Основы материаловедения

Структурная диаграмма состояния железо-цементит, ее построение и подходы к анализу. Характер и обоснование изменения эксплуатационных характеристик деталей после поверхностного наклепа. Цементация стали и термическая обработка цементованных деталей.

Рубрика Производство и технологии
Вид контрольная работа
Язык русский
Дата добавления 06.04.2019
Размер файла 716,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

деталь наклеп термический цементованный

Металловедением называется наука, устанавливающая связь между составом, структурой и свойствами металлов и сплавов и изучающая закономерности их изменения при тепловых, химических, механических, электромагнитных и радиоактивных воздействиях.

Железо и сплавы на его основе (сталь, чугун) называют черными металлами, а остальные металлы (Be, Mg, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Sn, W, Au, Hg, Pb и др.) и их сплавы - цветными.

Современное машиностроение характеризуют непрерывно растущая энергонапряженность, а также тяжелые условия эксплуатации машин. Такие условия работы машин предъявляют к материалам особые требования. Для удовлетворения этих требований создано много сплавов на основе различных металлов.

В современной технике широко применяют стали, обеспечивающие высокую конструктивную прочность, и сплавы, которые остаются прочными при высоких температурах, вязкими при температурах, близких к абсолютному нулю, обладающие высокой коррозионной стойкостью в агрессивных средах или другими физико-химическими свойствами.

За последние годы достижения материаловедения обеспечили небывалый прогресс в разработке конструкционных и инструментальных материалов в различных областях техники. Исследования реальной структуры твердых тел показали принципиальную возможность получения сплавов с прочностью, приближающейся к теоретической, определяемой прочностью межатомных связей.

1. Структурная диаграмма состояния железо-цементит. Для сплава, содержащего 0,1% С, постройте кривую охлаждения, для сплава 0,8% С - нагревания. При температуре 1515°С определите относительное количество фаз и содержание углерода в растворе

деталь наклеп термический цементованный

Структурная диаграмма состояния железо-цементит

В диаграмме состояния железо - цементит (Fe-Fe3C), рассматриваются процессы кристаллизации железоуглеродистых сплавов (стали и чугуна) и превращения в их структурах при медленном охлаждении от жидкого расплава до комнатной температуры. Диаграмма рисунок 1 показывает фазовый состав и превращения в системе железо-цементит (6,67% С). Особенность диаграммы - наличие на оси составов двух шкал, показывающих содержание углерода и цементита. Координаты характерных точек диаграммы приведены в таблице 1. Точка А определяет температуру плавления чистого железа, а точка D - температуру плавления цементита. Точки N и G соответствуют температурам полиморфных превращений железа. Точки Н и Р характеризуют предельную концентрацию углерода соответственно в высокотемпературном и низкотемпературном феррите. Точка Е определяет наибольшую концентрацию углерода в аустените.

Превращение в сплавах системы Fe-Fe3C происходят как при затвердевании жидкой фазы, так и в твердом состоянии. Первичная кристаллизация идет в интервале температур, определяемых на линиях ликвидус (ABCD) и солидус (AHJECF). Вторичная кристаллизация вызвана превращением железа одной модификации в другую и переменной растворимостью углерода в аустените и феррите; при понижении температуры эта растворимость уменьшается. Избыток углерода из твердых растворов выделяется в виде цементита. Линии ES и PQ характеризуют изменение концентрации углерода в аустените и феррите соответственно. Цементит имеет почти неизмененный состав (двойная вертикальная линия DFKL). Цементит, выделяющий из жидкости, называют первичным; цементит, выделяющийся из аустенита, - вторичным; цементит, выделяющийся из феррита, - третичным. Соответственно линию CD на диаграмме состояния называют линией первичного цементита, ES - линией вторичного цементита; PQ - линией третичного цементита. В системе железо - цементит происходят три изотермических превращения:

перитектическое превращение на линии HJB (1499°С) ФH + Ж B АJ;

эвтектическое превращение на линии ECF (1147°С) ЖС [А Е + Ц];

эвтектоидное превращение на линии PSK (727°С) AS [Ф Р + Ц].

Эвтектическая смесь аустенита и цементита называется ледебуритом, а эвтектоидная смесь феррита и цементита - перлитом.

Эвтектоид - перлит (содержит 0,8% С) и эвтектику - ледебурит (4,3% С) рассматривают как самостоятельные структурные составляющие, оказывающие заметное влияние на свойства сплавов.

При охлаждении ледебурита до температур ниже линии SK входящий в него аустенит превращается в перлит, и при температуре 20 - 25°С ледебурит представляет собой смесь цементита и перлита. В этой структурной составляющей цементит образует сплошную матрицу, в которой размещены колонии перлита. Такое строение ледебурита служит причиной его большой твердости (> HB 6000) и хрупкости. При температурах, соответствующих линии солидуса АЕ, сплавы с содержанием углерода до 2,14% окончательно затвердевают с образованием аустенита. На линии солидуса ECF сплавы с содержанием углерода от 2,14 до 6,67% окончательно затвердевают с образованием эвтектики (ледебурита) и структур, образовавшихся ранее из жидкого сплава, а именно: в интервале 2,14-4,3% С - аустенита, а в интервале 4,3-6,67% С - цементита первичного. В результате первичной кристаллизации во всех сплавах с содержанием углерода до 2,14%, т.е. в сталях, образуется однофазная структура - аустенит. В сплавах с содержанием углерода более 2,14%, т.е. в чугунах, при первичной кристаллизации образуется эвтектика ледебурита.

Рисунок 1. Диаграмма состояния железо-цементит

Вторичная кристаллизация (превращение в твердом состоянии) происходит при температурах, соответствующих линиям GSE, PSK и GPQ. Превращения в твердом состоянии происходят вследствие перехода железа из одной аллотропической модификации в другую и в связи с изменением растворимости углерода в аустените и феррите. С понижением температуры растворимость уменьшается. Избыток углерода выделяется из твердых растворов в виде цементита. В области диаграммы AGSE находится аустенит. При охлаждении сплавов аустенит распадается с выделением феррита при температурах, соответствующих линий GS, и цементита, называемого вторичным, при температурах, соответствующих линии SE. Вторичным называют цементит, выделяющийся из твердого раствора аустенита, в отличие от первичного цементита, выделяющегося из жидкого расплава. В области диаграммы GSP находится смесь феррита и распадающегося аустенита. Ниже линии GP существует только феррит. При дальнейшем охлаждении до температур, соответствующих линии PQ, из феррита выделяется цементит (третичный). Линия PQ показывает, что с понижением температуры растворимость углерода в феррите уменьшается от 0,02% при 727°С до 0,005% при комнатной температуре.

В точке S при содержании 0,8% углерода и температуре 727°С весь аустенит распадается и превращается в механическую смесь феррита и цементита - перлит.

Таблица 1. Координаты характерных точек

Обозначение точки на диаграмме

Температура, °С

Концентрация углерода, %

A

1539

0

H

1499

0.1

J

1499

0.16

B

1499

0.51

N

1392

0

D

1260

6.69

E

1147

2.14

C

1147

4.3

F

1147

6.69

G

911

0

P

727

0.02

S

727

0.8

K

727

6.69

Диаграмму состояния Fе - Fе3С по оси абсцисс - концентрация углерода - делят на следующие участки:

0 - 0,02% (точка Р) - технически чистое железо;

0,02 - 0,80% (отрезок PS) - доэвтектоидные стали;

0,80% (точка S) - эвтектоиднаясталь;

0,80 - 2,14% - заэвтектоидные стали;

2,14 - 4,31% (отрезок EC) - доэвтектические чугуны;

4,31% (точка С) - эвтектический чугун;

4,31 - 6,67% (отрезок CF) - заэвтектические чугуны.

Диаграмма состояния железо-цементит имеет большое практическое значение. Ее применяют для определения тепловых режимов термической обработки и горячей обработки давлением (ковка, горячая штамповка, прокатка) железоуглеродистых сплавов. Ее используют также в литейном производстве для определения температуры плавления, чтo необходимо для назначения режима заливки жидкого железоуглеродистого сплава в литейные формы [1, 2].

Для сплава, содержащего 0,1% С, постройте кривую охлаждения

Кривая охлаждения, направления в интервале температур от 1515°С-0°С для сплава 0,1% С

1515°С в точке 1 начало кристаллизации аустенита из жидкого сплава Жидкость + Феррит + аустенит

1499°С в точке 2 формируется кристаллизация аустенита из остаточной жидкости (HJ) Феррит + Аустенит

1450°С в точке 3 (JN) Феррит + Аустенит

860°С в точке 4 (GS) начало выделения феррита из аустенита. Аустенит - феррит

727°С в точке 5 превращения аустенита в перлит. Аустенит + перлит

Структура сплава при температуре 600°С: феррит и перлит (Ф+П), сплав называется доэвтектоидной сталью.

Описание превращений при охлаждении стали.

Выше точки 1 сплав находится в жидком состоянии. В точке1 начинается кристаллизация твердого раствора углерода в -железе-аустенита. Кристаллизация аустенита заканчивается при температуре точки 2. От точки 2 до точки 3 идет охлаждение сплава со структурой аустенита. В точки 3 в аустените зарождаются и растут кристаллы феррита-твердого раствора углерода в б-железе. При этом концентрация углерода в аустените растет, так как феррит углерода почти не содержит. Когда сплав охладится до температуры точки 4, концентрация углерода в аустените достигает 0,8%, и начинается перлитное превращение: А Ф + Ц. Оно протекает при постоянной температуре 727°С, так как в равновесии находится три фазы: аустенит, феррит и цементит. Получаемая смесь кристаллов феррита и цементита называется перлит. После завершения превращения идет охлаждение сплава со структурой феррит и перлит. Этот сплав называется доэвтектоидной сталью.

Диаграммы фазового равновесия характеризуют окончательное или предельное состояние сплавов, т.е. полученное после того, как все превращения в них произошли и полностью закончились. Это состояние сплава зависит от внешних условий (температуры, давления) и характеризуется числом и концентрацией образовавшихся фаз. Закономерность изменения числа фаз в гетерогенной системе определяется правилом фаз.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

С = К + 2 - Ф,

где С - число степеней свободы системы (или вариантность); К - число компонентов, образующих систему, т.е. минимальное число химических элементов, необходимых для образования любой фазы системы; 2 - число внешних факторов; Ф - число фаз, находящихся в равновесии.

Под числом степеней свободы (вариантностью системы) понимают возможность изменения температуры, давления и концентрации без изменения числа фаз, находящихся в равновесии.

При изучении физико-химических равновесий за внешние факторы, влияющие на состояние сплава, принимают температуру и давление. Применяя правило фаз к металлам, можно во многих случаях принять изменяющимся только один внешний фактор - температуру, так как давление, за исключением очень высокого, мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях. Тогда уравнение примет следующий вид: С = К + + 1 - Ф. Так как число степеней свободы не может быть меньше нуля и не может быть дробным числом, то К- Ф + 1 > 0, а Ф < К + 1, т.е. число фаз в сплаве, находящемся в равновесном состоянии, не может быть больше, чем число компонентов плюс единица. Следовательно, в двойной системе в равновесии может находиться не более трех фаз, в тройной - не более четырех и т.д.

Если в равновесии в системе с определенным числом компонентов находится максимальное число фаз, то число степеней свободы системы равно нулю (С = 0). Такое равновесие называют нонвариантным (безвариантным). При нонвариантном равновесии сплав из данного числа фаз может существовать только в совершенно определенных условиях: при постоянной температуре и определенном составе всех находящихся в равновесии фаз. Это означает, что превращение начинается и заканчивается при одной постоянной температуре.

В случае уменьшения числа фаз на одну против максимально возможного число степеней свободы возрастает на единицу (С = 1). Такую систему называют моновариантной (одновариантной). Когда С = 2, система бивариантна (двухвариантна).

Сплав железа с углеродом, содержащий 0,1% С, называется доэвтектической сталью. Его структура при комнатной температуре - феррит + перлит [1,2,3].

Для сплава 0,8% С - кривая нагревания

Кривая направления нагревания в интервале температур от 0°С - 1515°С для сплава 0,8% С

727°С в точке 1 произойдет превращение Феррит + перлит (PS)

1380°С в точке 2 Образование Аустенит (EJ)

1499°С в точке 3 При нагреве выше линии EJ до BС - часть аустените переходит в жидкое состояние получаем жидкий сплав и аустенит.

1515°С Свыше линии BC - жидкий сплав.

Сплав железа с углеродом, содержащий 0,8% С, называется доэвтектоидной сталью. Его структура при комнатной температуре - перлит + ферррит. В эвтектоидном сплаве (0,8% С) при температуре 727°С (точка S) весь аустенит превращается в перлит.

Диаграмма состояния железо-цементит объединяет 6 структурных составляющих, включая в себя 4 фазы (жидкость, феррит, аустенит, цементит) и 2 механические смеси (перлит и ледебурит).

Феррит (Ф) представляет собой твердый раствор углерода в б-железе. Это самая мягкая и пластичная структурная составляющая. Предельное содержание углерода в феррите при 727 оС (точка Р) около 0,02%, а при комнатной температуре (точка Q) - 0,01%.

Аустенит (А) представляет собой твердый раствор углерода в г-железе. Это более твердая и прочная структурная составляющая. Существует при температуре выше 727°С. Предельное содержание углерода (точка Е) - 2,14%.

Цементит (Ц) - карбид железа - химическое соединение Fe3C (6,67% С) со сложной кристаллической решеткой, состоящей из ряда октаэдров и является самой твердой и хрупкой структурной составляющей. По происхождению различают первичный цементит ЦI - выделяющийся из жидкости по линии СD, вторичный ЦII - из аустенита по линии ЕS, третичный ЦIII - из феррита по линии РQ.

Перлит (П) представляет собой механическую смесь феррита и цементита, содержащую в среднем 0,81% С. Благодаря наличию цементита, он более прочен и тверд, чем феррит и аустенит.

Ледебурит (Л) является механической смесью феррита и цементита, содержащей в среднем 4,3% С. Благодаря большей доле цементита он более тверд и хрупок, чем перлит [1,2,3].

Механические свойства структурных составляющих. Постройте графики зависимостей механических свойств (ув, у0,2, НВ, д, Ш и КСU) медленно охлажденных сталей от содержания углерода в них и дайте объяснение этим зависимостям

Фазы в сплавах железа с углеродом представляют собой жидкий раствор, феррит, аустенит, цементит и свободный углерод в виде графита.

Феррит - мягкая, пластичная фаза со следующими механическими свойствами: ув =300МПа; д=40%; Ш=70%; КСU = 2,5 МДж/м2; НВ 800-1000.

Аустенит - твердый раствор внедрения углерода в Feг. Имеет ГЦК решетку. Аустенит пластичен, но прочнее феррита (НВ 1600-2000).

Цементит - карбид железа Fe3C. Содержит 6,69% С и имеет сложную ромбическую решетку. При нормальных условиях цементит тверд (НВ 8000) и хрупок.

Графит - углерод, выделяющийся в железоуглеродистых сплавах в свободном состоянии. Имеет гексагональную кристаллическую решетку. Графит электропроводен, химически стоек, малопрочен, мягок.

Перлит - смесь двух фаз, образующихся при эвтектоидном превращении, в результате которого из аустенита выделяются феррит и цементит. Перлит чаще всего имеет пластинчатое строение и является прочной структурной составляющей: ув = 800-900 МПа; у0,2 = 450 МПа; д?16%; НВ 1800-2200.

Предел текучести (ут) - это нагрузка, при которой происходит пластическая деформация, отнесенная к начальной площади поперечного сечения образца (Рт / Fo). Однако при испытаниях на растяжение у большинства сплавов площадки текучести на диаграммах нет. Поэтому определяется условный предел текучести (у0.2) - напряжение, которому соответствует пластическая деформация 0,2%. Выбранное значение 0,2% достаточно точно характеризует переход от упругих деформаций к пластическим.

К характеристикам материала относят также предел упругости (упр), под которым подразумевают напряжение, при котором пластическая деформация достигает заданного значения. Обычно используют значения остаточной деформации 0,005; 0,02; 0,05%. Таким образом, у0,05 = Рпр / Fo (Рпр - нагрузка, при которой остаточное удлинение составляет 0,05%).

Предел пропорциональности упц = Рпц / Fo (Рпц - максимальная нагрузка, при действии которой еще выполняется закон Гука).

Пластичность характеризуется относительным удлинением (д) и относительным сужением (ш):

д = [(lk - lo)/lo]•100% ш = [(Fo - Fk)/Fo]?100%,

где lk - конечная длина образца; lo и Fo - начальные длина и площадь поперечного сечения образца; Fk - площадь поперечного сечения в месте разрыва.

Для малопластичных материалов испытания на растяжение вызывают затруднения, поскольку незначительные перекосы при установке образца вносят существенную погрешность в определение разрушающей нагрузки. Такие материалы, как правило, подвергают испытанию на изгиб

Твердость металла по Бринеллю указывается буквами НВ и числом. Для перевода числа твердости в систему СИ пользуются коэффициентом К = 9,8 * 106, на который умножают значение твердости по Бринеллю: НВ = НВ * К, Па.

Метод определения твердости по Бринеллю не рекомендуется применять для сталей с твердостью свыше НВ 450 и цветных металлов с твердостью более 200 НВ.

Ударная вязкость характеризует способность материала оказывать сопротивление динамическим нагрузкам и проявляющейся при этом склонности к хрупкому разрушению. Для испытания на удар изготовляют специальные образцы с надрезом, которые потом разрушают на маятниковом копре. По шкале маятникового копра определяют работу К, затраченную на разрушение, и рассчитывают основную характеристику, получаемую в результате этих испытаний - ударную вязкость. Она определяется отношением работы разрушения образца к площади его поперечного сечения и измеряется в МДж/м2.

Определение ударной вязкости особенно важно для металлов, которые работают при низких температурах и выявляют склонность к хладноломкости, то есть к снижению ударной вязкости при понижении температуры эксплуатации [4].

Укажите, как пишутся марки углеродистых сталей обыкновенного качества, качественных, литейных и инструментальных сталей; марки серых, ковких и высокопрочных чугунов. Расшифруйте и охарактеризуйте каждую марку сплавов

Углеродистые стали обыкновенного качества.

Стали содержат повышенное количество серы и фосфора. Маркируются Ст. 2 кп., БСт.3 кп, ВСт.3 пс, ВСт.4 сп.

Ст - индекс данной группы стали. Цифры от 0 до 6 - это условный номер марки стали. С увеличением номера марки возрастает прочность и снижается пластичность стали. По гарантиям при поставке существует три группы сталей: А, Б и В. Для сталей группы А при поставке гарантируются механические свойства, в обозначении индекс группы А не указывается. Для сталей группы Б гарантируется химический состав. Для сталей группы В при поставке гарантируются и механические свойства, и химический состав.

Индексы кп, пс, сп указывают степень раскисленности стали: кп - кипящая, пс - полуспокойная, сп - спокойная.

Качественные углеродистые стали.

Качественные стали поставляют с гарантированными механическими свойствами и химическим составом (группа В). Степень раскисленности, в основном, спокойная.

Конструкционные качественные углеродистые стали. Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной.

Пример: сталь 08 кп, сталь 10 пс, сталь 45. Содержание углерода, соответственно, 0,08%, 0,10%, 0.45%.

Инструментальные качественные углеродистые стали маркируются буквой У (углеродистая инструментальная сталь) и числом, указывающим содержание углерода в десятых долях процента: У10, У7, У8. Если сталь ещё и высококачественная, это также отмечают в маркировке: У8А, У10А, У12А. Если необходимо подчеркнуть увеличенное содержание марганца, применяют дополнительную букву Г. К примеру, существуют стали У8ГА и У10ГА.

Пример: сталь У8, сталь У13. Содержание углерода, соответственно, 0,8% и 1,3%.

Маркировка литейных и инструментальных сталей.

К литейным сталям относят железоуглеродистые сплавы, содержащие до 2,14% С и другие элементы (Мn, Si, P, S, Cr, Ni, W, Mo, V и др.), попавшие в сталь из шихтовых материалов либо специально введенные в нее в определенных количествах для придания сплаву необходимых эксплуатационных и технологических свойств. Стальные отливки по объему производства занимают второе место после чугуна и применяются во всех отраслях машиностроения. Из стали отливают детали, к которым предъявляют повышенные требования по прочности, пластичности, надежности и долговечности в процессе эксплуатации.

Литейные стали: Обозначение такой разновидности стали практически полностью совпадает с описанием конструкционных сталей. В конце маркировки появляется буква «Л», которая как раз указывает на принадлежность стали к классу литейных.

Пример: 120Г13Л - литейная сталь, содержание углерода - 1,2%, содержание марганца - 13%.

Инструментальные стали: Маркировка сталей инструментального класса будет зависеть от их типа - инструментальные углеродистые или инструментальные легированные.

Маркировка легированных инструментальных сталей начинается с цифры, указывающей на процентное содержание углерода. Но имеются определенные исключения. Так, к примеру, стали с содержанием хрома, которые используются для производства подшипников, обозначаются буквами «ШХ». Расшифровка марки ШХ15: с буквы Ш начинается маркировка подшипниковых сталей, Х означает легирование стали хромом, который присутствует в количестве 1,5%.

Особенности и применение стали ШХ15: для ответственных деталей приборов и машин в ряде случаев применяют закаленные стали с высокой твердостью, упрочняемые мартенситным превращением.

Быстрорежущие стали маркируются буквой Р, после которой ставится содержание вольфрама в%. Разберём в качестве примера сталь Р6М5Ф3. Она является быстрорежущей (Р), содержит 6% вольфрама, 5% молибдена (М) и 3% ванадия (Ф).

Чугун серый, ковкий, высокопрочный.

Чугун - сплав железа (Fe>90%) с углеродом (C от 2,14% до 6,67%).

Углерод может содержаться в чугуне в виде графита (С) или цементита (Fe3C). Также чугун содержит примеси кремния, марганца, фосфора и серы.

Чугун - наиболее широко применяемый материал для изготовления литых деталей, используемых при относительно невысоких напряжениях и малых динамических нагрузках. Преимущества чугуна в сравнении со сталью - высокие литейные свойства и небольшая стоимость. Чугуны также лучше обрабатываются резанием, чем большинство сталей (кроме автоматных сталей), но плохо свариваются, обладают меньшей прочностью, жесткостью и пластичностью. В зависимости от состояния углерода в чугуне различают:

белый чугун, серый чугун, ковкий чугун, высокопрочный чугун.

Серый чугун. В структуре серых чугунов графит пластинчатой формы.

Серые чугуны содержат: 3,2-3,5% углерода, 1,9-2,5% кремния, 0,5-0,8% марганца, 0,1-0,3% фосфора и менее 0,12% серы. Отливки деталей из серых чугунов получают в кокилях - земляных или металлических формах. Серый чугун находит широкое применение в машиностроении. Ввиду невысоких механических свойств у отливок из серого чугуна и простоты получения их применяют для изготовления деталей менее ответственного назначения, деталей, работающих при отсутствии ударных нагрузок. В частности из них делают крышки, шкивы, станины станков и прессов. Пример обозначения серого чугуна: СЧ32-52. Буквы обозначают серый чугун (СЧ), первое число обозначает предел прочности при растяжении (32 кгс/мм2 или 320 МПа), второе число - предел прочности при изгибе.

Ковкий чугун. В структуре ковких чугунов графит хлопьевидной формы. Ковкие чугуны содержат: 2,4-3,0% углерода, 0,8-1,4% кремния, 0,3-1,0% марганца, менее 0,2% фосфора, не более 0,1% серы. Ковкий чугун получают из белого чугуна в результате нагрева и длительной выдержки. Эту процедуру называют графитизирующим отжигом или томлением. Пример обозначения ковкого чугуна: КЧ45-6. Буквы обозначают ковкий чугун (КЧ), первое число - предел прочности при растяжении (45 кгс/мм2 или 450 МПа), второе - относительное удлинение в% (6%).

Высокопрочный чугун. Высокопрочный чугун содержит: 3,2-3,8% углерода, 1,9-2,6% кремния, 0,6-0,8% марганца, до 0,12% фосфора и не более 0,3% серы. Пример обозначения высокопрочного чугуна: ВЧ45-5. Буквы обозначают высокопрочный чугун (ВЧ), первое число обозначает предел прочности при растяжении (45 кгс/мм2 или 450 МПа), второе - относительное удлинение в%[2,3].

2. Как изменяются эксплуатационные характеристики деталей после поверхностного наклепа и почему?

Текстура деформации создает кристаллическую анизотропию, при которой наибольшая разница свойств проявляется для направлений, расположенных под углом 45o друг к другу.

С увеличением степени деформации характеристики пластичности (относительное удлинение, относительное сужение) и вязкости (ударная вязкость) уменьшаются, а прочностные характеристики (предел упругости, предел текучести, предел прочности) и твердость увеличиваются. Также повышается электросопротивление, снижаются сопротивление коррозии, теплопроводность, магнитная проницаемость.

Совокупность явлений, связанных с изменением механических, физических и других свойств металлов в процессе пластической деформации называют деформационным упрочнением или наклепом.

Упрочнение при наклепе объясняется возрастанием на несколько порядков плотности дислокаций:

Их свободное перемещение затрудняется взаимным влиянием, также торможением дислокаций в связи с измельчением блоков и зерен, искажениями решетки металлов, возникновением напряжений[5].

3. Цементация стали. Термическая обработка после цементации

Цементация

Цементация - химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС. Цементации подвергают стали с низким содержанием углерода (до 0,25%). Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины.

Глубина цементации (h) - расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита (h. = 1…2 мм).

Степень цементации - среднее содержание углерода в поверхностном слое (обычно, не более 1,2%).

Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость. На практике применяют цементацию в твердом и газовом карбюризаторе (науглероживающей среде). Участки деталей, которые не подвергаются цементации, предварительно покрываются медью (электролитическим способом) или глиняной смесью.

Цементация в твердом карбюризаторе

Почти готовые изделия, с припуском под шлифование, укладывают в металлические ящики и пересыпают твердым карбюризатором. Используется древесный уголь с добавками углекислых солей ВаСО3, Na2CO3 в количестве 10…40%. Закрытые ящики укладывают в печь и выдерживают при температуре 930…950 oС. За счет кислорода воздуха происходит неполное сгорание угля с образованием окиси углерода (СО), которая разлагается с образованием атомарного углерода по реакции:

Образующиеся атомы углерода адсорбируются поверхностью изделий и диффундируют вглубь металла.

Недостатками данного способа являются: значительные затраты времени (для цементации на глубину 0,1 мм затрачивается 1 час); низкая производительность процесса; громоздкое оборудование; сложность автоматизации процесса. Способ применяется в мелкосерийном производстве.

Газовая цементация

Процесс осуществляется в печах с герметической камерой, наполненной газовым карбюризатором. Атмосфера углеродосодержащих газов включает азот, водород, водяные пары, которые образуют газ-носитель, а также окись углерода, метан и другие углеводороды, которые являются активными газами. Глубина цементации определяется температурой нагрева и временем выдержки.

Преимущества способа: возможность получения заданной концентрации углерода в слое; сокращение длительности процесса за счет упрощения последующей термической обработки; возможность полной механизации и автоматизации процесса. Способ применяется в серийном и массовом производстве.

Структура цементованного слоя

На поверхности изделия образуется слой заэвтектоидной стали, состоящий из перлита и цементита. По мере удаления от поверхности, содержание углерода снижается и следующая зона состоит только из перлита. Затем появляются зерна феррита, их количество, по мере удаления от поверхности увеличивается. И, наконец, структура становится отвечающей исходному составу.

Термическая обработка после цементации

В результате цементации достигается только выгодное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким отпуском. После закалки цементованное изделие приобретает высокую твердость и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины. Комплекс термической обработки зависит от материала и назначения изделия.

Если сталь наследственно мелкозернистая или изделия неответственного назначения, то проводят однократную закалку с температуры 820…850oС. При этом обеспечивается получение высокоуглеродистого мартенсита в цементованном слое, а также частичная перекристаллизация и измельчение зерна сердцевины.

При газовой цементации изделия по окончании процесса подстуживают до этих температур, а затем проводят закалку (не требуется повторный нагрев под закалку).

Для удовлетворения особо высоких требований, предъявляемых к механическим свойствам цементованных деталей, применяют двойную закалку. Первая закалка (или нормализация) проводится с температуры 880…900oС для исправления структуры сердцевины. Вторая закалка проводится с температуры 760…780oС для получения мелкоигольчатого мартенсита в поверхностном слое.

Завершающей операцией термической обработки всегда является низкий отпуск, проводимый при температуре 150…180oС. В результате отпуска в поверхностном слое получают структуру мартенсита отпуска, частично снимаются напряжения. Цементации подвергают зубчатые колеса, поршневые кольца, червяки, оси, ролики [6].

4. Метчики из стали Р9М4

Химический состав в% материала Р9М4: углерод C (1 - 1.1); кремний Si (до 0.5); марганец Mn (до 0.5); никель Ni (до 0.4); S (до 0.03); фосфор P (до 0.03); хром Cr (3 - 3.6); молибден Mo (3.8 - 4.3); вольфрам W (8.5 - 9.5); ванадий V (2.3 - 2.7); кобальт Со (до 0.5).

Марка Р9М4 относится ледебуритному классу, стали этого класса содержат в структуре первичные карбиды, выделившиеся из жидкой фазы при кристаллизации и входящие в состав эвтектики - ледебурита. Легирующие элементы могут настолько сильно уменьшить растворимость углерода в аустените, что при концентрации его менее 1% возможно образование ледебурита в стали. Например, в литой быстрорежущей стали марки Р18, содержащей 0,70-0,80% С; 17,5-19,0% W; 1,0-1,4% V и 3,8-4,4% Cr, присутствует ледебурит, имеющий в вольфрамовых сталях «скелетообразный» вид. Ледебурит состоит из пластинок карбидов, чередующихся с аустенитом.

На рисунке 1 (а) изображена схема микроструктуры легированной стали ледебуритного класса марки Р9М4 в литом состоянии (ледебурит, аустенит и эвтектоид) и после обработки, давлением - ковки и отжига (б, крупные первичные и мелкие вторичные карбиды, мелкозернистый перлит). ґ600.

При охлаждении в процессе кристаллизации перитектическое превращение (жидкость+d-феррит®аустенит) не успевает завершиться, и в структуре сохраняется некоторое количество d-феррита, который в быстрорежущих сталях при дальнейшем охлаждении претерпевает эвтектоидный распад с образованием d-эвтектоида, состоящего из тонкодисперсной смеси аустенита и карбидов. Из-за большой измельченности d-эвтектоид сильно травится, имеет вид темных кристаллов округлой формы и плохо отличим в оптическом микроскопе от перлита рисунок 1 (а).

а б

Схема микроструктуры легированной стали ледебуритного класса

Карбиды, образовавшиеся в процессе кристаллизации и входящие в состав ледебурита, называются первичными.

Ледебуритные стали обладают более высокой пластичностью, чем белые чугуны, поэтому путем горячей обработки давлением удается раздробить ледебуритную эвтектику и повысить свойства стали за счет равномерного распределения карбидов. Структура кованой и отожженной быстрорежущей стали Р9М4 состоит из крупных первичных карбидов, более мелких вторичных и мелкозернистого перлита, состоящего из легированного феррита и эвтектоидных карбидов рисунок 1 (б).

К ледебуритному классу относятся инструментальные стали - быстрорежущие марок Р9, Р12, Р18, Р9Ф5, Р10К5Ф5 [2,3,7].

По назначению эта сталь относится к легированным сталям, которые разделяются на три основные группы: конструкционные, инструментальные и стали и сплавы с особыми свойствами. Наша относится к группе инструментально легированным сталям, где имеют повышенное содержание углерода, который обеспечивает получение высокой твердости путем термической обработки. Легирующие элементы в инструментальные стали вводятся для увеличения прокаливаемости, красностойкости, жаропрочности, а в ряде случаев для повышения износостойкости за счет образования карбидов. В зависимости от назначения и химического состава инструментальные легированные стали делятся на три группы к одной из этих групп относится быстрорежущие стали, широко применяемые для изготовления режущего инструмента: (нормальной производительности марок Р9, Р12, Р18, Р6М5, Р9М4, Р18Ф2 и повышенной производительности марок Р9Ф5, Р9К5, Р9К10, Р10К5Ф5, Р14Ф4, Р18К5Ф2, содержащие повышенное количество кобальта и ванадия).

Режим термической обработки. В качестве предварительной обработки выбираем карбидный отпуск рисунок 2, применяемый для быстрорежущих сталей с целью улучшения её обрабатываемости пластической деформацией и устранения растрескивания при холодной вырубке тонких заготовок (дисковых фрез, мелких метчиков). При отпуске сталь нагревают до 730-7600С с выдержкой в течении 1-1,5 часов, при этом часть мелких карбидов растворяется. Последующее быстрое охлаждение (в масле или воде) фиксирует это состояние, что повышает пластичность, стали и несколько снижает предел текучести.

Карбидный отпуск (предварительная термическая обработка)

Оборудование для нагрева: колпаковая печь.

Оборудование для охлаждения: охлаждение осуществляем в механизированном закалочном баке.

Дополнительное оборудование: очистка от масла производится в конвейерной моечной машине типа ММК в подогретом (до 80-900С) водном растворе кальцинированной соды (10% Na2CO3); очистка от окалины осуществляется в травильной машине с краном, травление проходит в растворе серной кислоты (5-18%) при 40-900С.

В качестве окончательной термической обработки мы выбираем закалку с последующим трёхкратным отпуском рисунок 3.

Закалка и трёхкратный отпуск (окончательная ТО)

Закалка

Высокая скорость нагрева в соляных печах-ваннах может вызвать значительные внутренние напряжения, деформацию и образование трещин. Поэтому рекомендуется применять ступенчатый нагрев под закалку для инструментов из быстрорежущих сталей. Нагрев проводим с двумя подогревами: первый - при 6500С с составом соляной ванны: 50% KCl и 50% Na2CO3; второй - при 8500С с составом соляной ванны: 30% KCl и 70% BaCl2.

Окончательный нагрев также проводим в соляной ванне, состав которой 100% BaCl2 при 12100С.

Охлаждение при закалке проводим в масле, во избежание выделения карбидов.

Структуру стали после закалки на рисунке.

Микроструктура быстрорежущей стали (после закалки)

При многократном отпуске из остаточного аустенита (Аост) выделяются карбиды, легированность аустенита уменьшается, и он претерпевает мартенситное превращение. Отпуск производится при температуре 5500С, с выдержкой в течении 1 часа и охлаждением на воздухе до 200С. Подъёмно-транспортное оборудование: используем однобалочный ручной мостовой кран, тележки. Оборудование для нагрева: для закалки - четырёхтигельная печь-ванна, для отпуска - колпаковая печь. Оборудование для охлаждения: охлаждение осуществляем в механизированном закалочном баке.

Структуру стали после отпуска на рисунке.

Микроструктура быстрорежущей стали (после отпуска)

Твёрдость быстрорежущей стали после термической обработки составляет 64 HRC. В структуре стали остаётся приблизительно 2% остаточного аустенита, который немного снижает твёрдость стали и вызывает внутренние напряжения за счёт того, что аустенит и мартенсит в пространстве занимают разные объёмы. Сталь марки Р9М4 обладает повышенной вязкостью.

В качестве дополнительной обработки мы выбрали низкотемпературный отпуск для снятия напряжений после шлифования и заточки без снижения твёрдости, а также повышения стойкости инструмента при резании. Режим дополнительного отпуска рисунок 6 режущего инструмента: нагрев до температуры 240-2600С и выдержка в течении 1-4 часов.

Низкотемпературный отпуск (дополнительная термическая обработка)

Легирование - это добавление в состав материалов примесей для изменения (улучшения) физических и химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур, различают объёмное (металлургическое) и поверхностное (ионное, диффузное и др.) легирование.

Легирование производится в основном введением в расплав или шихту дополнительных веществ (например, в сталь - хрома, никеля, молибдена), улучшающих механические, физические и химические свойства сплава. Для изменения различных свойств (повышения твёрдости, износостойкости, коррозионной стойкости и т.д.) приповерхностного слоя металлов и сплавов применяются также и разные виды поверхностного легирования. Легирование проводится на различных этапах получения металлического материала с целями повышения качества металлургической продукции и металлических изделий.

Для улучшения физических, химических, прочностных и технологических свойств металлы легируют, вводя в их состав различные легирующие элементы. Для легирования сталей используются хром, марганец, никель, вольфрам, ванадий, ниобий, титан и другие элементы. Небольшие добавки кадмия в медь увеличивают износостойкость проводов, добавки цинка в медь и бронзу - повышают прочность, пластичность, коррозионную стойкость. Легирование титана молибденом более чем вдвое повышает температурный предел эксплуатации титанового сплава благодаря изменению кристаллической структуры металла. Легированные металлы могут содержать один или несколько легирующих элементов, которые придают им специальные свойства. Легирующие элементы вводят в сталь для повышения её конструкционной прочности. Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объёму. Растворяясь в феррите, легирующие элементы упрочняют его. Твердость феррита (в состоянии после нормализации) наиболее сильно повышают кремний, марганец и никель. Молибден, вольфрам и хром влияют слабее. Большинство легирующих элементов, упрочняя феррит и мало влияя на пластичность, снижают его ударную вязкость (за исключением никеля). Главное назначение легирования:

повышение прочности стали без применения термической обработки путём упрочнения феррита растворением в нём легирующих элементов;

повышение твёрдости, прочности и ударной вязкости в результате увеличения устойчивости аустенита и тем самым увеличения прокаливаемости;

придание стали специальных свойств, из которых для сталей, идущих на изготовление котлов, турбин и вспомогательного оборудования, особое значение имеют жаропрочность и коррозионная стойкость.

Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями. Марганец вводят в сталь до 2%. Он распределяется между ферритом и цементитом. Марганец заметно повышает предел текучести, порог хладноломкости, прокаливаемость стали, но делает сталь чувствительной к перегреву. В связи с этим для измельчения зерна с марганцем в сталь вводят карбидообразующие элементы. Так как во всех сталях содержание марганца примерно одинаково, то его влияние на сталь разного состава остается неощутимым. Марганец повышает прочность, не снижая пластичности стали.

Марганец и кремний являются постоянными спутниками практически в любой стали, поскольку их специально вводят при её производстве. Кремний, наряду с марганцем и алюминием является основным раскислителем стали. Марганец также используется для «связывания» находящейся в стали серы и устранения явления красноломкости. Содержание элементов обычно находится в пределах 0,30 - 0,70% Mn, 0,17-0,37% Si и порядка 0,03% Al. В этих пределах они называются технологическими примесями и не являются легирующими элементами. Специальное введение марганца, кремния и алюминия выше указанных диапазонов для придания стали определённых потребительских свойств уже будет являться легированием.

Кремний не является карбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести и прочность стали и при содержании более 1% снижает вязкость, пластичность и повышает порог хладноломкости. Кремний структурно не обнаруживается, так как полностью растворим в феррите, кроме той части кремния, которая в виде окиси кремния не успела всплыть в шлак и осталась в металле в виде силикатных включений [3,8].

Штампы из стали 5ХНМ с наименьшей стороной 500 мм. Твердость НRС 35…38.

Химический состав в% материала 5ХНМ: углерод C (0,5-0,6); кремний Si (0,1-0,4); марганец Mn (0,5-0,8); никель Ni (1,4-1,8); S (до 0.03); фосфор P (до 0.03); хром Cr (0,5-0,8); молибден Mo (0,15-0,3); медь Cu (до 0,3); Fe (~95).

Сталь 5ХНМ относится к классу доэвтектойдных. Доэвтектоидные стали имеют структуру феррита и перлита рисунок 1 (а). Количество феррита и перлита в структуре определяется содержанием углерода в стали и концентрацией углерода в эвтектоиде.

а б

Микроструктуры легированной стали доэвтектоидного класса

Микроструктуры легированной стали доэвтектоидного класса марки 5ХНМ после полного отжига от 880ОС (а, тонкопластинчатый перлит и феррит) и после нормализации от 880ОС (б, сорбит и феррит) ґ600 (сорбит при увеличениях светового микроскопа так, как показан на рисунке 1, не разрешается).

В зависимости от назначения и химического состава инструментальные легированные стали делятся на три группы: одна из этой группы относится к сталям для штампов и других инструментов холодной обработки металлов давлением должны обладать высокой твердостью, сочетающейся с удовлетворительной вязкостью. Более высокой теплостойкостью должны обладать стали для штампов горячей обработки давлением. В этом случае применяют стали 5ХНМ, 5ХНВ, 3Х2В8Ф и другие с твердостью после термической обработки 35-45 HRC, структура - троостит легированный [2.3.9].

Улучшаемые легированные стали содержат 0,30-0,45% углерода и обычно подвергаются термической обработке - улучшению, которая заключается в закалке с последующим высоким отпуском. В качестве легирующих элементов наиболее часто применяются хром, марганец, никель, вольфрам, молибден и кремний. Инструментальные легированные стали имеют повышенное содержание углерода, который обеспечивает получение высокой твердости путем термической обработки. Легирующие элементы в инструментальные стали вводятся для увеличения прокаливаемости, красностойкости, жаропрочности, а в ряде случаев для повышения износостойкости за счет образования карбидов.

Штампы для горячей объемной штамповки (т.е. деформирующих металл в горячем состоянии под ударным нагружением) работают в очень тяжелых условиях. Они подвергаются многократному воздействию высоких напряжений и температур. Интенсивное течение горячего металла по поверхности штампа вызывает истирание ручья, а также дополнительный нагрев инструмента. На поверхности ручья образуются так называемые разгарные трещины. Поэтому штамповые стали должны отличатся высокими механическими свойствами, сочетая прочность с ударной вязкостью, износостойкостью, разгаростойкостью (способность выдерживать многократные нагревы и охлаждения без образования сетки трещин (сетки разгара) и сохранять эти свойства при повышенных температурах. Кроме того, стали должны иметь высокую износостойкость и теплопроводность для лучшего отвода тепла, передаваемого обрабатываемой заготовкой.

Среди легированных штамповых сталей широкое распространение в получила сталь 5ХНМ, имеющая высокую технологичность, оптимальные механические свойства, прокаливаемость. Одним из основных легирующих элементов штамповой стали является хром (Cr). Он повышает режущие свойства и износостойкость, увеличивает прочность и прокаливаемость стали, что особенно важно для крупных пуансонов и матриц. При наличии свыше 2,5% повышает устойчивость стали против отпуска, особенно при нагреве инструмента до температур, выше 300° С. Вместе с марганцем уменьшает коробление при закалке. Однако, у сталей с содержанием хрома более 10% появляются недостатки. Резко выраженная карбидная неоднородность и повышенная склонность к коагуляции карбидов, способствующая разупрочнению сталей при нагреве.

Под разгаростойкостью понимают устойчивость к образованию сетки поверхностных трещин, вызываемых объемными изменениями в поверхностном слое при резкой смене температур. Это свойство обеспечивается снижением содержания углерода в стали (до 0,5 - 0,6%) для повышения пластичности, вязкости, а также теплопроводности, уменьшающей разогрев поверхностного слоя и термические напряжения в нем.

Вольфрам (W) вводят для повышения твердости, износостойкости и прокаливаемости стали, улучшает режущую способность инструмента.

Ванадий оказывает эффективное влияние на процессы собирательной рекристаллизации и существенно уменьшает чувствительность штамповых сталей к перегреву.

Молибден (Mo) вводится в штамповую сталь горячего деформирования для увеличения её вязкости и повышения прокаливаемости. Также молибден оказывает отрицательное влияние на окалиностойкость. Поэтому содержание молибдена в штамповых сталях ограничивается 0,5 - 0,8%.

Марганец (Mn) вводят для повышения прокаливаемости стали. В сочетании с хромом молибден уменьшает коробление при закалке, но увеличивает склонность к перегреву.

Кремний (Si) вводят, чтобы увеличить прокаливаемость стали, повысить стойкость против отпуска.

В соответствии с указанными требованиями для штампов горячей обработки давлением применяют легированные стали с 0,3-0,6% С которые после закалки подвергают отпуску при 550-680° С на троостит или троостосорбит. Среди них следует выделить несколько групп, обладающих в наибольшей степени теми свойствами, которые необходимы для определенных условий эксплуатации. Крупные ковочные (молотовые) штампы, испытывающие повышенные ударные и изгибочные нагрузки, а также инструмент ковочных машин и прессов, нагревающихся не выше 500-550° С при умеренных нагрузках, изготовляют из полутеплостойких сталей 5ХНМ и 5ХГМ (вместо никеля содержит 1,2-1,6% Мn), обладающих повышенной вязкостью.

Присутствие в стали молибдена или вольфрама (5ХНВ) повышает теплостойкость, прокаливаемость и уменьшает склонность к обратимой отпускной хрупкости. Сталь 5ХНМ прокаливается полностью в блоке 400x300x300 мм. Закалка штампов производится в масле. Отпуск крупных штампов проводится при температуре 550-580°С (HRC35-38), а мелкие при 500-540° С (HRC 40-45). В соответствии с указанными требованиями для штампов горячего формообразования применяют легированные стали, содержащие 0,3-0,6% углерода, подвергаемые закалке и отпуску при 550-680°С с целью получения трооститной и трооститно-сорбитной структуры.

Для молотовых штампов применяют сталь 5ХНМ и ее аналоги: 5ХНВ, 5ХНТ, 5ХГМ. После закалки и отпуска при 550°С сталь 5ХНМ при комнатной температуре имеет следующие механические свойства: ав = 1200^1300 МПа, 6= 10-12%, КСЦ = = 0,4 МДж/м2. При нагреве до 500°С ав = 850-=-900 МПа, оп, 3 = 600-5-650 МПа. При температурах эксплуатации выше 500°С стойкость инструмента из стали 5ХНМ резко падает [2,3,9].

Структура стали после отпуска - троостосорбит.

Заключение

деталь наклеп термический цементованный

Одним из важнейших направлений повышения долговечности и надежности работы машин и механизмов является поиск таких конструкционных материалов, которые будут значительно превосходить свойствами нынешние. К числу наиболее распространенных материалов, которые человек использует для обеспечения своих жизненных потребностей, относятся металлы. Таким образом, металлы и сегодня и в ближайшем будущем остаются каркасом всей материальной культуры человечества. Теоретическая прочность кристаллических тел (идеальных кристаллов) составляет около 1 000 кг/мм2, но в реальных сплавах из-за наличия мельчайших дефектов прочность на порядок меньше. И в этом случае такая проблема, как повышение надежности машин, решалась тривиальным увеличением толщины стенок деталей, что приводило к повышению материалоемкости всей конструкции и снижению других эксплуатационных характеристик.

Максимальной удельной прочностью, как оказалось, обладают не тончайшие стальные проволочки, а волокна углерода. Уже сейчас существуют волокна, которые в 5 раз легче стали и в 3 раза ее прочнее. Волокна делают из карбида кремния, окиси алюминия, стекла, бора.

Сейчас в материаловедении возникло новое направление, заключающееся в том, чтобы придать материалам совершенно не свойственные им качества. Например, предпринимаются попытки получить металлические сплавы, у которых свойства меняются в зависимости от условий нагружения.

Ограниченность земных ресурсов уже сейчас заставляет человечество обратиться к огромным запасам металлов в Мировом океане (добыча руд со дна морей), а также получение некоторых металлов из морской воды. Найдут применение совершенно новые металлургические процессы. К ним, в частности, относится бактериальная металлургия, которая уже сегодня достигла определенных успехов. Разработан способ получения меди из сульфидных руд с помощью бактерий, усваивающих серу. Не исключено, что когда-нибудь начнут ремонтировать детали машин методом бактериальной сварки. В научно-исследовательских институтах разработаны планы практического освоения внеземной металлургии и металлообработки. Создание международных космических станций дает практическое основание утверждать, что это не утопия, а реальная технология завтрашнего дня. Сегодня поиск новых материалов идет как никогда быстро, и есть все основания думать, что эти материалы послужат основой технического прогресса и роста экономического благосостояния людей. Однако классические материалы еще длительное время будут основой промышленного производства и экономики нашей страны.

...

Подобные документы

  • Применение поверхностной закалки с индукционным нагревом. Стадии химико-термической обработки стали. Технология цементации твердым карбюризатором, газовой цементации и азотирования. Термическая обработка после цементации и свойства цементованных деталей.

    презентация [309,5 K], добавлен 29.09.2013

  • Построение кривых охлаждения для сплавов с заданным количеством углерода с использованием диаграммы железо-цементит. Состав, свойства и примеры применения легированных сталей, чугуна, высокопрочного сплава. Термическая обработка деталей. Газовая сварка.

    контрольная работа [277,4 K], добавлен 01.03.2016

  • Термическая обработка металлов и ее основные виды. Превращения, протекающие в структуре стали при нагреве и охлаждении. Основы химико-термической обработки. Цементация, азотирование, нитроцементация и цианирование, борирование и силицирование стали.

    реферат [160,5 K], добавлен 17.12.2010

  • Характеристика предназначения поверхностного наклепа. Краткий обзор методов его осуществления. Эффективность в виде количественной характеристики: для деталей с различными концентратами напряжений, различных размеров, конфигураций, условий эксплуатаций.

    контрольная работа [1,8 M], добавлен 10.07.2010

  • Требования предъявляемые зубьям шестерен. Термическая обработка заготовок. Контроль качества цементованных деталей. Деформация зубчатых колес при термической обработке. Методы и средства контроля зубчатых колес. Поточная толкательная печь для цементации.

    курсовая работа [1,5 M], добавлен 10.01.2016

  • Термическая обработка чугуна: понятие и виды. Микроструктура и свойства сталей после химико-термической обработки: цементация и азотирование. Зависимость твердости от содержания углерода по глубине цементованного слоя. Распределение азота по толщине слоя.

    реферат [541,9 K], добавлен 26.06.2012

  • Формирование структуры и методы исследования свойств металлов; диаграмма состояния "железо-цементит". Железоуглеродистые сплавы; термическая обработка металлов и сплавов. Сплавы, применяемые в промышленности; выбор сплава на основе цветного металла.

    контрольная работа [780,1 K], добавлен 13.01.2010

  • Формы валов и осей. Обеспечение необходимого вращения деталей. Материалы и термическая обработка для изготовления деталей. Углеродистые и легированные стали. Выбор стали для изготовления валов двигателей. Сравнительный анализ сталей 40, 40Х, 40ХФА.

    реферат [732,1 K], добавлен 25.06.2014

  • Структурные составляющие и фазы во всех областях диаграммы и их определение. Кривая охлаждения и её описание с применением правила фаз для сплава содержанием углерода 0,4%. Режим термической обработки для детали винт. Микроструктура стали после ТО.

    контрольная работа [83,1 K], добавлен 08.10.2015

  • Термическая обработка деталей и область применения ступенчатой и изотермической закалки. Понятие собственной и примесной электропроводимости полупроводников. Составляющие элементы литейной формы. Увеличение производительности при токарной обработке.

    контрольная работа [1,4 M], добавлен 07.12.2010

  • Геометрические параметры и физико-механическое состояние поверхностного слоя деталей. Граничный и поверхностный слой. Влияние механической обработки, состояния поверхностного слоя заготовки и шероховатости на эксплуатационные свойства деталей машин.

    презентация [1,9 M], добавлен 26.10.2013

  • Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

    контрольная работа [79,3 K], добавлен 12.12.2011

  • Изучение понятия и особенностей термической обработки стальных деталей. Характерные черты закалки, отпуска и отжига - температура нагрева и способ последующего охлаждения. Отпуск закаленных деталей. Отжиг дюралюминия, меди и латуни. Воронение стали.

    презентация [152,4 K], добавлен 20.06.2014

  • Характерные особенности полумуфт, спектр их форм, размеров, характеристик и материалов для изготовления. Применение в прокатных станах, станках, двигателях, бытовых приборах. Выбор и обоснование марки стали, термическая обработка полумуфты, качество.

    контрольная работа [330,2 K], добавлен 07.10.2009

  • Расшифровка марки стали. Характер влияния углерода и легирующих элементов заданной стали на положение критических точек. Выбор и обоснование последовательности операции предварительной и окончательной термообработки деталей. Режим термообработки деталей.

    контрольная работа [73,7 K], добавлен 05.12.2008

  • Расшифровка марки стали. Характер влияния углерода и легирующих элементов заданной стали на положение критических точек. Выбор и обоснование последовательности операции предварительной и окончательной термообработки деталей. Режим термообработки деталей.

    контрольная работа [71,3 K], добавлен 05.12.2008

  • Использование комбинации термической обработки и пластической деформации для обеспечения высоких механических свойств деталей и полуфабрикатов. Устройства для подогрева, охлаждения и перемешивания закалочных сред. Установки для обработки деталей холодом.

    реферат [33,1 K], добавлен 06.11.2012

  • Характеристика основных элементарных процессов (диссоциация, абсорбция, диффузия) химико-термической обработки стали. Рассмотрение процессов цементации (твердая, газовая), азотирования, цианирования, диффузионной металлизации поверхностных слоев стали.

    лабораторная работа [18,2 K], добавлен 15.04.2010

  • Основы технологии термической обработки металлов и сплавов. Термическая обработка - этап технологического процесса изготовления деталей. Улучшение обрабатываемости материалов давлением или резанием. Формирования технических и электрических свойств.

    реферат [53,8 K], добавлен 20.01.2009

  • Надежность машин и механизмов как важнейшее эксплуатационное свойство. Методы проектирования и конструирования, направленные на повышение надежности. Изучение влияния методов обработки на формирование физико-механических свойств поверхностного слоя.

    реферат [303,6 K], добавлен 18.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.