Использование промышленных минеральных отходов в качестве наполнителей полиэфирной матрицы

Исследование влияния наполнителя на скорость отверждения композиции. Анализ ИК-спектров фосфогипса, полиэфирной смолы и КМ. Влияние размера частиц фосфогипса и содержания стеарата кальция на физико-механических характеристики фоспофипсопластика.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 02.03.2019
Размер файла 321,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

УДК 691.585

Саратовский государственный технический университет имени Гагарина Ю.А.

ИСПОЛЬЗОВАНИЕ ПРОМЫШЛЕННЫХ МИНЕРАЛЬНЫХ ОТХОДОВ В КАЧЕСТВЕ НАПОЛНИТЕЛЕЙ ПОЛИЭФИРНОЙ МАТРИЦЫ

Кучеренко Е.В., Арзамасцев С.В., Щербаков А.С.

Рассмотрены вопросы использования минеральных промышленных отходов - фосфогипса, кирпичной пыли, зольных микросфер в качестве наполнителей полиэфирной матрицы. Установлены зависимости физико-механических характеристик композита от вида и количества наполнителя, определен характер взаимодействия между наполнителем и полимерной матрицей.

Ключевые слова: фосфогипс, кирпичная пыль, зольные микросферы, наполнитель, полиэфирная смола, композиционный материал, полимерная матрица.

The article deals with the use of mineral industrial waste - phosphogypsum, brick dust, ash microspheres as fillers of a polyester matrix. The dependences of the physico-mechanical characteristics of the composite on the type and amount of filler are determined, the nature of the interaction between the filler and the polymer matrix is determined.

Keywords: phosphogypsum, brick dust, ash microspheres, filler, polyester resin, composite material, polymer matrix

Современные экономические кризисные условия требуют создания новых материалов не только с высокими характеристиками, но и низкой стоимостью. Большие возможности повышения характеристик и снижения стоимости КМ имеются в применении недорогих и эффективных наполнителей, в том числе минеральных, являющихся различного рода отходами производств.

Объектами исследования служили отечественная полиэфирная смола марки КАМФЭСТ 0102 (производитель ООО “Пермские полиэфиры”), часто использующийся в качестве наполнителя промышленный микротальк, отход производства красного керамического кирпича - кирпичная пыль, отход производства фосфорных удобрений - фосфогипс-дигидрат, бытовой отход - измельченный в шаровой мельнице бой стекла, образующиеся при сгорании мелких частиц каменного угля на ГРЭС зольные микросферы.

Установлено, что выбранные наполнители оказывают различное влияние на скорость отверждения композиции (рис. 1). Например, фосфогипс-дигидрат и кирпичная пыль уменьшают время отверждения, а остальные наполнители в меньшей (измельченное стекло) или большей степени (зольные микросферы) увеличивают его.

В полученных КМ отмечается изменение начала температуры деструкции и смещение температуры максимума пика тепловыделения (табл. 1).

Все это в совокупности показывает, что между компонентами системы “наполнитель - полимерная матрица” возможно взаимодействие. Изучение природы этого взаимодействия проводили методом ИК-спектроскопии (рис. 2).

Рис. 1 Кривые отверждения исходной смолы и композиций (1:1) различного состава: 1 - смола КАМФЭСТ-0102 без наполнителя; 2 - КАМФЭСТ-0102 + фосфогипс-дигидрат; 3 - КАМФЭСТ-0102 + кирпичная пыль; 4 - КАМФЭСТ-0102 + измельченный бой стекла; 5 - КАМФЭСТ-0102 + зольные микросферы

Таблица 1

Изменения температур начала деструкции и экзотермического пика полученных КМ

Исходный

+ 80% микротальк

+ 80% измельченное стекло

+ 80% кирпичная пыль

Температура начала деструкции, 0С

315

320

325

290

Температура экзопика, 0С

380

365

360

380

Рис. 2. Результаты ИКС: 1 - полиэфирная смола; 2 - ФГД; 3 - композиционный материал на их основе

Анализ ИК-спектров фосфогипса, полиэфирной смолы и КМ на их основе показывает, что характерные для сульфатов кальция интенсивная полоса поглощения при 1154,8 см-1 и значительно более слабые дуплеты при 673,5 и 600,5 см-1 видны и в спектре композиционного материала. Один из пиков дуплета смещен с 673,5 до 661,0 см-1. Кроме того, в спектре КМ полоса поглощения при 3536,6 см-1, имеющаяся в спектре фосфогипса и характерная для гидроксогрупп, сместилась в область 3551,1 см-1. Это показывает участие сульфогрупп фосфогипса и протонизированных атомов водорода в полиэфире, а также и протонизированного водорода гидроксогрупп фосфогипса и электроотрицательного кислорода в полиэфирной смоле в образовании водородных связей, что доказывается смещением пика валентных колебаний связи С-O с 1256,2 см-1 в исходной смоле до 1286,4 см-1 в КМ (рис. 2).

В ИК-спектре КМ появилась новая узкая, средней интенсивности, полоса поглощения при 964,4 см-1, обусловленная валентными колебаниями углеводородного скелета в длинных полимерных цепях сшитого полиэфирного композита.

С экономической и экологической точек зрения интерес представляет создание высоконаполненных фосфогипсопластиков. Для получения не склонного к агломерации мелкодисперсного наполнителя, фосфогипс обрабатывали стеаратом кальция, что позволяет добиться максимальной степени наполнения и существенно снизить стоимость композита.

Для получения КМ с повышенными прочностными характеристиками возможно использование методов математического моделирования и оптимизации состава. В данной работе использовался градиентный метод оптимизации состава. Был проведен полный факторный эксперимент, в котором в качестве параметров оптимизации были выбраны ударная вязкость (Y1), разрушающее напряжение при растяжении и изгибе (соответственно Y2 и Y3) и модуль упругости (Y4), а в качестве факторов - содержание фосфогипса в композиции (Х1), содержание стеарата кальция (Х2) и размер частиц наполнителя (Х3)

В результате проведенных расчетов были получены следующие уравнения регрессии:

фосфогипс стеарат кальций спектр

Анализ полученных уравнений регрессии показывает значительное влияние размера частиц фосфогипса и содержания стеарата кальция на физико-механические характеристики фосфогипсопластика. В связи со сложностью пошагового регулирования размеров частиц фосфогипсового наполнителя при оптимизации, в качестве базового фактора было выбрано содержание стеарата кальция в составе композиции (X2), а в качестве критерия оптимальности выбрали ударную вязкость (Y1).

Таблица 2

Результаты градиентного метода оптимизации состава

№ опыта

X1,

%

X2,

%

Y1, кДж/м2

Y2, МПа

Y3, МПа

Y4, МПа

1

58

3,0

1,0

7,6

20,0

3265

2

60

3,5

1,2

8,3

22,9

3425

3

62

4,0

1,4

9,1

23,0

3580

4

64

4,5

1,4

9,3

23,9

3620

5

66

5,0

1,5

9,5

24,2

3780

6

68

5,5

1,5

9,6

24,7

4065

7

70

6,0

1,6

10,1

25,3

4060

8

72

6,5

1,4

9,2

23,1

3750

Оптимальной является композиция №7, которая имеет самые высокие показатели ударной вязкости (Y1), разрушающего напряжения при растяжении (Y2) и изгибе (Y3). Дальнейшее увеличение содержания фосфогипса и стеарата кальция нецелесообразно, поскольку происходит снижение прочностных характеристик материала.

Таким образом, использование фосфогипса в качестве эффективного наполнителя при получении ПКМ на основе ненасыщенной полиэфирной матрицы представляется достаточно перспективным и экономически обоснованным.

Список литературы

Научно-технологические принципы создания полимерматричных композитов на основе приоритетных наполнителей с заданным комплексом свойств: монография / Устинова Т.П., Панова Л.Г., Кардаш М.М., Кадыкова Ю.А., Левкина Н.Л., Плакунова Е.В., Бурмистров И.Н. Энгельс: Изд-во ЭТИ (филиал) СГТУ имени Гагарина Ю.А., 2014. 111 с.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.