Подготовка стальной поверхности перед нанесением цинк-полимерных лакокрасочных покрытий методом катодного электроосаждения

Изучение влияния подготовки стальной поверхности на коррозионную стойкость цинк-полимерных лакокрасочных покрытий, получаемых комбинацией двух процессов (катодного электроосаждения и электролитического восстановления металла). Процесс фосфатирования.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 26.01.2020
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Подготовка стальной поверхности перед нанесением цинк-полимерных лакокрасочных покрытий методом катодного электроосаждения

А.В. Павлов*,

М.Ю. Квасников,

Н.О. Баранов,

А.Д. Зеленская

Резюме

Изучено влияние подготовки стальной поверхности на коррозионную стойкость цинк-полимерных лакокрасочных покрытий, получаемых комбинацией двух процессов (катодного электроосаждения и электролитического восстановления металла).

Ключевые слова: обезжиривание, фосфатирование, катодное электроосаждение, лакокрасочные покрытия.

Большая часть металлических поверхностей защищена сегодня от коррозии путем окраски. Доля лакокрасочных покрытий среди всех средств пассивной защиты составляет 70-80%. Поэтому необходимо совершенствовать имеющиеся антикоррозионные лакокрасочные материалы, либо создавать принципиально новые. Перспективными являются металлополимерные защитные покрытия, которые совмещают в себе свойства полимеров (высокая адгезия, эластичность) и металлов (теплопроводность, износостойкость, твердость).

Подготовка поверхности металла в свою очередь - одно из основных условий успешной антикоррозионной защиты. В настоящий момент для защиты металлов и сплавов от коррозии в сочетании с лакокрасочными покрытиями наибольшее распространение получили фосфатные покрытия, получаемые в результате процесса фосфатирования [1]. Обезжиривание - процесс удаления жировых загрязнений с поверхности деталей также входит в технологический процесс подготовки процесса под окраску.

В работах [2,3,4,5] было описано получение металлополимерных покрытий, содержащих различные металлы и полученных комбинацией двух процессов: электролитического осаждения металла и катодного электроосаждения полимерного пленкообразователя. Но в этих работах не рассматривались вопросы влияния подготовки поверхности на антикоррозионные свойства получаемых покрытий.

Процесс фосфатирования в зависимости от используемых растворов разделяют на кристаллическое и аморфное фосфатирование. Под окраску методом катодного электроосаждения используют кристаллическое фосфатирование, так как именно такой вид фосфатирования обеспечивает максимальную антикоррозионную защиту, особенно для эксплуатации изделий в жестких условиях (открытой атмосфере, влажном климате или в условиях тропиков). Фосфатные покрытия для катафорезного окрашивания чаще всего получают из цинкофосфатных растворов с низким содержанием цинка. катодный стальной коррозионный

В данной работе рассматриваются процессы влияния подготовки поверхности, а именно обезжиривания и кристаллического фосфатирования, на коррозионную стойкость цинк-полимерных лакокрасочных покрытий.

В качестве моющего агента были использованы материалы фирмы Chemetall Gardoclean S5225 c добавлением поверхностно-активного вещества (ПАВ) Gardoclean H7149. Для активации процесса кристаллического фосфатирования применяли активатор Chemetall Gardolene V6559. Для непосредственного кристаллического фосфатирования был использована система цинкфосфатирующего состава Chemetall: Gardobond R 24 TA - модифицированная марганцем фосфатирующая композиция с низким содержанием цинка для изделий из стали и оцинкованной стали и алюминия, Gardobond Additive H7141 - щелочной нейтрализатор для кислотных ванн, применяется для корректировки содержания свободных кислот, Gardobond Additive H7004 - окислительный продукт, способствующий ускорению процессов цинкового фосфатирования. Материалы фирмы Chemetall широко используются в автомобильной промышленности для подготовки кузовов автомобилей под окраску методом катодного электроосаждения.

В качестве окрашиваемого изделия были взяты пластины из углеродистой стали марки 08 КП. Для процесса обезжиривания готовили ванну окунания с концентрацией Gardoclean S5225 1,2 масс. %. Для улучшения процесса обезжиривания в ванну при Т= 60 0С добавляли ПАВ Gardoclean H7149. Пластины погружали в ванну с полученным составом на 3 минуты при непрерывном перемешивании. После этого пластины тщательно промывали в дистиллированной воде. Для активации процесса фосфатирования пластины погружали в предварительно приготовленную ванну окунания с 0,06 масс. % раствором активатора Gardolene V6559 и выдерживали в течение 1 минуты при постоянном перемешивании. После активации пластины непосредственно фосфатировали в ванне окунания с составом Gardobond R 24 TA и добавленным к нему Gardobond Additive H7141. Ускоритель Gardobond Additive H7004 добавляли в цинк-фосфатирующий состав непосредственно перед окунанием пластин. Количество всех компонентов ванны фосфатирования были рассчитаны в соответствии с методическими указаниями фирмы Chemetall на эти материалы. Пластины выдерживались в течение 3 минут при Т= 55 0С, после чего промывались дистиллированной водой. Пластины с цинк-фосфатным покрытием сушили при Т= 100 0С в течение 10 минут в сушильном шкафу.

После проведенных операций оценивалось качество полученных фосфатных покрытий в соответствии с нормативной документацией, описывающей требования к оценке качества фосфатного покрытия ОАО "Автоваз". Фосфатное покрытие было без налетов коррозии, рельефных потеков, налетов шлама, не имело дефектов, сплошное и мелкокристаллическое с размерами глобулообразных (сфероидальных) кристаллов до 3 мкм (рис. 2 а, б).

Поверхностная плотность фосфатного слоя составила 1,74 г/м 2. Показатель W, который показывает эффективность процесса фосфатирования и соответствует отношению массы стравленного металла при фосфатировании к массе фосфатного слоя, составил 0,4. Все полученные характеристики цинк-фосфатного слоя соответствуют требованиям для получения высоких результатов коррозионной стойкости после окрашивания методом электроосаждения.

Пластины с цинк-фосфатным слоем окрашивали методом катодного электроосаждения при оптимальных параметрах для цинк-полимерной композиции на основе соли цинка и связующего лакокрасочного материала фирмы Basf (эпоксиаминный аддукт, модифицированный блокированным изоцианатом). Оптимальные параметры нанесения цинк-полимерных покрытий были установлены ранее [5]. Коррозионная стойкость цинк-полимерных покрытий с фосфатным слоем сравнивалась с полимерными катафорезными покрытиями с фосфатным слоем, полученными из связующего Basf без соли цинка. Также для установления увеличения коррозионной стойкости цинк-полимерных и полимерных покрытий вследствие содержания фосфатного подслоя их сравнивали с цинк-полимерными и полимерными покрытиями без него (таблица 1).

а

б

Рис. 2. Цинк-фосфатный слой на основе материалов Сhemetall под микроскопом: а- увеличение в 750 раз, б - в 2000 раз

Таблица 1. Коррозионная стойкость электроосажденных цинк-полимерных и полимерных покрытий с цинк-фосфатным подслоем и без него в 3 % растворе NaCI

Вид покрытия

Коррозионная стойкость в часах после экспозиции в 3% NaCI

Полимерное катафорезное покрытие

250

Полимерное катафорезное покрытие с цинк-фосфатным подслоем

700

Цинк-полимерное покрытие

100

Цинк-полимерное покрытие с цинк-фосфатным подслоем

400

Таким образом, доказано, что цинк-фосфатный подслой увеличивает коррозионную стойкость и полимерных катафорезных покрытий, и цинк-полимерных покрытий, полученных комбинацией двух процессов: катодного электроосаждения и электролитического восстановления цинка.

По предварительным испытаниям было установлено, что водостойкость цинк-полимерных покрытий, полученных катодном электроосаждением по обезжиренной стали в 4 раза превосходит аналогичные полимерные покрытия без цинка. Это вероятно можно объяснить наличием наноразмерного цинка, образующегося in situ в покрытии при получении указанным способом, способствующего увеличению эластичности покрытий при сохранении высокой прочности, что способствует снижению внутренних напряжений за счёт ускорения релаксационных процессов [6] и увеличением барьерной защиты. Однако солестойкость при этом не возрастала. По-видимому, это связано с нестойкостью цинка в растворах хлоридов, а протекторный механизм защиты стали при введении в систему наноразмерного цинка не реализуется [7]. Однако использование цинк-фосфатного подслоя обеспечивает высокую солестойкость покрытия.

Павлов Александр Валерьевич, аспирант, сотрудник кафедры химической технологии полимерных композиционных лакокрасочных материалов и покрытий РХТУ им. Д.И. Менделеева, Россия, Москва.

Квасников Михаил Юрьевич, д.т.н., профессор кафедры химической технологии полимерных композиционных лакокрасочных материалов и покрытий РХТУ им. Д.И. Менделеева, Россия, Москва.

Баранов Никита Олегович, студент 4 курса факультета нефтегазохимии и полимерных материалов РХТУ им. Д.И. Менделеева, Россия, Москва.

Зеленская Александра Дмитриевна, студентка 2 курса факультета нефтегазохимии и полимерных материалов РХТУ им. Д.И. Менделеева, Россия, Москва.

Литература

1. Григорян Н.С., Акимова Е.Ф., Ваграмян Т.А. Фосфатирование: учеб. пособие. - М.: Глобус, 2008. - 144 с.

2. Квасников М.Ю., Романова О.А. Уткина И.Ф., Смирнов К.Н., Киселёв М.Р., Королёв Ю.М., Крылова И.А., Антипов Е.М., Силаева А.А. Получение металлополимерных покрытий совместным электроосаждением на катоде полимерных электролитов и металлов// Высокомолекулярные соединения. сер. А . - 2015.- Т. 57, №4. - С.361-367.

3. Силаева А.А., Квасников М.Ю., Варанкин А.В., Антипов Е.М., Киселев М.Р., Крылова И.А. Лакокрасочные теплопроводящие медь-полимерные покрытия// Журнал прикладной химии. - 2015. - Т. 88, № 12. - С. 1699

4. Павлов А.В., Лукашина К.В., Лукъянскова А.И., Квасников М.Ю., Уткина И.Ф. Изучение возможности получения металлополимерных покрытий на основе цинка и полимерного электролита методом катодного электроосаждения //Успехи в химии и химической технологии. - 2014. - Т. 28, № 3 (152). - С. 58-60

5. Павлов А.В., Квасников М.Ю., Уткина И.Ф., Лукашина К.В. Цинк-полимерные покрытия, получаемые одновременным электроосаждением на катоде аминосодержащего полиэлектролита и электролитическим восстановлением цинка//Химическая промышленность сегодня. - 2015. - № 2. - С. 18-23.

6. П.И. Зубов, Л.А. Сухарева Структура и свойства полимерных покрытий. - М.: Химия, 1982. - 255 c.

7. Vertuest P. Anti-corrosion properties of zinc powder paintings using nano zinc metal powder/ P. Vertuest// China coatings journal. - 2009. - July. - P. 24-36.

Pavlov Alexander Valeryevich*, Kvasnikov Mikhail Yuryevich, Baranov Nikita Olegovich, Zelenskaya Alexandra Dmitrievna

D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia.

* e-mail: alexanderpavlov2013@mail.ru

Размещено на Allbest.ru

...

Подобные документы

  • Определение и виды лакокрасочных покрытий. Методы их нанесения. Основные свойства лакокрасочных покрытий. Их промежуточная обработка. Защита материалов от разрушения и декоративная отделка поверхности как основное назначение лакокрасочных покрытий.

    контрольная работа [172,4 K], добавлен 21.02.2010

  • Влияние технологических факторов на процесс электролитического осаждения цинка на стальной подложке, органических добавок на качество и пористость цинковых покрытий. Зависимость толщины осаждаемых цинковых покрытий от продолжительности электролиза.

    презентация [1,1 M], добавлен 22.11.2015

  • Значение подготовки поверхности окрашиваемых материалов для получения качественных покрытий. Способы подготовки поверхности перед окраской. Структура многослойных покрытий и процессы пленкообразования. Классификация и хранение лакокрасочных материалов.

    реферат [31,4 K], добавлен 11.10.2013

  • Контроль за выполнением очистных и окрасочных работ, а также оценка качества работ требованиям стандартов. Коррозия металлов и защита их от коррозии. Защитные свойства лакокрасочных покрытий и оценка степени разрушения ранее окрашенной поверхности.

    реферат [28,6 K], добавлен 30.04.2011

  • Патентная документация, методики поиска патентов, обработка найденной информации. Устройство для нанесения лакокрасочных покрытий в электрическом поле. Нанесение лакокрасочных покрытий в электрическом поле. Нанесение порошкообразных материалов.

    курсовая работа [136,8 K], добавлен 30.06.2011

  • Технологии, связанные с нанесением тонкопленочных покрытий. Расчет распределения толщины покрытия по поверхности. Технологический цикл нанесения покрытий. Принципы работы установки для нанесения покрытий магнетронным методом с ионным ассистированием.

    курсовая работа [1,4 M], добавлен 04.05.2011

  • Области применения химического никелирования. Подготовка поверхности перед нанесением покрытия. Условия образования никелевых покрытий. Влияние отдельных факторов на скорость восстановления никеля. Физические, химические и защитные свойства покрытия.

    дипломная работа [376,3 K], добавлен 02.10.2012

  • Коррозионная стойкость окрашенных изделий. Удаление окисных пленок. Обезжиривание, абразивная очистка, травление, фосфатирование, хроматирование, пассивирование. Классификация процессов нанесения металлических покрытий. Требования к готовым покрытиям.

    презентация [180,4 K], добавлен 28.05.2014

  • Процесс изготовления и применение проволоки стальной, углеродистой, пружинной 2 класса, ГОСТ9389–75. Механические свойства стали 70. Патентирование катанки. Подготовка поверхности металла к волочению. Испытание и контроль качества проволоки. Виды брака.

    презентация [634,0 K], добавлен 11.02.2014

  • Технологический процесс цинкования стальной детали. Методики приготовления, анализа, корректировки и регенерации растворов и электролитов, применяемых в технологическом процессе. Техника безопасности и производственная санитария в цехе металлопокрытий.

    курсовая работа [83,8 K], добавлен 16.11.2009

  • Изучение износостойких нанокомпозитных покрытий с использованием методов магнетронного распыления и вакуумно–дугового разряда. Изучение влияния содержания нитрида кремния на твердость покрытия. Измерение микротвердости поверхностного слоя покрытий.

    курсовая работа [830,3 K], добавлен 03.05.2016

  • Создание защитно-декоративных покрытий на основе жидких лакокрасочных и пленочных материалов. Стадии формирования защитно-декоративных покрытий. Технологический процесс отделки деталей или собранного изделия. Основные и вспомогательные материалы.

    курсовая работа [72,2 K], добавлен 09.08.2015

  • Понятие и основные этапы вакуумной металлизации как процесса формирования покрытий путем испарения металлов в вакууме и конденсации их на поверхности полимеров. Главные условия эффективного применения данной методики. Свойства полимерных материалов.

    курсовая работа [178,2 K], добавлен 12.03.2016

  • Понятие физической и химической адсорбции, их роль в гетерогенном катализе. Предварительная подготовка напыляемой поверхности при любом методе нанесения покрытий. Теория активации химического взаимодействия. Связь скорости реакции с энергией активации.

    контрольная работа [305,0 K], добавлен 25.12.2013

  • Математическое обеспечение системы нейро-нечёткого управления многосвязными тепловыми объектами агрегата гуммированных покрытий металла. Имитационная модель сушки материалов на поверхности металлической полосы в печах агрегата гуммированных покрытий.

    дипломная работа [2,3 M], добавлен 09.11.2016

  • Выбор покрытия для условия Крайнего Севера. Технологическая карта процесса. Химическое, электрохимическое обезжиривание и активирование поверхности детали перед нанесением гальванопокрытий. Электроосаждение сплава медь-никель. Метод контроля покрытий.

    контрольная работа [19,1 K], добавлен 14.05.2011

  • Условия пассивности стали в нейтральных и щелочных средах. Механизм защитного действия бетона, существующие виды антикоррозионных покрытий. Механизм, этапы технологии приготовления и нанесения порошковых покрытий и ее технико-экономический эффект.

    диссертация [517,7 K], добавлен 31.12.2015

  • Технологический процесс замкнутого противоточного двухстадийного выщелачивания цинкового огарка, выделение его компонентов; сгущение пульпы, отделение жидкой фракции от твердой, фильтрация. Расчет состава остатков, определение выхода катодного цинка.

    курсовая работа [2,1 M], добавлен 19.01.2011

  • Влияние природы стабилизирующих добавок в совмещенном сенсактивирующем растворе на эффективность активации поверхности алмазного порошка, скорость осаждения и морфологию формирующегося на поверхности порошка ультрадисперсного композиционного покрытия.

    реферат [1,2 M], добавлен 26.06.2010

  • Характеристики полимерно-порошкового покрытия. Классификация способов нанесения покрытий. Центробежный метод распыления порошков. Технология порошковой окраски электростатическим напылением - технология зарядки коронным разрядом. Напыление в вакууме.

    курсовая работа [497,2 K], добавлен 04.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.