Механизм разрушения материала при измельчении

Классификация процессов дробления в зависимости от крупности исходного куска или крупности промежуточного продукта. Изучение основных типов дробилок. Применение щековых дробилок для крупного и среднего дробления. Анализ узла подвески подвижного конуса.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 18.06.2019
Размер файла 622,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования РФ

Пермский государственный технический университет

Реферат

На тему: Механические процессы. Механизм разрушения материала при измельчении. Аппараты для крупного измельчения

Измельчение -- процесс последовательного уменьшения размеров кусков твердого материала от первоначальной (исходной) крупности до требуемой. В некоторых случаях этот процесс является подготовительным и получаемый продукт направляется на дальнейшую переработку, как, например, при производстве цемента. В других случаях, например при производстве щебня, в результате измельчения получается товарный продукт, т. е. процесс измельчения имеет самостоятельное значение.

Процесс измельчения материалов принято разделять на две стадии: дробление и помол. В свою очередь процессы дробления в зависимости от крупности исходного куска или крупности промежуточного продукта подразделяются на крупное, среднее и мелкое дробление. При дроблении получить материал высокой степени измельчения невозможно, поэтому в ряде случаев приходится процесс дробления производить в несколько стадий, в двух-трех последовательно установленных машинах. При помоле различают стадии грубого, тонкого и сверхтонкого помола.

Дробление:

крупное

100--350

среднее

40--100

мелкое

5--40

Помол:

грубый

5--0,1

тонкий

0,1--0,05

сверхтонкий

Менее 0,05

В машине, предназначенной для измельчения материалов, в зависимости от ее назначения и принципа действия могут использоваться следующие нагрузки: раздавливание (рис. 1, а), удар (рис. 1 б), раскалывание (рис. 1, в), излом (рис. 1, г), истирание (рис. 1, д). В большинстве случаев различные нагрузки действуют одновременно, например, раздавливание и истирание, удар и истирание и т. д. Необходимость использования различных нагрузок, а также различных по принципу действия и габаритным размерам машин связана с многообразием свойств и размеров измельчаемых материалов, а также с различными требованиями к крупности готового продукта. дробление подвеска щековой узел

Рис. 1. Схемы методов измельчения:

а -- раздавливание; б -- удар; в -- раскалывание; г -- излом; д -- истирание

Многообразие измельчаемых материалов по их свойствам и преследуемым промышленным целям этого процесса приводит к большому количеству различных конструкций дробильно-помольных машин и установок.

Все применяемые машины для измельчения материалов разделяют на две группы: дробилки и мельницы. Дробилки -- это машины, которые применяются для дробления сравнительно крупных кусков материала (начальный размер 100--1200 мм), при этом степень измельчения находится в пределах 3--20. Мельницы предназначаются для получения тонкоизмельченного порошкообразного материала, при этом размер начальных кусков равен 2--20 мм, а размер частиц конечного продукта составляет от 0,1--0,3 мм до долей микрометра. Нецелесообразно подавать в помольные агрегаты куски, как это иногда имеет место, размером более 15--20 мм, так как в этом случае в начале процесса измельчения мельница должна работать как дробилка, что снижает эффективность процесса помола.

Дробилки. По конструкции и принципу работы различают следующие основные типы дробилок:

Рис. 2. Схема дробилок

1) щековые дробилки (рис. 2, а), в которых раздавливание происходит между неподвижной 1 и подвижной 2 щеками в результате периодического нажатия; в отдельных конструкциях раздавливание сочетается с истиранием;

2) конусные дробилки (рис. 2, б), в которых раздавливание материала и частичное его изгибание происходят между двумя конусами. Внешний конус 1 неподвижен, а внутренний (дробящий) 2, посаженный на вертикальный вал 3, движется по окружности эксцентрично по отношению к внешнему конусу. В конусных дробилках процесс измельчения происходит непрерывно;

3) валковые дробилки (рис. 2, в), в которых материал раздавливается между двумя валками 1 и 2, вращающимися навстречу друг другу. В отдельных конструкциях измельчение материала происходит путем раздавливания и истирания, которое осуществляется вследствие различного числа оборотов валков. В валковых дробилках так называемого камневыделительного, или дезинтеграторного, типа при измельчении вязких и влажных материалов происходит не только дробление, но и отделение посторонних твердых включений;

4) молотковые дробилки (рис. 2, г) и роторные дробилки ударного действия (рис. 2, д), в которых дробление материала осуществляется в результате ударов по нему молотков 1 или бил быстровращающегося ротора 2, а также ударов кусков о стенки камеры дробления и о другие куски;

5) бегуны (рис. 5, е), которые в зависимости от величины зерна в конечном продукте и свойств материала предназначаются для мелкого дробления помола. Измельчение материала происходит между вращающимися катками 1 и чашей 2 (подвижной или неподвижной) путем раздавливания и истирания.

Мельницы. По конструкции и принципу работы различают следующие основные типы мельниц:

Рис. 3. Схема мельниц

1) барабанные мельницы (рис. 3, а), предназначаемые для тонкого измельчения. Эти мельницы могут работать по принципу удара и частично истирания свободно падающими дробящими телами 1 (шарами, цилиндрами, прутками, стержнями и т. п.), находящимися во вращающемся или вибрирующем барабане 2 вместе с измельчаемым материалом. Барабанные мельницы без мелющих тел работают ударом при частичном истирании крупных кусков материала о мелкие;

2) роликовые маятниковые мельницы (рис. 3, б), в которых материал раздавливается между неподвижным кольцом 1 и быстровращающимися роликами 2, подвешенными шарнирно к крестовине 3, укрепленной на вертикальном валу 4. Ролики прижимаются к рабочей дорожке неподвижного кольца центробежной силой инерции. К этому же классу относятся кольцевые мельницы, в которых дробящие ролики (один из которых ведущий) прижимаются к кольцу пружинами;

3) кольцевые шаровые мельницы (рис. 3, в), в которых размол материала осуществляется методом раздавливания между шарами 1, уложенными на беговой дорожке с небольшим зазором друг от друга, и вращающимся кольцом 2. Шары прижимаются к беговой дорожке нижнего вращающегося кольца верхним кольцом 3;

4) ударные мельницы (рис. 3, г) предназначены для размола материалов, при этом в ряде случаев с одновременной подсушкой его. Ударные мельницы строятся или со свободно подвешенными -- шахтные мельницы или с жестко закрепленными молотками 1 -- аэробильные мельницы. Измельчение осуществляется по принципу удара, отчасти истирания, а также за счет удара частиц друг о друга;

5) вибрационные мельницы (рис. 3, д) применяются для тонкого и сверхтонкого помола материалов. Размол материала происходит в результате круговых колебаний корпуса 1 мельницы с частотой 15-50 Гц. При этом измельчаемый материал подвергается многократному воздействию загруженных в мельницу небольших шаров 2;

6) мельницы струйной энергии (рис. 3, е), размол в которых происходит за счет взаимного удара частиц материала, находящихся в турбулентном воздушном потоке, движущемся с большой скоростью, а также частично за счет трения материала о стенки размольной камеры.

АППАРАТЫ ДЛЯ КРУПНОГО ИЗМЕЛЬЧЕНИЯ

Щековые дробилки

В промышленности строительных материалов щековые дробилки в основном применяют для крупного и среднего дробления. Принцип работы щековой дробилки заключается в следующем. В камеру дробления, имеющую форму клина и образованную двумя щеками, из которых одна в большинстве случаев является неподвижной, а другая подвижной, подается материал для дробления. Благодаря клинообразной форме камеры дробления куски материала располагаются по высоте камеры в зависимости от их крупности: более крупные -- вверху, менее крупные -- внизу. Подвижная щека периодически приближается к неподвижной, причем при сближении щек (ход сжатия) куски материала дробятся. При удалении подвижной щеки (холостой ход), куски материала продвигаются вниз под действием силы тяжести или выходят из камеры дробления, если их размеры меньше размера наиболее узкой части камеры, называемой выходной щелью, или занимают новое положение, соответствующее своему новому размеру. Затем цикл повторяется.

На рис. 4 показана щековая дробилка для крупного дробления с простым движением подвижной щеки. Эту конструкцию можно считать типовой, так как отечественные и зарубежные дробилки для крупного дробления имеют аналогичную конструкцию и отличаются только размерами и некоторыми не принципиальными изменениями отдельных узлов.

Станина дробилки 1 должна обеспечивать жесткость всей конструкции при больших (несколько сотен тонн) усилиях, возникающих при дроблении прочных материалов. Поэтому станина крупных дробилок, как правило, выполнена в виде цельной массивной стальной конструкции. В выемках боковых стенок станины закреплены коренные подшипники эксцентрикового вала 5. На эксцентричной части вала подвешен литой шатун 6, в нижней части которого имеются пазы для установки сухарей, являющихся опорными поверхностями для передней 11 и задней 10 распорных плит. Для коренных и шатунных подшипников применены специальные подшипники качения, выдерживающие большие динамические нагрузки.

Рис. 4. Щековая дробилка для крупного дробления

Периодичность работы щековой дробилки из-за наличия холостого хода и хода сжатия вызывает неравномерную нагрузку на приводной двигатель. Для выравнивания этой нагрузки эксцентриковый вал дробилки снабжен массивными маховиками, которые аккумулируют энергию при холостом ходе и отдают ее при ходе сжатия.

На один конец эксцентрикового вала насажен шкив-маховик 15, на другой -- маховик 16. Сцепление шкива-маховика с валом обеспечивается фрикционной муфтой 14. Между ступицей шкива-маховика и валом находятся бронзовые втулки, по которым шкив-маховик может свободно проворачиваться, если крутящий момент превысит расчетный. Таким образом, фрикционные муфты и свободная посадка шкива-маховика на вал предотвращают поломки деталей дробилки при перегрузках, т. е. являются предохранительными устройствами.

Подвижная щека 3, представляющая собой стальную отливку коробчатого сечения, подвешена на оси 4, концы которой установлены в подшипниках с бронзовыми вкладышами в верхней части боковых стенок станины. В нижней части щеки имеется паз для установки сухаря, в который упирается передняя распорная плита. Задняя распорная плита упирается в сухарь регулировочного устройства 9. Опорные поверхности распорных плит изнашиваются при работе машины и поэтому распорные плиты имеют сменные наконечники. Силовое замыкание звеньев механизма привода подвижной щеки обеспечивается тягами 8 и пружинами 7.

На неподвижную и подвижную щеки крепят неподвижную 13 и подвижную 12 дробящие плиты, которые непосредственно соприкасаются с дробимым материалом и являются основными сменными рабочими элементами щековых дробилок. Рабочие поверхности дробящих плит и боковые стенки станины образуют камеру дробления. Часть боковых стенок станины, выходящих в камеру дробления, футеруется сменными плитами 2.

Дробящие плиты крупных щековых дробилок сборные, состоят из отдельных частей и крепятся к щекам при помощи болтов с потайными головками. Такое же крепление применяется для боковых футеровочных плит.

Ширина выходной щели при прочих равных условиях определяет крупность продукта дробления, а также производительность дробилки. Так как по мере изнашивания дробящих плит ширина выходной щели возрастает, ее необходимо регулировать (поджимать). На щековых дробилках крупного дробления это осуществляется установкой между упором 9 и задней стенкой станины различных по толщине дополнительных прокладок. Для облегчения этой операции в дробилках предусматривается гидравлический домкрат, при помощи которого упор вместе с распорными плитами, нижним концом шатуна и подвижной щекой отжимается от станины. Затем устанавливают необходимое число прокладок, после чего давление в домкрате снижается и упор прижимается к прокладке.

Пуск щековых дробилок, особенно крупных, затруднен из-за преодоления инерции больших масс. Поэтому для привода дробилок применяли электродвигатель повышенной мощности, т. е. при нормальном рабочем режиме мощность двигателя полностью не использовалась (потреблялось примерно 40 - 50% от установленной мощности). Это значительно ухудшало эксплуатационные показатели дробилки. Кроме того, двигатель повышенной мощности не обеспечивал пуска щековой дробилки, если камера дробления загружена материалом, т. е. находилась под завалом. Случайная остановка дробилки с загруженной камерой дробления вызывала длительные простои дробилки, так как перед пуском камеру дробления приходилось очищать от материала.

Рис. 5. Схема вспомогательного привода для щековых дробилок

Пуск крупных щековых дробилок под завалом обеспечивает вспомогательный привод (рис. 5), включающий электродвигатель малой мощности 1, соединенный клиноременной передачей с ведущим валом зубчатого редуктора 2. На ведомом валу редуктора установлена обгонная муфта 3, соединенная со шкивом главного электродвигателя 4. Шкив главного двигателя связан клиноременной передачей со шкивом-маховиком дробилки 5. Общее передаточное отношение вспомогательного привода (клиноременной передачи и редуктора) около 100, мощность электродвигателя (в зависимости от типа дробилки) 7-14 кВт. Вспомогательным приводом механизм дробилки «трогается с места». В этот момент включается главный электродвигатель. Когда частота вращения вала главного электродвигателя превысит частоту вращения ведомого вала редуктора, вспомогательный привод автоматически отключается.

Конусные дробилки

Конусные дробилки являются высокопроизводительными машинами при переработке различных горных пород на всех стадиях дробления. В зависимости от назначения разделяют конусные дробилки для крупного (ККД), среднего (КСД) и мелкого (КМД) дробления.

Дробилки ККД характеризуются шириной приемного отверстия и в зависимости от типоразмера могут принимать куски горной породы размером 400-1200 мм, имеют выходную щель 75-300 мм и производительность 150-2600 м3/ч.

Отечественная промышленность выпускает следующий ряд дробилок ККД: 500, 900, 1200, 1500 мм (по ширине приемного отверстия).

На рис. 6 показана конусная дробилка ККД, камера дробления которой образована двумя коническими поверхностями, направлен ными вершинами в противоположные стороны: подвижного конуса вверх, неподвижного вниз. По этой схеме достигается большое расстояние между дробящими конусами вверху у загрузочного отверстия при необходимом угле захвата и тем самым обеспечивается прием и дробление крупных кусков материала. Такие дробилки час то называют длинноконусными дробилками или с крутым конусом. На массивную станину дробилки 1 крепится корпус, состоящий из двух частей: нижней 2 и верхней 3, соединенных болтами. Внутренние поверхности корпуса футерованы сменными плитами 4 из высокомарганцовистой стали, образующими дробящую поверхность неподвижного конуса.

К фланцу верхней части корпуса прикреплена траверса 5, лапы которой защищены от износа сменными плитами 6. В средней части траверсы расположен узел подвески вала подвижного конуса, защищенный сверху колпаком 7.

На главный вал дробилки 8 жестко насажен подвижный конус 9, футерованный сменным дробящим конусом 10 из высокомарганцовистой стали, поверхность которого образует дробящую поверхность подвижного конуса.

Рис. 6. Конусная дробилка для крупного дробления

В центре нижней части станины расположен стакан эксцентрика 15, в который вставлена эксцентриковая втулка 11, ось цилиндрической наружной поверхности которой совпадает с вертикальной осью дробилки. Втулка имеет наклонную цилиндрическую расточку, эксцентричную относительно вертикальной оси дробилки. В эту расточку вставляется нижний конец вала подвижного конуса, верхний конец которого шарнирно закреплен в узле подвески.

К эксцентриковой втулке прикреплена коническая шестерня 12, находящаяся в зацеплении с конической шестерней приводного вала 13, соединенного через муфту с приводным шкивом 14.

Эксцентриковый узел является наиболее напряженным узлом дробилки, воспринимающим значительные нагрузки. Для обеспечения нормальных условий трения скольжения в кинематических парах вал подвижного конуса -- эксцентриковая втулка и эксцентриковая втулка -- стакан эксцентрика внутреннюю наклонную расточку и наружную поверхность эксцентриковой втулки заливают баббитом или же устанавливают бронзовые или биметаллические вкладыши.

При вращении эксцентриковой втулки ось вала подвижного конуса описывает коническую поверхность с вершиной в точке подвеса. Угол гирации для дробилок ККД составляет около 30 мин.

Таким образом, при заданном эксцентриситете радиус вращения оси подвижного конуса зависит от расстояния до точки подвеса, т. е. от высоты камеры дробления, и чем ближе к точке подвеса, тем меньше этот радиус, а следовательно, и ход сжатия подвижного конуса. На отечественных дробилках ККД в зоне загрузочного отверстия радиус конуса вращения равен приблизительно 5 мм, т. е. полный размах составляет около 10 мм. В зоне выходной щели радиус равен примерно 30 мм.

Рис. 7. Узел подвески подвижного конуса

На рис. 7 показан узел подвески дробилки ККД. В центральной расточке траверсы установлены неподвижная втулка 6 и плоская опорная шайба 5. Для компенсации зазоров в эксцентриковом узле и возможной несоосности опор конусная втулка имеет несколько больший угол конусности, чем угол гирации. Конусная втулка 4 прикреплена к концу вала подвижного конуса при помощи обоймы 3 и гайки 2. Гайка выполнена разрезной для исключения произвольного самоотворачивания и сопрягается с обоймой по конической посадке и дополнительно фиксируется шпонкой. В свою очередь, обойма связана с конусной втулкой шиповым соединением. Такая конструкция деталей подвески исключает проворачивание конусной втулки по шейке вала и тем самым предотвращает изнашивание шейки. От пыли и ударов загружаемой в дробилку породы узел подвески надежно защищен массивным колпаком 1.

При навинчивании или вывинчивании гайки 2 узел подвижного конуса поднимается или опускается и тем самым осуществляется регулирование выходной щели дробилки.

При работе дробилки конусная втулка 4 своей торцовой частью обкатывается по опорной шайбе 5, а конической поверхностью по втулке 6. Так как вал подвижного конуса вращается также вокруг собственной оси, то в узле подвески втулка 4 проскальзывает по шайбе 5 и втулке 6.

Детали конической подвески испытывают значительные нагрузки, вызывающие большие контактные напряжения, и работают в режиме полусухого трения. Учитывая весьма напряженные условия работы узла подвески, к изготовлению его деталей предъявляют особые требования. Детали подвески изготовляют из подшипниковой стали; они имеют высокую чистоту обработки поверхности. Твердость рабочих поверхностей сопрягаемых деталей должна быть в пределах 47-52 и 53-58 единиц по Роквеллу. На наиболее мощных дробилках ККД с шириной приемного отверстия 1200 мм и более применяют двухдвигательный (двусторонний) привод, как это показано на рис. 6. Привод дробилки меньших типоразмеров осуществляется одним электродвигателем. Второй двигатель на крупных дробилках устанавливают для пуска дробилок в том случае, если камера дробления заполнена материалом, т. е. находится «под завалом».

Для пуска дробилки «под завалом» разработана система гидравлической опоры для подвижного конуса, позволяющая быстро опускать конус и тем самым ликвидировать расклинивание материала в камере дробления.

Дробилки ударного действия

Роторные дробилки

В дробилках ударного действия дробимый материал разрушается под действием механического удара, при котором кинетическая энергия движущихся тел полностью или частично переходит в энергию деформации и разрушения.

В отличие от рассмотренных выше дробилок, сжимающих кусок между двумя дробящими поверхностями, в дробилках ударного действия кусок материала обычно подвергается воздействию только с одной стороны, а возникающие при этом усилия дробления определяются силами инерции массы самого куска.

Дробилки ударного действия применяют в основном для измельчения малоабразивных материалов средней прочности (известняка, доломитов, мергеля, угля, каменной соли и т. п.). В некоторых случаях из-за технологических особенностей производства дробилки ударного действия используют и при переработке материалов с повышенной прочностью и абразивностью (например, асбестовых руд, шлаков и т. п.).

Роторные дробилки имеют массивный ротор, на котором жестко закреплены сменные била из износостойкой стали. Дробилки с таким ротором можно применять для дробления крупных кусков сравнительно прочных материалов, т. е. для первичного дробления, а также на последующих стадиях. Дробимый материал получает удары от всей массы ротора и именно это определяет особенности и название дробилки. В молотковых дробилках дробление осуществляется благодаря кинетической энергии молотков, шарнирно подвешенных к ротору. Особенности этих машин определяются конструкцией молотка и поэтому они названы молотковыми.

Конструкции роторных дробилок крупного (ДРК), среднего и мелкого дробления (ДРС) принципиально не отличаются, но соотношение размеров ротора и число отражательных плит у них различное. У дробилок ДРК диаметр ротора больше длины, у дробилок ДРС эти размеры одинаковы. Камера дробления у дробилок ДРК образуется ротором и двумя отражательными плитами, у дробилок ДРС -- ротором и тремя плитами.

Рис. 8. Роторная дробилка для крупного дробления

На рис. 8 показана роторная дробилка для крупного дробления.

Корпус дробилки состоит из верхней 1 и нижней 2 частей, выполненных сварными из листовой стали. Нижняя часть является станиной, т. е. основанием дробилки. Станина крепится к фундаменту и на нее устанавливают ротор 3 и верхнюю часть корпуса, которая выполнена с закрепленными на ней отражательными плитами 4.

Верхняя часть корпуса разъемная и состоит из передней и задней частей. Задняя часть посредством винтового, гидравлического или другого механического устройства может откидываться (отводиться) от передней, что облегчает доступ к ротору и плитам для их осмотра и ремонта. Места разъема корпуса герметизируются, чтобы избежать проникновения пыли из дробилки.

Внутренняя поверхность корпуса, образующая камеру дробления, футеруется сменными износостойкими плитами 5 из термически обработанных сталей 45 или 65Г

Нижние части отражательных плит также футеруются сменными плитами 6, изготовленными из высокомарганцовистой стали.

При износе нижней рабочей кромки плиты ее можно повернуть на 180°.

Для регулирования степени дробления, т. е. регулирования зернового состава готового продукта, нижние концы отражательных плит соединены тягами с механизмами 7, расположенными на торцовых стенках корпуса дробилки и регулирующими зазор между плитами и окружностью вращения ротора. Эти механизмы одновременно являются предохранительным (буферным) устройством.

При попадании недробимых предметов пружины амортизируют, и концы отражательных плит отходят от ротора, пропуская недробимый предмет. Кроме того, благодаря наличию буферных устройств и массивных отражательных плит, которые воспринимают удары кусков дробимого материала, корпус имеет значительную надежность при сравнительно малой массе.

В рассматриваемой дробилке установлены две отражательные плиты, что характерно для роторных дробилок крупного дробления.

Вместо плит иногда устанавливают отражательные колосниковые решетки. В этом случае частицы определенной крупности сразу отделяются от массы перерабатываемого материала, что для некоторых процессов целесообразно.

Список используемой литературы

1. Бауман В. А., Клушанцев Б. В., Мартынов В. Д. Механическое оборудование предприятий строительных материалов, изделий и конструкций. Учебник для строительных вузов. М., «Машиностроение», 1981.

2. Сапожников М. Я. Механическое оборудование предприятий строительных материалов, изделий и конструкций: Учебник для строительных вузов и факультетов. М., «Высш. школа», 1971

Размещено на Allbest.ru

...

Подобные документы

  • Отличия дробления и измельчения по своему технологическому назначению и месту в цепи последовательных операций обогатительных фабрик. Применяемые способы разрушения, степень и стадии. Особенности щековых, конусных, валковых и молотковых дробилок.

    реферат [2,1 M], добавлен 18.05.2011

  • Применение щековых дробилок в промышленности для крупного и среднего дробления кусковых материалов. Основные параметры - размеры загрузочного и разгрузочного отверстий. Схема подвеса подвижной щеки. Условие выпадения призмы материала при заданном захвате.

    курсовая работа [104,9 K], добавлен 18.12.2010

  • Выбор и обоснование схемы дробления и измельчения, дробильного, классифицирующего и измельчительного оборудования. Характеристика крупности исходной руды. Расчет стадий дробления, грохотов, мельниц, классификатора. Ситовые характеристики крупности.

    курсовая работа [1,7 M], добавлен 19.11.2013

  • Обзор основных конструкций щековых дробилок. Определение геометрических параметров дробилки: параметры камеры дробления, угла захвата, хода сжатия. Определение частоты вращения эксцентрикового вала, производительности, работы дробления и мощности привода.

    курсовая работа [833,6 K], добавлен 14.11.2017

  • Обзор особенностей строения дробилок, предназначенных для измельчения горных и каменных пород. Классификация дробильных машин по механико-конструктивным признакам и методу дробления камня: щековые, конусные, валковые, молотковые, центробежные, самоходные.

    реферат [29,9 K], добавлен 07.04.2015

  • Определение общей степени дробления для цеха дробления. Подбор степени дробления. Расчет и выбор дробилок, колосникового грохота. Расчет грохота второй стадии дробления. Расчет схемы измельчения и выбор оборудования для измельчения и классификации.

    курсовая работа [518,6 K], добавлен 20.01.2016

  • Назначение и область применения машин для измельчения. Классификация машин для дробления. Показатели оценки качества конечной продукции, производимой дробилкой ЩДП 1,2х1,5м. Анализ технических и эксплуатационных показателей работы щековых дробилок.

    курсовая работа [2,2 M], добавлен 16.03.2014

  • Особенности и этапы осуществления технологии дробления. Уточненный расчет схемы грохочения. Выбор и расчет дробилок. Определение потребности оборудования для рудоподготовки, вспомогательного оборудования. Положения техники безопасности в цехе дробления.

    курсовая работа [83,3 K], добавлен 12.01.2015

  • Технические характеристики щековой дробилки. Проведение ситового анализа руды и продуктов обогащения сухим способом и построение характеристик крупности. Знакомство с работой щековой дробилки и плоскокачающегося грохота в лабораторном исполнении.

    лабораторная работа [593,2 K], добавлен 27.05.2015

  • Качественно-количественные операции флотации железной руды. Расчет процесса дробления-грохочения, крупности и выхода продуктов. Показатели обогащения: выход концентратов, хвостов; содержание компонентов. Технологическая эффективность процессов обогащения.

    курсовая работа [66,6 K], добавлен 20.12.2014

  • Характеристика исходной горной массы. Выбор способа и обоснование технологической схемы производства. Эффективность операций грохочения. Изучение крупности продуктов дробления. Анализ насыпной плотности исходной горной массы и готовой продукции.

    курсовая работа [117,4 K], добавлен 14.12.2021

  • Особенности простых и сложных тепловых процессов. Проведение расчета теплообменника "Труба в трубе". Алгоритм теоретических расчётов параметров рабочих органов молотковых и вальцовых дробилок. Устройство и принцип работы молотковых и вальцовых дробилок.

    контрольная работа [358,4 K], добавлен 22.10.2012

  • Устройство и принцип работы конусных дробилок. Назначение операций дробления. Надежность, ремонт, монтаж и смазка оборудования. Автоматическое управление производством. Расчет годовой суммы амортизации и показателей использования основных фондов цеха.

    дипломная работа [3,9 M], добавлен 24.10.2013

  • Основные виды измельчения в технологии переработки пластмасс. Выбор метода в зависимости от механической прочности и размеров частиц исходного материала. Конструкция и принцип действия ножевых, молотковых и роторнных дробилок, а также струйных мельниц.

    реферат [337,4 K], добавлен 28.01.2010

  • Основные параметры и размеры дробилок, их использование для дробления рудных и нерудных полезных ископаемых. Особенности монтажа дробилки, характеристика его этапов. Фундамент и размещение, эксплуатация дробилки. Схема конусной дробилки, ее обслуживание.

    презентация [1,3 M], добавлен 16.01.2017

  • Машины предприятий нерудных строительных материалов. Специфика работы машин. Конусовидные дробилки горных пород средней и большой твёрдости. Процесс дробления. Установка и монтаж конусных дробилок. Организация монтажных работ. Дробилка СМД-17, СМД-18.

    курсовая работа [11,1 K], добавлен 18.09.2008

  • Изучение и анализ сведений о конструкциях машин для измельчения и процессов, происходящих в них. Назначение, область применения и классификация машин для измельчения. Конструкция и принцип действия роторной дробилки. Оценка качества конечной продукции.

    курсовая работа [2,3 M], добавлен 20.02.2010

  • Геологическая характеристика месторождения. Характеристика перерабатываемой руды, разработка и расчет схемы ее дробления. Выбор и расчет оборудования для дробильного отделения. Определение количества смен и трудозатрат на обеспечение технологии дробления.

    курсовая работа [59,7 K], добавлен 25.02.2012

  • Изучение и анализ сведений о конструкциях машин для дробления и процессах, происходящих в них. Сущность и основные закономерности процесса дробления. Показатели качества конечной продукции, производимой дробилкой ККД-1200. Технические показатели работы.

    курсовая работа [1,6 M], добавлен 08.11.2010

  • Виды и характеристика транспорта для перевозки глины: автомашины, скреперы, бульдозеры, мотовозы, электровозы, канатная тяга. Применение щековых, валковых и молотковых дробилок, шаровых мельниц, барабанных и плоских грохотов для подготовки добавок.

    реферат [3,3 M], добавлен 25.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.