Прогнозирование точности размерной обработки заготовок из различных материалов на основе нейронных сетей
Широкое применение нейронных сетей в задачах технологической подготовки. Использование автоматизированных систем управления, построенных с помощью искусственных нейронных сетей, основанных на массовой параллельной обработке большого объема информации.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 26.03.2020 |
Размер файла | 44,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Прогнозирование точности размерной обработки заготовок из различных материалов на основе нейронных сетей
Э.Ю. Яковлев
В настоящее время все большее применение в разработке автоматизированных систем технологической подготовки производства находят нейросетевые модели. Широкое применение нейронных сетей в задачах технологической подготовки обусловлено, прежде всего, их способностью обучаться решению задач, для которых у человека не существует формализованных, быстрых, или работающих с приемлемой точностью алгоритмов решения. Наиболее перспективным направлением является использование автоматизированных систем управления, построенных с помощью искусственных нейронных сетей, основанных на массовой параллельной обработке большого объема информации и способности к самообучению такой системы по примерам обучающей выборки [2].
Достижение высоких квалитетов точности невозможно без использования различных методов размерной обработки заготовок, однако, резервы повышения технологической точности этих методов практически исчерпаны и это приводит к необходимости включения в технологический процесс дополнительных, более дорогостоящих и обеспечивающих необходимую точность методов финишной обработки. Поэтому для разработки модели прогнозирования тепловых деформаций и влияния элементарных погрешностей на точность получаемых деталей были использованы нейронные сети.
Требования, предъявляемые к точности изготовления и качеству поверхностей деталей при токарной и фрезерной обработке, постоянно растут [1]. Применение нейросетевых алгоритмов позволяет на основе процессов формо- и стружкообразования, оптимизировать выбор режимов резания и конструктивно-геометрических характеристик режущего инструмента для достижения заданных параметров качества обрабатываемых поверхностей. При этом ставится задача автоматизированного проектирования токарной операции, основанная на применении нейросетевых моделей процесса точения заготовок из различных видов материала, позволяющая осуществить планирование, анализ и управление процессом формо- и стружкообразования обрабатываемых поверхностей, за счет назначения оптимальных режимов резания, конструктивно-геометрических характеристик инструмента, для получения заданных параметров качества обрабатываемой поверхности детали.
Для реализации системы прогнозирования точности на основе нейронных сетей обосновано использование аппарата нейронных сетей с нечеткой логикой, которые обладают высокой скоростью обучения, простотой алгоритма и оптимальной проработанностью программного обеспечения в системе математического моделирования MATLAB 6.5, и устойчиво показывают точные результаты прогнозирования в энергетике [3]. Для реализации системы прогнозирования точности на основе нейронных сетей, а также построения тепловых полей с помощью метода конечных элементов в программном продукте MatLab необходимо было:
1) выявить взаимосвязь между параметрами качества получаемой поверхности, режимами резания, и конструктивно-геометрическими параметрами режущего инструмента;
2) определить влияние на тип образующейся стружки режимов резания и конструктивно-геометрических параметров инструмента;
3) выявить влияние режимов резания на величину дефектного поверхностного слоя детали.
Подобная задача была решена путем использования многослойных нейронных сетей обратного распространения, ошибка - E в которых минимизируется согласно алгоритму Видроу-Хоффа:
,
где - желаемое выходное состояние сигнала сети, а - реальное выходное состояние нейрона выходного слоя. Суммирование ведется по всем нейронам выходного слоя и по всем обрабатываемым сетью образам. Минимизация выполняется методом градиентного спуска [3]:
,
где wij - весовой коэффициент синаптической связи, соединяющей i-ый нейрон слоя n-1 с j-ым нейроном слоя n, - коэффициент скорости обучения, 0<<1. Первая стадия образцового прогнозирующего управления должна обучить нейронную сеть динамике процесса [2]. Значение ошибки выходного сигнала процесса и выходного параметра нейронной сети используется для обучения сети. Данный процесс схематично можно отобразить в виде схемы Рис. 1.
Рис. 1 Схематичное представление ТПП с использованием нейронной сети
Данная архитектура подразумевает использования модуля ассоциативной памяти, который осуществляет следующие функции: 1) информационное обеспечение в виде базы данных, позволяющее моделировать процессы формо- и стружкообразования при точении деталей из различных материалов с помощью искусственных нейронных сетей; 2) информационное обеспечение в виде базы данных, позволяющее выбирать рациональные технические решения и синтезировать эффективные конструкции специализированных инструментов при проектировании технологических процессов.
Базы данных состоят из таблиц обучающей выборки, составленных в соответствии с матрицей проведенных экспериментов, позволяющей формировать нейросетевые модели, характеризующие процесс точения заготовок из различных материалов, а также таблиц тестирующей выборки, используемых для оценки качества "обучения" нейросетевых моделей для их дальнейшего применения в составе системы автоматизированного проектирования технологической операции.
Процесс обучения сети осложняется отсутствием баз данных, содержащих информацию о входных и выходных характеристиках процесса формо- и стружкообразования при механической обработке для деталей из определенного материала. Построение нейросетевой модели требует наличие набора готовых примеров, описывающих входные и выходные параметры исследуемого процесса. Поэтому процесс обучения для нейронных сетей обратного распространения при решении задач достижения требуемого качества поверхностей при механической обработке деталей состоит из 4-х этапов: 1) сбор данных для обучения; 2) создание объекта сети; 3) обучение сети; 4) симуляция реакций сети на ранее не подаваемые входные сигналы.
Для достижения заданных параметров качества поверхностного слоя детали необходимо искать оптимальное соотношение подачи и скорости, во избежание появления дефектов. При этом параметры обработки резанием определяются характерными свойствами и структурой обрабатываемого материала, а также контактными процессами, протекающими в зоне резания при механической обработке. Поэтому для составления нейросетевых моделей, описывающих процессы формо- и стружкообразования деталей из различных материалов, и использования их в составе системы автоматизированного проектирования технологической операции, необходимо провести экспериментальные исследования влияния режимов резания и параметров инструмента, качественных показателей обработанной поверхности. нейронный сеть автоматизированный
Использование нейросетевых моделей в составе автоматизированной системы проектирования операции токарной обработки, позволяет решать задачу выбора оптимальных технологических режимов и конструктивно-геометрических параметров режущего инструмента для достижения заданных показателей качества обрабатываемых поверхностей [4]. Алгоритм автоматизированного проектирования токарной операции резания, построенный на основе нейросетей, позволяет назначать рациональные режимы обработки в зависимости от требуемых показателей качества обработанной поверхности.
Кроме того, применение нейросетевых технологий позволяет не только повысить производительность механической обработки за счет использования баз параметров технологических процессов, находящихся в ассоциативной памяти нейронной сети, но и обеспечить применение иновационных технологических решений, направленных на повышение эффективности процесса обработки заготовок из различных видов материала.
Список используемых источников
1. Вейц В.Л., Максаров В.В., Лонцих П.А. Динамика и моделирование процессов резания при механической обработке. - Иркутск: РИО ИГИУВа, 2000.-189 с.
2. Demuth H., Beale M. Neural Network Toolbox. For Use with MATLAB. The MathWorks Inc. 2000.
3. Howard D., Mark B. Neural Network Design. The MathWorks, Inc. Brooks/Cole Publishing Company. 1996.
4. Гришин К.В. Повышение точности чистовой обработки на основе анализа влияния технологических факторов на возникающие элементарные погрешности // Материалы всероссийской научн.- техн. конф. "Современные технологии и оборудование текстильной промышленности" (Текстиль- 2005) - М.; МГТУ им. А.Н. Косыгина, 2005.
Размещено на Allbest.ru
...Подобные документы
Изучение основных функций активации (пороговой, линейный, сигмоидный) элементов нейронных сетей и правил их обучения (Больцман, Хебб) сетей с целью разработки метода автоматизации процесса металлизации на базе адаптивного нейросетевого подхода.
дипломная работа [305,8 K], добавлен 31.05.2010Анализ научных разработок в области прогнозирования качества продукции и оценка математических методов решения статистических задач. Разработка структуры нейронной сети. Прогнозирование качества швейных изделий с использованием аппарата нейронных сетей.
дипломная работа [3,9 M], добавлен 14.04.2013Расчет размерной цепи методами полной, неполной и групповой взаимозаменяемости, пригонки, регулировки. Определение суммарной погрешности при фрезерной обработке и погрешности базирования. Исследование точности обработки с помощью кривых распределения.
курсовая работа [1,5 M], добавлен 24.12.2013Расчет размерной цепи методом полной, неполной и групповой взаимозаменяемости. Определение суммарной погрешности при фрезерной обработке и погрешности базирования детали. Исследование точности выполнения обработки с помощью кривых распределения.
курсовая работа [526,4 K], добавлен 20.12.2013Лазерная размерная технология при обработке микроотверстий с использованием современного лазерного оборудования. Главные факторы, влияющие на глубину и диаметр получаемого отверстия. Машины МЛ-4, МЛ-2. Методы повышения точности размерной обработки.
презентация [269,0 K], добавлен 20.07.2015Механизмы параллельной кинематической структуры. Создание конструкции, обладающей высокой жесткостью и обеспечивающей высокую точность обработки детали при многокоординатной обработке. Снижение энергии, затрачиваемой на выполнение фрезерных операций.
реферат [354,2 K], добавлен 10.11.2016Этапы разработки мероприятий по контролю качества строительных работ, охране природы и окружающей среды. Анализ схемы устройства приямков. Рассмотрение технологии и организации производства работ. Особенности строительства и размещения инженерных сетей.
контрольная работа [267,8 K], добавлен 14.11.2012Анализ пакета материалов, применяемых при изготовлении модели изделия. Выполнение технического рисунка в двух проекциях. Выбор методов обработки изделия и оборудования. Широкое использование клеевых прокладочных материалов и машинных способов обработки.
курсовая работа [812,5 K], добавлен 09.03.2021Функциональные обязанности субъектов оперативно-диспетчерского управления изолированных территориальных электроэнергетических систем. Определение нормативов резерва мощности. Модернизация противоаварийной автоматики. Способы защиты электрооборудования.
реферат [157,8 K], добавлен 19.06.2015Описание тепловых сетей и потребителей тепловой энергии. Рекомендации по децентрализации, осуществлению регулировки и отводящим трубопроводам. Технико-экономическая оценка инвестиций в реконструкцию тепловых сетей. Анализ потребителей в зимний период.
дипломная работа [349,8 K], добавлен 20.03.2017Широкое применение металлорежущих станков с числовым программным управлением и автоматизированных технологических комплексов. Изготовление режущих инструментов. Выбор заготовки для детали. Технологический процесс изготовления отливок. Литье под давлением.
реферат [32,4 K], добавлен 24.02.2011Схемы наружных и внутренних сетей газоснабжения для посёлка Войвож. Оборудование газорегуляторного пункта с учетом подключения к газопроводу сетей среднего давления Ф273х8,0, проходящему по посёлку. Определение плотности и теплоты сгорания газа.
дипломная работа [1,7 M], добавлен 10.04.2017Построение комплексной размерной схемы технологического процесса и размерных цепей. Уравнение замыкающего звена. Расчет линейных операционных размеров. Определение операционных допусков и припусков на обработку. Проверка обеспечения заданной точности.
курсовая работа [901,3 K], добавлен 26.12.2012Общая характеристика электрохимических методов обработки, основанных на законах анодного растворения при электролизе: полирование, размерная, электроабразивная и электроалмазная обработка. Технологические возможности размерной ультразвуковой обработки.
реферат [1,2 M], добавлен 18.01.2009Годовое потребление газа на различные нужды. Расчетные перепады давления для всей сети низкого давления, для распределительных сетей, абонентских ответвлений и внутридомовых газопроводов. Гидравлический расчет сетей высокого давления, параметры потерь.
курсовая работа [226,8 K], добавлен 15.12.2010Понятие и состав автоматизированных систем управления, основные принципы их построения и методы анализа. Функциональная структура предприятия. Синтез структур АСУП. Модульность при построении АСУП. Обеспечение достоверности при обработке информации.
контрольная работа [196,3 K], добавлен 13.04.2012Основные требования к организации и ведению безопасной, надёжной и экономичной эксплуатации тепловых, атомных, гидравлических, ветровых электрических станций, блок-станций, теплоцентралей, станций теплоснабжения, котельных, электрических и тепловых сетей.
учебное пособие [2,2 M], добавлен 07.04.2010Производство на судостроительном предприятии. Сетевые графики, используемые в его организационно-технологической подготовке. Информационные системы управления проектами. Технология сборки и сварки. График постройки верхней палубы полупогружной платформы.
дипломная работа [73,8 K], добавлен 15.03.2010Последовательность технологических операций при обработке поверхности деталей, требования к точности и качеству. Разрезание заготовок; методы получения отверстий: сверление, зенкерование, растачивание; накатывание резьбы; виды и схемы сборочных процессов.
контрольная работа [989,5 K], добавлен 06.03.2012Особенности статической настройки, использование пробных заготовок с помощью рабочего калибра. Настройка по пробным заготовкам с помощью универсального измерительного инструмента. Ее проведение с учетом переменных систематических погрешностей и без них.
презентация [561,3 K], добавлен 26.10.2013