Исследование геометрической точности вертикально-фрезерного станка с ЧПУ

Оценка влияния геометрических погрешностей станка на показатели качества обрабатываемых поверхностей с учетом их расположения в рабочей зоне станка и перемещения узлов. Расчет геометрической точности с применением средств трехмерного моделирования.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 28.09.2019
Размер файла 6,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФГБОУ ВПО «Набережночелнинский институт Казанского Федерального Университета»

Исследование геометрической точности вертикально-фрезерного станка с ЧПУ

Кудишкин Александр Владимирович

Студент бакалавриата техники и технологии

Научный руководитель:

к.т.н., доцент Хусаинов Рустем Мухаметович

Геометрическая точность станка определяется точностью взаимного расположения и перемещения узлов станка. Отклонения от геометрической точности вызывают погрешности формы и взаимного расположения обрабатываемых поверхностей [2, c. 28]. Для обеспечения заданной точности обработки необходимо оценить влияние геометрических погрешностей станка на показатели качества обрабатываемых поверхностей с учетом их расположения в рабочей зоне станка и перемещения узлов. Традиционно такая оценка выполняется матричными методами, что не учитывает условия контактного взаимодействия между узлами станка и приводит к усреднению погрешностей [3, c. 210]. В данной работе был предпринят подход к расчету геометрической точности с применением средств трехмерного моделирования.

Расчетная модель включает в себя следующие узлы (рис. 1):

Рисунок 1. Несущая система станка:1) стойка, 2) каретка, 3) шпиндельная бабка, 4) шпиндель, 5) рукав шпинделя, 6) патрон, 7) фреза, 8) стол, 9) салазки, 10) рейка, 11) станина

Для решения поставленной задачи было применено программное обеспечение Solid Edge ST6 (студенческая лицензия) от компании Siemens PLM Software, из модулей которого были применены:

1. Трехмерное построение

2. Сборка

3. Движение

Для построения расчетной схемы были составлены трехмерные модели деталей несущей системы и осуществлена их сборка с учетом характера соединений [4, c. 56]. Моделирование погрешностей направляющих производилось путем искажения формы граней. (рис. 2).

Рисунок 2. Моделирование погрешности направляющих

Была выполнена сборка моделей с учетом характера соединений. Для соединения каждой неподвижной детали были использованы связи:

1) Контакт - для обеспечения постоянного соприкосновения поверхностей.

2) Трасса - для формирования траектории движения подвижного узла. (рис. 3).

Рисунок 3. Трасса направляющих стола

Для контроля длины перемещения подвижного узла был создан управляющий размер. (рис. 4).

Рисунок 4. Управляющие размеры

Для определения погрешности обрабатываемой поверхности были созданы контрольные размеры между инструментом и обрабатываемой поверхностью. (рис. 5).

Рисунок 5. Контрольные размеры

Было выполнено перемещение каждого подвижного узла станка с использованием функции «Переместить компонент» - «Физическое движение».

Последовательно перемещая подвижный узел, определялось изменение контрольных размеров. Каждое значение контрольного размера в отдельно взятой точке измерений представляет собой координату положения обрабатываемой поверхности относительно выбранной точки инструмента (например, вершины зуба инструмента). При отсутствии погрешностей направляющих стола, не будет происходить изменения контрольного размера по длине хода. Вследствие наличия погрешностей направляющих, контрольный размер будет изменяться по ходу движения (рис 6, 7, 8). Определяя эти изменения при различных значениях управляющего размера можно определить разновидность получаемой погрешности обрабатываемой поверхности (в данном случае, наличие погрешности направляющих стола приведет к образованию непрямолинейности обрабатываемой поверхности) и ее абсолютное значение. Сравнением абсолютного значения погрешности с ее допуском можно понять, обеспечит ли данный станок точность обработки по данному параметру.

Рисунок 6. Исходное положение и размеры подвижного узла

Рисунок 7. Положение и размеры узла в середине хода

Рисунок 8. Положение и размеры узла в конце хода

В результате данного исследования выявилась возможность оценки влияния геометрических погрешностей станка на погрешности формы и взаимного расположения обрабатываемых поверхностей средствами трехмерного моделирования. Такой способ является наиболее универсальным, т.к. может применяться для решения других задач моделирования обработки.

Библиографический список

геометрический поверхность станок

1. Бушуев В.В. и др. Металлорежущие станки: В 2 т. Том 1 Учебник. М.: Машиностроение, 2011. -- 608 с. ISBN 978-5-94275-594-2 Металлорежущие станки: В 2 т. Том 2 Учебник. М.: Машиностроение, 2011. -- 586 с.

2. Бушуев В.В. Станочное оборудование автоматизированного производства. М.: Изд-во «Станкин», 1996.

3. Решетов Д.Н., Портман В.Т. Точность металлорежущих станков. М.: Машиностроение, 1986. - 336 с.

4. Рудаков К.Н. FЕМАР 10.2.0. Геометрическое и конечно-элементное моделирование конструкций. - К.: КПИ, 2011. - 317 с.

Размещено на Allbest.ru

...

Подобные документы

  • Системный анализ аналогов и выбор прототипа станка. Описание конструкции и системы управления оборудования. Определение класса точности. Расчет режимов резания, выбор электродвигателя. Ресурс точности, определение времени безотказной работы станка.

    курсовая работа [1,3 M], добавлен 21.01.2015

  • Техническая характеристика горизонтально-фрезерного станка модели 6П80Г и область его применения. Назначение основных узлов, механизмов и органов управления станка. Кинематика станка и принципы его работы. Оценка точности кинематического расчета привода.

    курсовая работа [3,9 M], добавлен 26.01.2013

  • Проектирование привода главного движения вертикально-фрезерного станка на основе базового станка модели 6Т12. Расчет технических характеристик станка, элементов автоматической коробки скоростей. Выбор конструкции шпинделя, расчет шпиндельного узла.

    курсовая работа [2,4 M], добавлен 22.04.2015

  • Назначение и область применения горизонтально-фрезерного станка модели 6П80Г. Название основных узлов и органов управления станка, принцип его работы. Структурная и кинематическая схема станка, его наладка, эскиз фрезерования плоской поверхности.

    контрольная работа [5,3 M], добавлен 27.12.2012

  • Расчёт конструкции коробки скоростей вертикально-сверлильного станка 2Н125. Назначение, область применения станка. Кинематический расчет привода станка. Технико-экономический анализ основных показателей спроектированного станка и его действующего аналога.

    курсовая работа [3,7 M], добавлен 14.06.2011

  • Устройство и работа станка Ц2Д1Ф. Технические показатели обрезных станков. Определение класса точности станка. Расчет ресурса по точности. Выбор режущего инструмента. Процесс фрезерования торцово-конической фрезой. Определение угловых параметров.

    дипломная работа [1,1 M], добавлен 01.12.2015

  • Характеристика назначения (вертикальное чистовое фрезерование изделий), органов управления, узлов и принадлежностей (суппорт, шпиндель) широкоуниверсального фрезерного станка повышенной точности модели 675П, рассмотрение методов повышения их жесткости.

    курсовая работа [11,9 M], добавлен 08.06.2010

  • Обоснование основных технических характеристик вертикально-фрезерного станка. Кинематический расчёт привода главного движения. Силовые расчёты элементов спроектированного узла. Расчёт наиболее нагруженной зубчатой передачи на выносливость при изгибе.

    курсовая работа [867,1 K], добавлен 29.12.2014

  • Исследование зависимости температурной деформации шпиндельного горизонтально-фрезерного станка (при холостом ходу) и его узлов от времени работы и охлаждения. Пути минимизации воздействия нагрева на успешность осуществления технологического процесса.

    лабораторная работа [85,2 K], добавлен 02.12.2010

  • История развития станкостроения в России. Назначение станка и основные элементы его кинематической схемы. Особенности конструкции и комплектность станка, дополнительная оснастка. Технические характеристики вертикально-фрезерного станка JVM-836 TS.

    курсовая работа [727,8 K], добавлен 16.12.2014

  • Рациональная схема механизма коробки скоростей фрезерного станка. Конструкция узлов привода главного движения. Расчет крутящих моментов и мощности, выбор электродвигателя. Обеспечение технологичности изготовления деталей и сборки проектируемых узлов.

    курсовая работа [594,0 K], добавлен 14.10.2012

  • Разработка привода вращательного движения шпинделя и структуры шпиндельного узла консольно-вертикально-фрезерного станка. Кинематический и силовой расчет привода главного движения станка. Проект развертки сборочной единицы и конструкции шпиндельного узла.

    курсовая работа [1,4 M], добавлен 16.05.2014

  • Расчет технических характеристик станка и выбор его оптимальной структуры. Кинематический расчет привода, элементов коробки скоростей, валов и подшипниковых узлов. Выбор конструкции шпиндельного узла, определение точности, жесткости, виброустойчивости.

    курсовая работа [1,5 M], добавлен 03.07.2014

  • Назначение и область применения колесотокарного станка. Конструктивная компоновка и узлы колесотокарного станка. Основные виды испытаний станков. Инструменты, применяемые при испытании станков. Нормы точности и методы испытаний колесотокарного станка.

    курсовая работа [206,1 K], добавлен 22.06.2010

  • Назначение и типы фрезерных станков. Движения в вертикально-фрезерном станке. Предельные частоты вращения шпинделя. Эффективная мощность станка. Состояние поверхности заготовки. Построение структурной сетки и графика частот вращения. Расчет чисел зубьев.

    курсовая работа [141,0 K], добавлен 25.03.2012

  • Анализ аналогов шлифовальных станков для профилирования инструмента. Определение класса точности, режимов резания, ресурса точности, толщины стенки корпуса, времени безотказной работы станка, радиального биения шпинделя. Модули станочного конфигуратора.

    курсовая работа [537,7 K], добавлен 02.10.2013

  • Назначение, область применения станка и особенности конструкции вертикально-фрезерного станка 6560. Назначение и принцип работы электромагнитной муфты и универсальной делительной головки. Расчет настройки зубодолбёжного и зубофрезерного полуавтомата.

    контрольная работа [188,0 K], добавлен 09.11.2010

  • Динамический расчет вертикально-фрезерного станка 675 П. Расчет обработки вала ступенчатого. Динамическая модель основных характеристик токарно-винторезного станка 16Б16А. Определение прогиба вала, параметров резца, режимов резания и фрезерования.

    практическая работа [268,9 K], добавлен 31.01.2011

  • Общий вид станка с указанием основных узлов, техническая характеристика станка и его назначение. Схемы нарезания колёс и соответствующие частные кинематические структуры. Анализ кинематических структур. Общая кинематическая структура станка.

    курсовая работа [4,9 M], добавлен 09.05.2007

  • Определение основных технических характеристик вертикально-сверлильного станка, синтез и описание его кинематической структуры. Динамические, прочностные и другие необходимые расчёты проектируемых узлов, описание системы смазки и управления станком.

    курсовая работа [1,6 M], добавлен 08.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.