Исследование и разработка процесса индукционного нагрева трансформаторного масла в системах регенерации

Рассматривается энергосберегающая технология нагрева трансформаторного масла в системах регенерации, основанная на сочетания двух методов нагрева - индукционного и диэлектрического. Алгоритм конечно-элементного моделирования комбинированного нагрева.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 28.01.2020
Размер файла 124,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Исследование и разработка процесса индукционного нагрева трансформаторного масла в системах регенерации

К.А. Ачаков, Л.С. Зимин

Самарский государственный технический университет

443100, Самара, ул. Молодогвардейская, 244

Рассматривается оригинальная энергосберегающая технология нагрева трансформаторного масла в системах регенерации, основанная на сочетания двух методов нагрева - индукционного и диэлектрического.

Ключевые слова: электрический нагрев, регенерация, трансформаторное масло, индукционный, диэлектрический, энергосбережение

Необходимость очистки масла от воды и других примесей, является актуальной проблемой. Регенерация масла в большинстве случаев осуществляется подогревом масла до определенных температур, порог которых зависит от метода, глубины вакуума, сочетания нескольких методов в одном технологическом процессе [1,2]. Как правило, на нагрев тратится от 90% до 95% активной мощности установки регенерации масла, поэтому решать данную проблему необходимо на основе применения энергосберегающих технологий. В установках регенерации существующих на сегодняшний день нагрев осуществляется элементами сопротивления в виде трубчатых электронагревателей (ТЭН) или ленточных нагревателей. Нагрев происходит косвенно, путем передачи энергии теплопроводностью и конвекцией.

С целью снижения энергетических затрат на нагрев трансформаторного масла разработана новая более эффективная технология. В этом случае теплообменный аппарат состоит из наружного и внутреннего стальных цилиндров и индукторов, намотанных вокруг внешнего цилиндра и внутри внутреннего. В кольцевом зазоре симметричных цилиндров находится нагреваемое масло. Величина кольцевого зазора и количество нагревателей зависит от производительности установки и температуры нагрева масла.

В данном нагревателе производится комбинированный нагрев. На первом этапе к цилиндрам подводится разность потенциалов, тем самым образуется рабочий конденсатор. При помещении трансформаторного масла в переменное электрическое поле конденсатора происходит его нагрев диэлектрическим способом. Далее по мере испарения воды и других примесей фактор потерь будет уменьшаться, соответственно на втором этапе осуществляется переход на индукционный нагрев. На этапе нагрева индукционным методом ферромагнитные цилиндры играют роль косвенных нагревателей, в которых тепло выделяется под действием наведенных вихревых токов. Передача тепла осуществляется через поверхность контакта сопряженных тел металлических цилиндров с жидким диэлектриком. Для оптимизации параметров комбинации двух методов нагрева на начальном этапе разработки используются результаты экспериментов и аналитические методы моделирования, на последнем этапе использован численный метод конечных элементов, реализованный на основе применение пакета программ Femlab.

В общем случае процесс нагрева описывается нелинейной, взаимосвязанной системой уравнений Максвелла для электромагнитного поля и Фурье для теплового поля с соответствующими краевыми условиями.

При индукционном нагреве исходная постановка нелинейной электромагнитной задачи выражается через векторный потенциал общим уравнением Пуассона в двумерной области.

; ; (1)

Решение уравнения ищется путем минимизации нелинейного функционала, выражающего энергию электромагнитного поля:

(2)

Рис.1 Температурное поле по сечению канала при индукционном нагреве

индукционный диэлектрический трансформаторный масло

Колебания температуры в кольцевом зазоре обусловлено перемешиванием слоев масла нагретого от стенок цилиндров и подаваемого из емкости для регенерации, так как контур циркуляции масла при регенерации является замкнутым.

При диэлектрическом нагреве исходная постановка задачи выражается решением системы уравнений Максвелла относительно вектора напряженности электрического поля, решение достигается минимизацией энергетического функционала относительно напряженности электрического поля:

(3)

Рис.2 Температурное поле по сечению канала при диэлектрическом нагреве

Так как гармонические электромагнитные процессы в любой среде условно можно рассматривать как процессы в диэлектрике с комплексной диэлектрической проницаемостью [3]:

, но отношение есть не что иное как ,

откуда проводимость можно выразить как , мощность внутренних источников тепла, характеризующих нагрев диэлектриков при воздействии на диэлектрик переменного электрического поля, вычисляется для каждого элемента:

. (4)

С учетом зависимости фактора потерь от примесей и температуры на каждом этапе итераций осуществляется корректирование в соответствии с установленными экспериментальным путем зависимостями от содержания воды и других примесей, а так же температуры.

В случае с диэлектрическим нагревом наблюдается зеркально обратный процесс в кольцевом зазоре, так как источник тепла находится уже в самом масле.

Таким образом, на основании проведенных исследований разработан комбинированный нагреватель и алгоритм конечно-элементного моделирования комбинированного нагрева трансформаторных масел в системах регенерации.

Кроме того, диэлектрический нагрев, применяемый на первом этапе, при высоких значениях в большей степени обусловленных наличием примеси воды, позволяет осуществлять осушку масел, так как наибольшее количество энергии поглощается водой содержащееся в масле, как в растворенном виде, так и капельном. Другими словами, в качестве внутренних источников тепла, в первую очередь служат коллоидные частицы и примеси воды, которые и будут нагреваться. После испарения воды и удаления примесей нагрев осуществляется индукционным нагревателем и масло окончательно доводится до требуемых параметров.

Библиографический список

1. Липштейн В.А., Шахнович М.И. Трансформаторное масло. - М.: Энергия, 1987. - 330 с.

2. Колесов С.Н., Колесов И.С. Материаловедение и технология конструкционных материалов М.: Высшая школа, 2004. - 519 с.

3. Гольдштейн Л.Д., Зернов Н.В. Электромагнитные поля и волны. Издание 2-е, переработанное и дополненное. - М.: Светское радио, 1971. - 664 с.

Размещено на Allbest.ru

...

Подобные документы

  • Превращение электрической энергии в другие виды с одновременным осуществлением технологических процессов. Электротермические установки и области их применения. Установки нагрева сопротивлением, контактной сварки, индукционного и диэлектрического нагрева.

    курс лекций [1,5 M], добавлен 03.10.2010

  • Элементы установок индукционного нагрева. Расчеты частоты нагревательной индукционной установки. Определение мощности и размеров индуктора, его электрический расчет. Применение низкочастотного индукционного нагрева в электрических водонагревателях.

    курсовая работа [460,3 K], добавлен 18.11.2010

  • Изучение методов моделирования в металлургии, понятие эксперимента и условия его проведения. Основные уравнения современной вычислительной гидрогазодинамики. Проведение моделирования нагрева одной, двух, четырех заготовок в печи высокоточного нагрева.

    дипломная работа [11,6 M], добавлен 22.07.2012

  • Технологический процесс получения неразъемных соединений деталей в результате их электрического нагрева до плавления или пластического состояния. Нагрев токопроводящего материала с помощью установок индукционного нагрева. Метод электроискровой обработки.

    презентация [470,2 K], добавлен 06.03.2014

  • Исходные данные для расчета тепловых потерь печи для нагрева под закалку стержней. Определение мощности, необходимой для нагрева, коэффициент полезного действия нагрева холодной и горячей печи. Температура наружной стенки и между слоями изоляции.

    контрольная работа [98,4 K], добавлен 25.03.2014

  • Разработка трехмерной численной модели процесса нагрева вращением цилиндрических алюминиевых заготовок в постоянном магнитном поле. Проведение параметрических исследований. Оценка влияния конструкции установки на распределение температуры в заготовке.

    курсовая работа [549,8 K], добавлен 31.03.2016

  • Рассмотрение результатов экспериментальной оценки возможностей микроволнового нагрева для переработки резиновой крошки. Ознакомление с преимуществами и проблемами микроволнового нагрева. Анализ процесса удаления влаги из материала механическим способом.

    курсовая работа [1,9 M], добавлен 17.06.2017

  • Нагревательные толкательные печи, их характеристика. Разновидности печей. Расчет горения топлива, температурный график процесса нагрева, температуропроводность. Время нагрева металла и основных размеров печи. Технико-экономические показатели печи.

    курсовая работа [674,8 K], добавлен 08.03.2009

  • Классификация металлургических печей по технологическому назначению, способу генерации теплоты, режиму нагрева, способу передачи тепла, форме рабочего пространства. Индукционная печь методического действия. Автоматизация технологического процесса.

    курсовая работа [815,2 K], добавлен 25.06.2012

  • Функции и классификация индукционных промышленных печей по принципу тепловыделения. Установка электро-лучевого нагрева. Применение электрического нагрева и его особенности. Расчет эквивалентного сопротивления и коэффициента полезного действия индуктора.

    курсовая работа [774,1 K], добавлен 01.09.2014

  • Состав природного газа и мазута. Низшая теплота сгорания простейших газов. Определение количества и состава продуктов сгорания и калориметрической температуры горения, поверхности нагрева и основных параметров регенератора. Удельная поверхность нагрева.

    курсовая работа [25,0 K], добавлен 25.03.2009

  • Общая характеристика продуктов сгорания в поверхностях нагрева. Методика расчета энтальпии продуктов сгорания топлива, конвективного пучка и невязки парогенератора. Конструктивные размеры и свойства поверхностей нагрева фестона и испарительных пучков.

    курсовая работа [605,0 K], добавлен 20.12.2010

  • Верхний предел температур нагрева для заэвтектоидных сталей. Температура нагрева и скорость охлаждения. Изменения структуры стали при нагреве и охлаждении. Твердость и износостойкость режущего инструмента. Выбор режима охлаждения при закалке стали.

    презентация [209,6 K], добавлен 14.10.2013

  • Выбор и поддержание температурного режима секционной печи для скоростного малоокислительного нагрева. Принципиальная схема автоматического контроля и регулирования теплового режима секционной печи. Управление процессом нагрева в секционных печах.

    доклад [219,0 K], добавлен 31.10.2008

  • Расчет теплопроводности при сварке. Тепловые схемы и классификация источников нагрева. Мгновенный линейный источник в пластине, в стержне, на поверхности плоского слоя. Расчет температурного поля движущихся источников нагрева и методом интегрирования.

    контрольная работа [4,1 M], добавлен 25.03.2016

  • Дилатометрическая кривая распада мартенсита. Влияние печной атмосферы при нагреве. Режимы термической обработки (температура и время нагрева). Отжиг для снятия напряжений после горячей обработки литья, сварки, обработки резанием. Влияние скорости нагрева.

    лекция [67,1 K], добавлен 14.10.2013

  • Описание индукционной нагревательной печи, служащей для нагрева заготовок из алюминиевых сплавов перед прессованием на горизонтальном гидравлическом прессе усилием 19,1 МН. Порядок произведения теплового расчета индуктора сквозного нагрева металла.

    контрольная работа [319,4 K], добавлен 21.12.2010

  • Диаграмма распада переохлажденного аустенита стали 40Х. Расчет времени нагрева цилиндрической заготовки. Тепловой баланс рабочего пространства печи. Коэффициент полезного действия для термических печей. Величина перепада температуры по толщине изделия.

    контрольная работа [634,0 K], добавлен 19.04.2013

  • Выполнение расчетов материального баланса горения топлива, теплового баланса и теплообмена рабочей камеры, определение продолжительности термической обработки стальных изделий (путем малоокислительного нагрева) и производительности камерной печи.

    курсовая работа [182,2 K], добавлен 18.04.2010

  • Расчет горения топлива: пересчет состава сухого газа на влажный, определение содержания водяного пара в газах. Расчет нагрева металла. Позонный расчет внешней и внутренней задачи теплообмена. Технико-экономическая оценка работы методических печей.

    курсовая работа [120,6 K], добавлен 09.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.