Энергоэффективность шахтных и карьерных электровозов
Проблемы повышения энергоэффективности рудничных электровозов карьерных тяговых агрегатов. Применение контактно-аккумуляторных электровозов, позволяющее снизить количество аккумуляторных батарей и отказаться от двухступенчатой схемы локомотивной откатки.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 30.04.2019 |
Размер файла | 18,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Национальный исследовательский технологический университет "МИСиС"
ЭНЕРГОЭФФЕКТИВНОСТЬ ШАХТНЫХ И КАРЬЕРНЫХ ЭЛЕКТРОВОЗОВ
ст. Карпухин А.П. ст. Андросов И.В.,
ст. Демин В.Э., доц. Степаненко В.П.
г. Москва, Россия
Энергоэффективность рудничных электровозов карьерных тяговых агрегатов не соответствует современным требованиям и в настоящее эта проблема еще далека от своего решения. Ускорить ее решение возможно различными путями: совершенствованием систем электропривода, электроснабжения, управления, внедрением комбинированных электровозов, современных накопителей электрической энергии, принудительным охлаждения тяговых двигателей, заменой тяговых коллекторных двигателей постоянного тока бесколлекторными двигателями переменного тока [1,2,3]. На подземном транспорте принудительное воздушное охлаждение по сравнению с естественным увеличивает мощность тяговых двигателей в часовом режиме на 29%, в длительном на 56%. Система дистанционного управления позволяет машинисту электровоза одному грузить вагонетки на погрузочных пунктах, что повышает эффективность транспорта. Для повышения энергоэффективности необходимо, в первую очередь, снизить потери энергии на буксование колес электровозов. Потери энергии на буксование колес особенно велики при движении на подъем груженых составов в траншеях карьеров, а на подземном транспорте в обводненных шахтах, добывающих коксующиеся угли.
Применение контактно-аккумуляторных электровозов позволяет снизить количество аккумуляторных батарей и отказаться от двухступенчатой схемы локомотивной откатки. Переоборудование аккумуляторного электровоза в контактно аккумуляторный может быть выполнено в условиях действующих горнодобывающих предприятий; затраты на переоборудование не превышают 10% стоимости переоборудуемого аккумуляторного электровоза.
Энергоэффективность применении комбинированных электровозов по сравнению с аккумуляторными достигается за счет уменьшения числа зарядных столов и зарядных устройств, объёмов зарядных камер; сокращения почти вдвое числа аккумуляторных батарей и повышения в два раза срока их ресурса; экономии рабочего времени (около 0.5 ч в смену на электровоз) и затрат на обслуживание аккумуляторного хозяйства; увеличения коэффициента использования электровоза [1].
На электровозах применяются различные системы регулирования скорости вращения тяговых двигателей: реостатные и безреостатные, ступенчатые и плавные бесступенчатые. Результаты сравнения систем управления приведены в табл.1. Из анализа таблицы 1 следует, что внедрение тиристорно-транзисторных систем управления позволит увеличить мощность тяговых электродвигателей не менее, чем на 3050%.
Таблица 1. Системы управления скоростью движения электровозов.
ПАРАМЕТРЫ |
СИСТЕМА УПРАВЛЕНИЯ СКОРОСТЬЮ ДВИГАТЕЛЕЙ |
||||
Реостатная |
Ступенчатая |
Тиристорно-транзисторная |
|||
двигатели постоянного тока** |
двигатели переменного тока *** |
||||
число ступеней скорости |
до 7 |
6 |
неограничено |
неограничено |
|
число безреостатных ступеней |
2 |
5 |
неограничено |
неограничено |
|
потери энергии, % |
до 30 |
до 10 |
8-10 |
8-10 |
|
коэффициент Ки* |
0,5-0,6 |
0,5-0,6 |
0,95 |
0,95 |
|
тип электрического тормоза |
Реостатный |
Реостатный |
реостатный, рекуперативный |
реостатный, рекуперативный |
|
* Ки - коэффициент использования сцепного веса;** широтно-импульсная система управления двигателями постоянного тока;***частотная система управления тяговыми асинхронными двигателями. |
Наиболее перспективными для электровозов с тяговыми электродвигателями постоянного тока следует признать широтноимпульсные и частотно-импульсные системы управления, которые обеспечивают плавный пуск и торможение составов. При этом экономия электроэнергии может достигать 25-30%, повышение коэффициента использования сцепного веса - 40%.
Повышение энергоэффективности и модернизация рудничных электровозов может производиться заменой реостатных и ступенчатых систем управления на тиристорно-транзисторные, широтно-импульсные и частотные. Эти системы уменьшают потнри энергии на буксование колес, т.к. обеспечивают плавный пуск и торможение электровозов с коллекторными двигателями постоянного тока и бесколлекторными двигателями переменного тока - асинхронными и вентильным
Схема частотно-импульсного управления тяговыми электродвигателями постоянного тока является более простой и недорогой. Но при равной выходной мощности для нормальной работы частотно-импульсной схемы требуются дорогие и сложные электрические фильтры. По этим причинам частотно-импульсные схемы были вытеснены более дешевыми широтно-импульсными. На аккумуляторных и контактно-аккумуляторных электровозах современные системы плавного управления тяговыми электродвигателями, как правило, работают надежно. На питающихся от контактных сетей электровозах возникают перенапряжения и броски тока тяговых электродвигателей при отскоках токоприемников от контактного провода по причине значительной индуктивности тяговых сетей (на контактной откатке до 5мГн/км). До настоящего времени в комплектацию рудничных контактных электровозов иногда не входят аккумуляторные батарей для питания цепей управления, что снижает надежность работы преобразователей, питающих тяговые двигатели, устройства управления, освещения, сигнализации, связи и другие потребители собственных нужд.
Одним из достоинств импульсных схем является возможность рекуперативного торможения вплоть до полной остановки электровоза. При этом возвращается в накопитель не только кинетическая энергия движущего поезда, но и электромагнитная энергия из индуктивностей обмоток тяговых двигателей и сглаживающих реакторов.
Для аккумулирования энергии торможения и снижения скачков тока размещать суперконденсаторы КДЭС можно на тяговых агрегатах, контактных, аккумуляторных и контактно-аккумуляторных электровозах, на тяговых подстанциях и пунктах секционирования контактных сетей. В системах электроснабжения КДЭС можно использовать не только для сглаживания пиковых токов, но и для стабилизации напряжения на удаленных участках контактных сетей на постоянном уровне, для снижения износа контактных проводов и уменьшения искрения на токоприемниках электровозов. Для рекуперации и передачи энергии в электрические сети накопители должны оборудоваться реверсивными преобразователями на IGBT транзисторах. Повышение энергоээффективности электровозов и тяговых агрегатов для электрического транспорта на подземных и открытых горных работах возможно путем применения гибридных силовых установок [2,3]. В гибридных установках следует заменить тяговые щелочные никельжелезных аккумуляторы кислотно-свинцовым и суперконденсаторами КДЭС. В качестве ЭХН накопителей энергии можно использовать отечественные рудничные тяговые свинцово-кислотные панцирные аккумуляторы 7PzSL805 емкостью 805 А.ч и КДЭС. Технические характеристики конденсаторных накопителей для подземных и открытых работ приведены в таблице 2. Параметры накопителей выбраны с использованием суперконденсаторного модуля 10ЭК 303[3].
Таблица 2. Технические характеристики суперконденсаторного накопителя.
Параметр |
подземный транспорт |
открытые работы |
|
Тип |
20х 10ЭК 303 |
120х 10ЭК 303 |
|
Рабочее напряжение, В |
275 |
1800-900 |
|
Запасаемая энергия, МДж |
7,5 |
45,5 |
|
Отдаваемая энергия, МДж |
6,2 |
37,0 |
|
Максимальная мощность, МВт |
0,56 |
3,4 |
|
Масса, кг |
660 |
4080 |
|
Объем, мі |
0,46 |
2,8 |
|
Время разряда, с |
64 |
60 |
|
Время заряда, мин |
15 - 40 |
15 - 40 |
|
Величина саморазряда |
до 0,3% в сутки |
до 0,3% в сутки |
|
Интервал рабочих температур |
- 50…+70 єС |
- 50…+70 єС |
|
Срок службы |
Свыше 15 лет |
Свыше 15 лет |
|
Изготовитель |
ЗАО "Элтон", Россия, г. Троицк |
Для накопления электроэнергии в тормозных режимах, а также для питания тяговых электродвигателей при двух-трех кратных пиковых кратковременных перегрузках целесообразно применять электрохимические накопители энергии ЭХН -свинцово-кислотные аккумуляторные батареи. При 5-7 кратных кратковременных пиковых перегрузках предпочтительнее пользоваться комбинированным накопителем, состоящим из суперконденсатора КДЭС и аккумуляторной батареи ЭХН.
Выводы
рудничный электровоз аккумуляторный батарея
Повысить энергоэффективность, снизить электроэнергию, потребляемую электровозами и тяговыми агрегатами. на 25-30% возможно при условии внедрения комбинированных ЭХН-КЭДС накопителей энергии и тиристорно-транзисторных систем плавного регулирования скорости.
Список литературы
1. В.П. Степаненко. Применение комбинированных (гибридных) энергосиловых установок в горной промышленности. //Горный информационно-технический бюллетень.- М.-. Горная книга.-2014.-№11.С.322-328.
2. В.И. Белозеров, В.П. Степаненко. Актуальность создания карьерных локомотивов с накопителем энергии. //Горная промышленность.-2014-.2014.-.№4.-. С.76.
3. И.Н. Варакин, В.В. Менухов, В.В. Самитин. Перспективы применения электрохимических конденсаторов в составе комбинированных энергосиловых установок на автосамосвалах.// Горная промышленность.2008.-.№3.-С.79-86.
Размещено на Allbest.ru
...Подобные документы
Типы аккумуляторных батарей АА-фактора, их особенности, достоинства и недостатки. Особенности никель–металлгидридных и никель–кадмиевых аккумуляторных батарей. Стандартный и ускоренный заряд аккумуляторных батарей. Заряд при пониженных температурах.
научная работа [279,2 K], добавлен 18.01.2015Контроль и оперативное управление параметрами технологического процесса производства стартерных свинцово-кислотных аккумуляторных батарей. Принципы производства батарей, выбор технологического оборудования, контроль, виды брака и способы их устранения.
отчет по практике [1,1 M], добавлен 08.05.2010Общая характеристика месторождения. Обоснование схем механизации производственных процессов. Проектирование электропривода и обоснование эффективности его применения, расчет технических параметров. Оценка энергоэффективности карьерных электроустановок.
дипломная работа [2,6 M], добавлен 17.02.2018Назначение и характеристика проектируемого депо, определение количества рабочих, площади помещений. Расчет программы ремонта электровозов. Технологии ремонта компрессора ВУ 3,5/10-1450, неисправности его частей. Калькуляция себестоимости текущего ремонта.
дипломная работа [190,1 K], добавлен 20.06.2012Определение скорости вращения входного вала исполнительного механизма. Расчет кинематических и силовых параметров на валах привода. Компоновка двухступенчатого соосного цилиндрического редуктора. Проектный расчет валов и подшипников зубчатого редуктор.
дипломная работа [2,8 M], добавлен 13.05.2017Проектирование технологического процесса ремонта аккумуляторных батарей электропоезда; разработка участка ТР-2 мотор-вагонного депо. Ведомость объема работ; конструкция установки; организация и себестоимость ремонтного производства; техника безопасности.
дипломная работа [1,4 M], добавлен 13.06.2013Технология ведения и комплексная механизация горных работ. Обоснование параметров горных выработок и скоростных режимов движения по ним рудничных самоходных машин. Определение продолжительности периода работы вентилятора главного проветривания.
курсовая работа [395,0 K], добавлен 24.01.2022Описание технологического процесса станка гексапод, его назначение. Расчет, анализ и построение его характеристик вентильно-индукторного двигателя, оценка повышения энергоэффективности при его использовании. Анализ систем электропривода станка гексапод.
дипломная работа [2,3 M], добавлен 17.05.2014Анализ существующих технологий и оборудования восстановительной плавки. Характеристика перерабатываемого сырья. Основы химических процессов в дуговых печах. Усовершенствование процесса, позволяющее снизить себестоимость переработки закиси никеля.
дипломная работа [1,5 M], добавлен 24.02.2015Определение параметров карьера, расчет граничной глубины открытой разработки. Вычисление объема горной массы в контурах карьера. Порядок подготовки горных пород к выемке буровзрывным способом. Выемочно-погрузочные работы и перемещение карьерных грузов.
курсовая работа [1,0 M], добавлен 09.12.2010Анализ существующей технологии, механизации и организации производства на каpьеpе Мурсала. Техническая оценка рабочих параметров карьерных экскаваторов. Расчет затрат при существующей и проектируемой технологии ведения горных работ, их сравнение.
курсовая работа [86,7 K], добавлен 25.05.2012Общие сведения о шахтных бурильных установках, состоящих из бурильной головки с податчиком, манипулятора, рамы с ходовой частью, привода, пульта и системы управления. Гидравлическая буровая установка "StopeMaster". Бурильные машины шахтных установок.
реферат [172,5 K], добавлен 25.08.2013Сооружение для очистки шахтных вод в системах оборотного водоснабжения и повторно-последовательное использование воды. Геологическая и гидрографическая ситуация месторождения. Экологические технологии и оборудование, применяемое на горном предприятии.
дипломная работа [201,4 K], добавлен 07.09.2010Режимы и технологический процесс сушки в шахтных и рециркуляционных, барабанных, конвейерных, распылительных и вакуум-сублимационных зерносушилках. Техническая характеристика зерносушильного агрегата и его функциональное назначение в схеме производства.
курсовая работа [1,9 M], добавлен 28.05.2014Металлургические и технологические особенности сварки цилиндров шахтных крепей. Анализ процесса изготовления сварной конструкции. Проектирование сборочно-сварочных приспособлений, расчет элементов; экономическое обоснование; охрана окружающей среды.
дипломная работа [199,1 K], добавлен 13.11.2012Тепловая работа шахтных печей цветной металлургии. Плавка кусковой руды, брикетов, агломерата и различных промежуточных продуктов металлургического производства. Шахтные печи с режимом работы на базе топочного процесса. Особенности теплообмена в слое.
курсовая работа [38,8 K], добавлен 04.12.2008Обработка кислых железосодержащих шахтных вод. Обезжелезивание возвратного конденсата на ТЭС с барабанными котлами. Очистка дренажной воды на энергоблоках с прямоточными барабанными котлами. Метод Паудекс-очистки и достоинства "Паудекс-фильтров".
реферат [821,5 K], добавлен 09.03.2011Обжиговые печи черной металлургии. Рациональная конструкция печи. Принцип действия и устройство шахтных печей. Способы отопления и режимы обжига в шахтных печах. Аэродинамический режим печи. Особенности теплообмена в слое. Шахтные и обжиговые печи.
курсовая работа [550,4 K], добавлен 04.12.2008Расчет гидравлического режима тепловой сети, диаметров дроссельных диафрагм, сопел элеваторов. Сведения о программно-расчетном комплексе для систем теплоснабжения. Технико-экономические рекомендации по повышению энергоэффективности системы теплоснабжения.
дипломная работа [784,5 K], добавлен 20.03.2017Классификация и характеристика масел, их свойства и применение. Описание и основные факторы, влияющие на процесс деасфальтизации, его технологическое обоснование. Выбор датчиков, преобразователей и исполнительных механизмов, его принципы и значение.
дипломная работа [402,5 K], добавлен 03.06.2014