоинства и недостатки способов ведения плавки. Титан высокой чистоты как конструкционный материал. Применение жидкого алюминия.
лекция [306,6 K], добавлен 24.11.2013Содержание титана в земной коре. Состав титановых концентратов, полученных из титановых руд, находящихся на территории Казахстана. Современная технология получения титанового шлака и металлического титана. Особенности очистки четырёххлористого титана.
реферат [4,8 M], добавлен 11.03.2015Рассмотрение основных факторов, влияющих на технологические свойства титана и его сплавов. Определение свойств титановых сплавов. Оценка свойств материала для добычи нефти и газа на шельфе. Изучение практики использования в нефтегазовой промышленности.
реферат [146,1 K], добавлен 02.04.2018Сфера применения карбидов титана и хрома. Состав и технологические характеристики исходных продуктов и композиционных порошков на их основе. Скорость окисления образцов. Микроструктура плазменного покрытия после изотермической выдержки в течение 28 часов.
статья [211,0 K], добавлен 05.08.2013Методы порошковой металлургии. Повышение износостойкости покрытий, полученных методом высокоскоростного воздушно-топливного напыления, из самофлюсующихся сплавов на никелевой основе путём введения в состав исходных порошков добавок диборида титана.
статья [2,3 M], добавлен 18.10.2013Общие положения, классификация и области применения сплавов на основе интерметаллидов. Материалы с эффектом памяти формы. Сплавы на основе алюминидов титана. Сплавы на основе алюминидов никеля. Области использования сплавов на основе интерметаллидов.
курсовая работа [1,1 M], добавлен 02.06.2014Промышленное значение цветных металлов: алюминий, медь, магний, свинец, цинк, олово, титан. Технологические процессы производства и обработки металлов, механизация и автоматизация процессов. Производство меди, алюминия, магния, титана и их сплавов.
реферат [40,4 K], добавлен 25.12.2009Понятие о металлах, особенности их атомного строения, физико-механические, химические и технологические свойства. Сплавы золота, серебра, титана, платины и палладия, нержавеющая сталь; их характеристики и применение в ортопедической стоматологии.
презентация [433,4 K], добавлен 01.12.2013Обзор технологий и патентной литературы по восстановлению тетрахлорида титана магнием. Металлургический, конструктивный, тепловой, электрический расчет аппарата восстановления. Контроль и автоматизация технологических процессов, безопасность проекта.
дипломная работа [596,3 K], добавлен 31.03.2011Обоснование применения новых полуфабрикатов из титановых сплавов, как наиболее перспективных конструкционных материалов в области стационарной атомной энергетики. Опыт применения титана и его сплавов для конденсаторов отечественных и зарубежных АЭС.
дипломная работа [11,7 M], добавлен 08.01.2011Повышение износостойкости плазменных покрытий из эвтектических самофлюсующихся сплавов, путём введения в состав серийного материала мелкодисперсной добавки диборида титана. Зависимость количества и размера образующихся фаз от количества вводимой добавки.
статья [1,9 M], добавлен 05.08.2013Исследование структуры, фазового состава и свойств покрытий системы Ti–Si–B, полученных электронно-лучевой наплавкой в вакууме и методом электронно-лучевого оплавления шликерной обмазки. Получение и перспективы применения МАХ-материалов на основе титана.
дипломная работа [4,0 M], добавлен 14.06.2013Анализ метода повышения радиационной стойкости порошка диоксида титана путем модифицирования его нанопорошком диоксида титана. Исследование спектров диффузного отражения, зависимость изменения интегральной чувствительности порошка от концентрации TiO2.
дипломная работа [4,2 M], добавлен 21.08.2013Описание технологии производства чугуна и стали: характеристика исходных материалов, обогащение руд, выплавка и способы получения. Медь, медные руды и пути их переработки. Технология производства алюминия, титана, магния и их сплавов. Обработка металлов.
реферат [101,6 K], добавлен 17.01.2011Двухкарбидные твердые сплавы. Основные свойства и классификация твердых сплавов. Метод порошковой металлургии. Спекание изделий в печах. Защита поверхности изделия от окисления. Сплавы на основе высокотвердых и тугоплавких карбидов вольфрама и титана.
контрольная работа [17,9 K], добавлен 28.01.2011Аустенитные и азотосодержащие коррозионно-стойкие стали: способы получения, технология производства, выплавка, термомеханическая обработка, основные свойства. Метод электрошлакового переплава металлических электродов в водоохлаждаемый кристаллизатор.
дипломная работа [2,7 M], добавлен 19.06.2011