Фрактальный анализ поровой структуры дисперсно-наполненных мелкозернистых бетонов

Пористые материалы - своеобразный класс неупорядоченных сред, особенности которых затрудняют применение традиционных методов описания их структуры. Анализ связи между периметром и площадью пор состава дисперсно-наполненного мелкозернистого бетона.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 01.03.2019
Размер файла 103,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Пористые материалы представляют собой своеобразный класс неупорядоченных сред, особенности которых затрудняют применение традиционных методов описания их структуры. Для исследования таких материалов оказалось эффективным привлечение аппарата фрактальной геометрии, позволяющего адекватно описать параметры строения и связать их с физико-механическими характеристиками [1 - 4].

До недавнего времени структуру пористых материалов связывали, в основном, с плотностью и размером пор. Однако устойчивых закономерностей связи структуры со свойствами установить не удалось [5]. Согласно концепции фракталов, в качестве параметра структуры пористого материала следует принять фрактальную размерность, определяемую распределением пор по размерам.

В последнее время идеи фрактальной геометрии находят все большее применение при количественной оценке параметров реальных объектов [2 - 10]. К настоящему времени известно множество экспериментальных методов определения фрактальной размерности, в том числе метод покрытия квадратами, метод Херста (метод нормированного размаха), метод вертикальных сечений, метод островов среза, фурье-анализ профилей и т. д. [3, 4, 6].

Классическим для определения фрактальной размерности является пример, где в качестве фрактальной системы рассматривают непрерывную линию, являющуюся берегом реки, озера или моря [6]. Данный метод заключается в измерении длины линии различными по размерам звеньев ломаными. По мере уменьшения звеньев длина ломаной, которая аппроксимирует рассматриваемую линию, будет возрастать. Измеренная длина описывается приближенной формулой:

, (1)

где - размер звена ломаной линии; - постоянный коэффициент; - фрактальная размерность.

Достаточно широкое развитие при определении фрактальной размерности получил метод покрытия квадратами.

В общем случае при использовании данного метода требуется покрыть фрактальное множество -мерными блоками с длиной ребра , произвести подсчет их числа , построить график в двойных логарифмических координатах - и определить по углу наклона величину фрактальной размерности:

. (2)

Общая идея метода островов среза основывается на изучении соотношения площади и периметра островов, образующихся при пересечении исследуемой поверхности горизонтальными плоскостями. Известно [6], что для каждого семейства плоских евклидовых фигур одинаковой формы отношение периметра к квадратному корню из охватываемой площади не зависит от размера фигуры.

Так, для окружностей, квадратов и равносторонних треугольников указанное отношение соответственно равно и . Для фрактальных фигур данное выражение имеет вид:

, (3)

где - фрактальная размерность очертаний островов среза; - длина используемого для подсчета площади и периметра эталона.

При использовании метода островов среза соотношение периметра и площади описывается уравнением [6]:

, (4)

где - коэффициент пропорциональности.

Это соотношение выполняется для любого эталона длины , достаточного, чтобы удовлетворительно обмерять самый малый из островов.

Необходимо также отметить, что свойство точного самоподобия характерно лишь для регулярных фракталов. В случае исследования случайных фракталов, что характерно для реальных структур, увеличенная часть фрактала не точно идентична исходному фрагменту, однако их статистические характеристики совпадают.

Опыт применения методов фрактального исчисления показал [3, 4, 6], что разработка алгоритмов и путей их программной реализации очень важна для получения корректных результатов при минимальных временных затратах. Установлено [3, 4], что для оценки поровой структуры цементных композитов наиболее приемлемым является метод островов среза. Предлагается для реализации данного метода использовать программный комплекс (ПК) «Идентификация и анализ пористости строительных материалов [11]», позволяющий определять суммарную площадь пор исследуемого композита, а также распределение пор по размерам. При использовании данной методики с помощью ПК подсчитывается число пикселей, занятых каждой порой. Размер ячейки (пикселя), отождествляемый с размером клетки при использовании метода покрытия квадратами, определяется по формуле:

, (5)

где - величина разрешения при сканировании.

Величину фрактальной размерности определяют по углу наклона графика изменения площадей пор от их периметров (рис. 1), построенного в двойных логарифмических координатах . Для определения периметра пор была разработана дополнительная надстройка к указанному выше ПК.

Рис. 1. Связь между периметром и площадью пор состава дисперсно-наполненного мелкозернистого бетона

Из анализа полученных данных видно (рис. 1) , что связь между периметром и площадью пор, полученных при сканировании исследуемых поверхностей с различным разрешением (2400, 4800 и 9600 dpi), описывается линейной зависимостью с коэффициентом детерминации Полученные результаты подтверждают перспективность использования предлагаемого подхода для определения фрактальной размерности поровой структуры, в том числе дисперсно-наполненных мелкозернистых бетонов.

Литература

дисперсный пористый мелкозернистый бетон

1. Кучерявский С.В. Применение методов фрактального анализа для исследования структуры пористых металлических материалов: дис. ... канд. техн. наук / С.В. Кучерявский. - Барнаул, 2001. - 223 с.

2. Фролкин О.А. Компьютерное моделирование и анализ структуры композиционных материалов: дис. ... канд. техн. наук / О.А. Фролкин. - Саранск, 2000. - 223 с.

3. Низина Т.А. Защитно-декоративные покрытия на основе эпоксидных и акриловых связующих. / Т.А. Низина. - Саранск: Изд-во Мордов. ун-та, 2007. - 258 с.

4. Низина Т.А. Экспериментально-теоретические основы прогнозирования и повышения долговечности защитно-декоративных покрытий: дис. ... д-ра техн. наук / Т.А. Низина.Саранск, 2007. - 408 с.

5. Синергетика и фракталы в материаловедении / В. С. Иванова, А. С. Баланкин, И.Ж. Бунин, А.А. Оксогоев. - М.: Наука, 1994. - 384 с.

6. Федер Е. Фракталы / Е. Федер; пер. с англ. - М.: Мир, 1991. - 254 с.

7. Фрактальный анализ структуры наполненных эпоксидных композитов / В.П. Селяев, Т.А. Низина, Ю.А. Ланкина, В.В. Цыганов // Известия ТулГУ. Серия: Строительные материалы, конструкции и сооружения. Вып. 10. - Тула: Изд-во ТулГУ, 2006. - С. 123-128.

8. Селяев В.П. Фрактальный анализ структуры наполненных полимерных композитов / В.П. Селяев, Т.А. Низина, Ю.А. Ланкина // Известия вузов. Строительство. 2007. - № 4. - С. 43-48.

9. Фрактальные методы анализа структуры композиционных строительных материалов / В.П. Селяев, Ю.М. Баженов, Т.А. Низина и др. // Долговечность строительных материалов, изделий и конструкций: материалы Всерос. науч.-техн. конф. - Саранск: Изд-во Мордов. ун-та, 2014. - С. 158-175.

10. Низина Т.А. Фрактальный анализ кривых деформирования композиционных строительных материалов при сжатии / Т.А. Низина, А.В. Балбалин, А.С. Балыков / Огарёв-online. Раздел «Технические науки». 2015. - Вып. 13.

11. Идентификация и анализ пористости строительных материалов / В.П. Селяев, Т.А. Низина, О.А. Фролкин и др. // Свидетельство об официальной регистрации программы для ЭВМ № 2006610364 от 24.01.2006 г. в Роспатенте по заявке № 2005613072 от 24.11.2005 г.

Размещено на Allbest.ru

...

Подобные документы

  • Переваги дисперсно-зміцнених композиційних матеріалів над традиційними сплавами. Розрахунок розміру часток по електронно-мікроскопічним знімкам. Структура бінарних дисперсно-зміцнених композитів на основі міді вакуумного походження у вихідному стані.

    дипломная работа [6,3 M], добавлен 16.06.2011

  • Материалы для производства жаростойких бетонов. Требования к материалам для изготовления жаростойких бетонов. Виды заполнителей для жаростойких бетонов, нормативные документы и рекомендуемая область применения. Расчет состава жаростойкого бетона.

    реферат [61,5 K], добавлен 13.10.2010

  • Номенклатура изделий на основе проектируемого бетона. Исходные материалы для бетона и их характеристика. Структура бетона и физико-химические процессы, происходящие при ее формировании. Расчет состава керамзитобетона поризованной и плотной структуры.

    курсовая работа [6,3 M], добавлен 06.08.2013

  • Цементный камень, его структура и свойства. Технологическая схема производства тротуарной плитки из мелкозернистого бетона, его материальный расчет, подбор основного и вспомогательного оборудования. Теплотехнический расчет ямной пропарочной камеры.

    дипломная работа [55,6 K], добавлен 17.04.2015

  • Технико-экономические преимущества бетона и железобетона. Основные недостатки бетона как строительного материала. Виды добавок для бетонов. Материалы, необходимые для приготовления тяжелого бетона. Реологические и технические свойства бетонной смеси.

    реферат [19,2 K], добавлен 27.03.2009

  • История возникновения легких бетонов. Их классификация в зависимости от структуры, вида вяжущего и пористости заполнителей и области применения. Сырьевые материалы для изготовления легкого бетона. Основные технологические процессы и оборудование.

    реферат [725,3 K], добавлен 13.04.2009

  • Классификация, разновидности и составляющие материалы асфальтовых бетонов. Технология производства асфальтового бетона. Анализ вредных и опасных производственных факторов. Требования безопасности и расчет параметров производственного оборудования.

    курсовая работа [905,0 K], добавлен 08.01.2009

  • Материалы для электропечестроения. Огнеупорные растворы, бетоны, набивные массы и обмазки. Пористые огнеупоры. Теплоизоляционные и жароупорные материалы. Дешевизна и недефицитность. Материалы для нагревательных элементов электрических печей сопротивления.

    реферат [66,1 K], добавлен 04.01.2009

  • Структура композиционных материалов. Характеристики и свойства системы дисперсно-упрочненных сплавов. Сфера применения материалов, армированных волокнами. Длительная прочность КМ, армированных частицами различной геометрии, стареющие никелевые сплавы.

    презентация [721,8 K], добавлен 07.12.2015

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Подбор номинального состава бетона. Определение расхода крупного заполнителя, цемента, воды, песка. Коэффициент раздвижки зёрен для пластичных бетонных смесей. Подбор производственного состава бетона и расчёт материалов на замес бетоносмесителя.

    контрольная работа [276,8 K], добавлен 05.06.2019

  • Биоповреждения цементных композитов. Методы защиты от биоповреждений. Анализ себестоимости производства бетонов. Анализ потерь от биоповреждений цементных композитов под действием бактерий и плесневых грибов. Технология получения биоцидных бетонов.

    курсовая работа [185,7 K], добавлен 14.09.2015

  • Особенности производства различных видов бетонных и железобетонных изделий. Направления вторичного использования цементного и асфальтового бетонов. Рациональный выбор оборудования для переработки некондиционного бетона и железобетона, схема утилизации.

    курсовая работа [894,3 K], добавлен 14.10.2011

  • Изготовление и применение ячеистого бетона. Номенклатура продукции, технические требования. Технология производства пенобетона. Режим работы цеха, его производительность. Сырьевые материалы, подбор состава пенобетона. Выбор технологического оборудования.

    курсовая работа [997,5 K], добавлен 23.03.2011

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Структура доэвтектоидных и заэвтектоидных сталей при различных температурах. Фазовые превращения стали. Особенности возникновения структуры доэвтектоидной стали. Основные факторы, от которых зависит микроструктура стали. Полный и неполный отжиг.

    реферат [2,1 M], добавлен 29.01.2014

  • Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.

    доклад [277,6 K], добавлен 26.09.2009

  • Основные физико-механические свойства древесины. Процесс вулканизации синтетических каучуков. Технология получения бетонов – искусственных камневидных материалов. Материалы на основе пластмасс и их применение. Расшифровка марки стали 50А, чугуна ЧХ28.

    контрольная работа [31,9 K], добавлен 02.02.2015

  • Химический состав воды-среды. Выбор материала для бетона. Оценка агрессивности воды-среды. Использование эпоксидно-дегтевой гидроизоляции. Определение водоцементного соотношения и оптимального зернового состава заполнителей. Расчет тепловыделения.

    курсовая работа [1,4 M], добавлен 16.08.2012

  • Определение гранулометрического состава природного песка. Нахождение частных и полных остатков. Размеры отверстий сит. Построение графика зернового состава песка. Анализ полученных результатов исследования. Пригодность песка для приготовления бетона.

    лабораторная работа [233,3 K], добавлен 22.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.