Потенциометрические методы анализа ОС
Развитие и совершенствования электрохимических методов анализа. Характеристика потенциометрического анализа. Применение индикаторных и ионоселективных электродов. Кислотно-основное, комплексонометрическое и окислительно-восстановительное титрование.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 20.06.2020 |
Размер файла | 349,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «Псковской государственный университет»
Институт инженерных наук
Контрольная работа по дисциплине: «Средства, приборы и методы для научных исследований ОС»
на тему: «Потенциометрические методы анализа ОС»
Выполнил: студент I курса
2031-01M группы Елизаров С.М.
Преподаватель: Доцент, К.Х.Н.
Никольская Л.В.
Псков 2020
Содержание
- Введение
- Общая характеристика потенциометрического анализа
- 1. Индикаторные электроды
- 1.1 Ионоселективные электроды
- 2. Электроды сравнения
- 3. Виды потенциометрического метода анализа
- 4. Прямая потенциометрия
- 4.1 рН-метрия 10
- 4.2 Ионометрия
- 4.3 Метод добавок
- 5. Потенциометрическое титрование
- 5.1 Кислотно-основное титрование
- 5.2 Комплексонометрическое титрование
- 5.3 Титрование по методу осаждения
- 5.4 Окислительно-восстановительное титрование
- 6. Измерение ЭДС электрохимических цепей
- Заключение
- Библиографический список
- Введение
потенциометрический электрохимический титрование электрод
- Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на использовании электрохимических процессов, происходящих в электролитической ячейке (гальваническом элементе). Электролитическая ячейка представляет собой систему, состоящую из электродов и электролитов, контактирующих между собой. На границе раздела фаз может происходить электродная реакция между компонентами этих фаз, в результате которой электрический заряд переходит из одной фазы в другую, и на межфазной границе устанавливается потенциал. В отсутствии электрического тока (I=0) в замкнутой гальванической цепи на межфазной границе устанавливается равновесие и потенциал достигает равновесного значения. Если через ячейку проходит электрический ток (I?0), на межфазной границе равновесие не достигается и в результате электродного процесса электроны переходят из электрода в раствор (или положительный заряд в обратном направлении).
- Электрохимические методы анализа основаны на использовании зависимости электрических параметров от концентрации, природы и структуры вещества, участвующего в электродной реакции или в электрохимическом процессе переноса зарядов между электродами. Согласно рекомендациям ИЮПАК принята следующая классификация этих методов:
1. Классификация, учитывающая природу источника электрической энергии в системе. Различают две группы методов:
1.1. Методы без наложения внешнего потенциала. Здесь источник электрической энергии - сама электрохимическая система (гальванический элемент). К таким методам относятся потенциометрические методы.
1.2. Методы с наложением внешнего потенциала. К ним относятся: кондуктометрия, вольтамперометрия, кулонометрия, электрогравиметрия.
2. Классификация по способу применения:
2.1. Прямые методы. Измеряют аналитический сигнал как функцию концентрации раствора и по показаниям прибора находят содержание вещества в растворе (прямая потенциометрия, прямая кондуктометрия и т. д.).
2.2. Косвенные методы - это методы титрования, в которых окончание титрования фиксируют на основании измерения электрических параметров системы (кондуктометрическое, амперометрическое титрование и т. д.).
Электрические параметры (сила тока, напряжение, сопротивление) могут служить аналитическими сигналами, если они измерены с достаточной точностью. Электрохимические методы анализа используют либо для прямых измерений, основанных на зависимости «аналитический сигнал-состав», либо для индикации конечной точки титрования в титриметрии. Электрохимические методы анализа позволяют определять концентрацию вещества в широком интервале (1ч10-9 моль/л) с достаточной точностью и воспроизводимостью, могут быть легко автоматизированы и использованы в автоматических производственных циклах.
Развитию и усовершенствованию электрохимических методов анализа способствовали успехи в области электрохимии и приборостроении. Различия между электрохимическими методами анализа в основном обусловлены природой электродов и измерительными приборами.
Подробнее остановимся на потенциометрическом методе анализа.
Общая характеристика потенциометрического анализа
Потенциометрические методы анализа известны с 90-х гг. XIX в., однако признан как аналитический метод анализа только в 20-х гг. XX в.
Данный метод, основанный на измерении электродвижущих сил (ЭДС) обратимых гальванических элементов, используют для определения содержания веществ в растворе и измерения различных физико-химических величин.
В потенциометрии обычно применяют гальванический элемент, включающий два электрода, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом).
Первый электрод - это электрод, потенциал которого зависит от активности (концентрации) определяемых ионов в растворе, называется индикаторным.
Для измерения потенциала индикаторного электрода в раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемых ионов. Такой электрод называется электродом сравнения. Величину ЭДС можно рассчитать по разности потенциалов этих электродов.
Зависимость величины электродного потенциала (ЭП) от активности ионов в растворе выражается уравнением Нернста:
, (1)
где Е0 - стандартный электродный потенциал; R - универсальная газовая постоянная ( R = 8.314 Дж/моль•К); Т - абсолютная температура; n - число электронов ( з ), участвующих в реакции; c - концентрация, моль/дм3; f - коэффициент активности.
Так как в потенциометрии используются разбавленные растворы, где f=1, то активность (а) заменяют на концентрацию (с). Если перейти от ln к lg, то при T = 298K (25 °С) уравнение (1.1) запишется
. (2)
1. Индикаторные электроды
В потенциометрическом методе анализа используют обратимые электроды. Токи обмена для обратимых электродов достигают несколько десятков и сотен мА/см2. Потенциал у таких электродов зависит от активности компонентов электродной реакции в соответствии с термодинамическими уравнениями. На обратимых электродах быстро устанавливается равновесие, и скачки потенциалов остаются неизменными во времени. При прохождении электрического тока скачки потенциалов не должны значительно изменяться; а после выключения тока быстро должно устанавливаться равновесие. Электроды, не удовлетворяющие этим требованиям, называются необратимыми.
В потенциометрии применяют два основных класса индикаторных электродов:
1. Электроды, на межфазных границах которых протекают реакции с участием электронов, так называемые электронообменные (окислительно-восстановительные, электроды первого и второго рода);
2. Электроды, на межфазных границах которых протекают ионообменные реакции. Такие электроды называют мембранными, или ионообменными, их называют также ионоселективными.
1.1 Ионоселективные электроды
Ионоселективным электродом (ИСЭ) называется индикаторный или измерительный электрод с относительно высокой специфичностью к отдельному иону или типу ионов.
Мембрана - основной компонент любого ИСЭ. Она разделяет внутренний раствор с постоянной концентрацией определяемого иона и исследуемый раствор. Одновременно мембрана служит средством электролитического контакта между ними. Мембрана обладает ионообменными свойствами, причем проницаемость ее к ионам разного типа различна. Таким образом, ИСЭ - это аналитические устройства, позволяющие с помощью ионочувствительной мембраны узнавать конкретный тип ионов и давать информацию об их количестве в виде электрического сигнала - потенциала, который связан с активностью (концентрацией) определяемого иона в анализируемом растворе (рис. 1).
Рисунок 1 Ионоселективные электроды
Потенциал системы, состоящей из внешнего электрода сравнения и ИСЭ, погруженных в анализируемый раствор, описывается модифицированным уравнением Нернста (уравнением Никольского-Эйзенмана):
. (1.5)
где const ? константа, зависящая от значений стандартных потенциалов внутреннего и внешнего электродов сравнения и от природы мембраны ИСЭ;
aА - активность определяемого иона А; аВ - активность мешающего иона В; ZВ - заряд мешающего иона; К- коэффициент селективности электрода по отношению к иону В.
Коэффициент селективности - это количественная характеристика избирательности электрода. Чем меньше коэффициент селективности, тем выше избирательность электрода к ионам, для которых он предназначен. Если коэффициент селективности составляет, например, 10-3, то определяемый ион фиксируется в 1000 раз чувствительнее, чем мешающий ион. Это следует понимать таким образом, что при К=10-3 можно определять концентрацию ионов А в присутствии почти 1000-кратного избытка ионов В. Если коэффициент селективности К = 1, то мешающие и определяемые ионы вносят одинаковый вклад в электродный потенциал.
Если коэффициент селективности больше единицы, то мешающий ион определяется предпочтительнее, чем ион, для которого предназначался электрод. Такой вариант реализуется почти у всех Са-электродов, которые к Zn++ чувствительнее в 3 раза.
В тех случаях, когда исследуемый раствор содержит мешающие ионы в очень большом количестве, предварительно понижают их концентрацию химическим осаждением, комплексообразованием или другими подобными операциями.
Имеются две группы методов определения коэффициента селективности: первая - на основе отдельных растворов, один из которых содержит только ионы А, а другой - только ионы В; вторая - определение с помощью смешанных растворов.
Ионоселективные электроды имеют следующие достоинства: они не оказывают воздействия на исследуемый раствор; портативны; пригодны как для прямых определений, так и в качестве индикаторов в титриметрии.
В зависимости от типа мембраны ионоселективные электроды можно разделить на следующие группы:
1. твердые электроды - гомогенные, гетерогенные, на основе ионообменных смол, стекол, осадков, моно- и поликристаллов;
2. жидкостные электроды на основе жидких ионитов хелатов - нейтральные переносчики, биологически активных веществ;
3. газовые и энзимные электроды.
2. Электроды сравнения
При измерении ЭДС обратимых гальванических элементов необходим полуэлемент, потенциал которого был бы неизвестен, постоянен и не зависел бы от состава полученного раствора. Электрод удовлетворяющий этим требованиям, называют электродом сравнения. Электрод сравнения должен быть прост в изготовлении сохранять практически постоянный и воспроизводимый потенциал при прохождении небольших токов.
В качестве электрода сравнения используют стандартный водородный электрод (СВЭ) - электрод I рода - Pt(H2)/2H+. Его потенциал определяется величиной pH и при комнатной температуре равен:
E = E0 + 0,059lg[H+ ] = ?0,059pH.
Стандартный водородный электрод (СВЭ) неудобен в работе, его заменяют электродами II рода - насыщенным каломельным электродом (н.к.э.) и хлорсеребряным (х.с.э.).
3. Виды потенциометрического метода анализа
В зависимости от природы электродной реакции на индикаторном электроде в потенциометрических методах существуют два направления: ионометрия и редоксметрия. В обоих случаях потенциометрические методы анализа подразделяются на два вида:
1. прямая потенциометрия, или ионометрия;
2. потенциометрическое титрование.
4. Прямая потенциометрия
Метод прямой потенциометрии основан на измерении потенциала индикаторного электрода, погруженного в исследуемый раствор, и расчете концентрации определяемых ионов согласно уравнению Нернста.
Метод достаточно прост и экспрессен. Достоинством и недостатком метода одновременно является то, что измеряемый потенциал зависит от активности. Это единственный метод прямого определения активности ионов в растворах. Но с другой стороны аналитиков чаще интересует концентрация, а пересчет активности ионов в концентрацию с применением эмпирических коэффициентов активности вызывает некоторую дополнительную погрешность. Существует вариант метода, в котором в калибровочные и анализируемые растворы вводится индифферентный электролит. Это позволяет проводить калибровку и последующий анализ в единицах концентрации.
Прямая потенциометрия обладает важными достоинствами. В процессе измерений состав анализируемого раствора не меняется. При этом, как правило, не требуется предварительного отделения определяемого вещества. Метод можно легко автоматизировать, что позволяет использовать его для непрерывного контроля технологических процессов.
Исторически первыми методами прямой потенциометрии были способы определения водородного показателя (рН- метрия).
4.1 рН-метрия
Для определения величины pH существуют два основных метода: колориметрический и потенциометрический.
Потенциометрический метод намного точнее, чем колориметрический, но требует оборудования лабораторий специальными приборами - pH-метрами.
pH-метр -- прибор для измерения водородного показателя (показателя pH), характеризующего концентрацию ионов водорода в растворах, питьевой воде, пищевой продукции и сырье, объектах окружающей среды и производственных системах непрерывного контроля технологических процессов, в том числе в агрессивных средах.
Действие pH-метра основано на измерении величины ЭДС электродной системы, которая пропорциональна активности ионов водорода в растворе -- pH (водородному показателю). Измерительная схема по сути представляет собой вольтметр, проградуированный непосредственно в единицах pH для конкретной электродной системы (обычно измерительный электрод -- стеклянный, вспомогательный -- хлоросеребряный).
Входное сопротивление прибора должно быть очень высоким -- входной ток не более 10-10А (у хороших приборов менее 10-12А), сопротивление изоляции между входами не менее 1011Ом, что обусловлено высоким внутренним сопротивлением зонда -- стеклянного электрода. Это основное требование к входной схеме прибора.
Размещено на http://www.allbest.ru/
Наибольшее практическое применение определения величины pH нашел стеклянный индикаторный электрод, который можно использовать в широком диапазоне pH и в присутствии окислителей.
Крупный вклад в теорию и практику рН-метрии внесли ученые: Б.П. Никольский, М.М. Шульц, Е.Н. Виноградова и др.
4.2 Ионометрия
С середины 60-х годов за рубежом, а с 70-х годов в нашей стране стала бурно развиваться новая область физико-химических методов анализа - ионометрия (рХ-метрии). Этот метод основан на разработке, изучении и практическом использовании различного рода ионоселективных электродов (ИСЭ). Иногда рН-метрию рассматривают как частный случай ионометрии. Градуировка шкал приборов потенциометров по значениям рХ затруднена из-за отсутствия соответствующих стандартов. Поэтому при использовании ионоселективных электродов активности (концентрации) ионов определяют, как правило, с помощью градуировочного графика или методом добавок. Применение таких электродов в неводных растворах ограничено из-за неустойчивости их корпуса и мембраны к действию органических растворителей.
Рисунок 3 Грдуировочный график для определения концентрации методом прямой потенциометрии
Важной особенностью метода градуировочного графика является необходимость постоянства условий проведения калибровки и измерений. При проведении измерений следует, прежде всего, уделять внимание уравниванию температуры и ионной силы, как в стандартных растворах, так и в анализируемых пробах. Несоблюдение этого условия ведет к увеличению погрешности измерений
4.3 Метод добавок
Метод добавок в ионометрии играет значительную роль. Ионометрический метод добавок дает два больших преимущества. Во-первых, если колебание ионной силы в анализируемых пробах непредсказуемо, то применение распространенного метода градуировочного графика дает большие ошибки определения. Применение метода добавок радикально меняет ситуацию и помогает свести к минимуму ошибку определения. Во-вторых, есть категория электродов, использование которых проблематично из-за дрейфа потенциала. При умеренном дрейфе потенциала метод добавок существенно снижает ошибку определения.
Существуют следующие модификации метода добавок:
1. метод стандартной добавки;
2. метод двойной стандартной добавки;
3. метод Грана.
Все эти методы могут быть сортированы на две категории по явному математическому признаку, определяющему точность получаемых результатов. Он заключается в том, что одни методы добавок обязательно используют в расчетах предварительно измеренное значение наклона электродной функции, а другие - нет. В соответствии с этим делением метод стандартной добавки и метод Грана попадает в одну категорию, а метод двойной стандартной добавки - в другую.
Метод стандартной добавки и метод Грана
Перед тем, как излагать индивидуальные особенности той или иной разновидности метода добавок, опишем в нескольких словах процедуру анализа. Процедура состоит в том, что в анализируемую пробу делается добавка раствора, содержащего тот же анализируемый ион. После каждой добавки записываются показания электродов. В зависимости от того, как далее будут обрабатываться результаты измерений, метод будет называться методом стандартной добавки или методом Грана.
5. Потенциометрическое титрование
Более распространены методы потенциометрического титрования. В потенциометрическом титровании измеряют потенциал индикаторного электрода для отслеживания изменения концентрации определяемого иона в процессе химической реакции между определяемым ионом и подходящим реагентом (титрантом).
Аппаратура для потенциометрического титрования та же самая, что и для прямой потенциометрии. В схему потенциометрических измерений входят индикаторный электрод, электрод сравнения и потенциало-измеряющий прибор.
Рисунок 6 Установка для потенциометрического титрования
В ходе титрования измеряют и записывают ЭДС ячейки после добавления каждой порции титранта. В начале титрант добавляют небольшими порциями, при приближении к конечной точке (резкое изменение потенциала при добавлении небольшой порции реагента) порции уменьшают.
Для определения конечной точки потенциометрического титрования можно использовать различные способы. Наиболее простой способ состоит в построении кривой титрования -графика зависимости потенциала электрода от объема титранта (рис. 6, А). Другой способ состоит в расчете изменения потенциала на единицу изменения объема реагента ДE/ДV (рис 6, Б).
Рисунок 7 Кривые потенциометрического титрования
А - интегральная кривая; Б - дифференциальная кривая
При потенциометрическом титровании могут быть использованы следующие типы химических реакций, в ходе которых изменяется концентрация потенциалопределяющих ионов:
1. реакции кислотно-основного взаимодействия;
2. комплексообразования;
3. реакции осаждения;
4. реакции окисления-восстановления.
5.1 Кислотно-основное титрование
В кислотно-основном титровании в качестве индикаторного обычно используют стеклянный электрод, как правило, входящий в комплект серийно выпускаемых промышленностью pH-метров. Потенциометрический метод позволяет провести количественное определение компонентов в смеси кислот, если константы диссоциации различаются не менее чем на три порядка. Например, при титровании смеси, содержащей хлороводородную (HCl) и уксусную кислоты, на кривой титрования обнаруживается два скачка. Первый свидетельствует об окончании титрования HCl, второй скачок наблюдается при оттитровывании уксусной кислоты. Также несколько скачков имеют кривые титрования многоосновных кислот, константы диссоциации которых существенно различаются (хромовая, фосфорная и др.).
Широкие возможности анализа многокомпонентных смесей без разделения открывает применение неводных растворителей. Например, определение содержания хлороводородной и монохлоруксусной кислот в смеси титрованием водного раствора является сложной задачей в связи с трудностью обнаружения двух скачков титрования. При титровании в ацетоне оба скачка выражены достаточно четко и содержание каждой кислоты в смеси может быть рассчитано.
5.2 Комплексонометрическое титрование
Потенциометрическое титрование катионов комплексоном III (ЭДТА) можно проводить с использованием в качестве индикаторного электрода соответствующего металла: титрование солей меди с медным электродом, солей цинка с цинковым и т.д. или подходящего ионоселективного электрода. Однако, многие металлические индикаторные электроды необратимы, а число ионоселективных электродов невелико.
Для комплексонометрических титрований может быть использован универсальный электрод Hg|HgY2- или Au(Hg)|HgY2-, где Au(Hg) - амальгамированное золото; HgY2- - комплекс ртути с анионом этилендиаминтетрауксусной кислоты. С помощью ртутного электрода этого типа могут быть оттитрованы любые ионы, которые образуют с Y4- комплексы с константой устойчивости, не превышающей константу устойчивости ртутного комплекса. Это, например, ионы магния (Mg2+), кальция (Ca2+), кобальта (Co2+), никеля (Ni2+), меди (Cu2+), цинка (Zn2+) и др.
5.3 Титрование по методу осаждения
Индикаторными электродами в методах потенциометрического титрования, использующих реакции осаждения, служат металлические или мембранные электроды, чувствительные к определяемому иону или иону-осадителю. Практически по методу осаждения могут быть определены катионы серебра, ртути, цинка, свинца, анионы хлора, брома, иода и некоторые другие. Смесь галогенидов, например I- и Cl-, может быть оттитрована без разделения нитратом серебра. Серебряный электрод позволяет фиксировать два скачка в ходе такого титрования. Первый скачок свидетельствует об оттитровывании иодид-иона и может быть использован для расчета содержания этого иона, второй скачок относится к окончанию осаждения хлорид-иона. По второму скачку можно рассчитать суммарное содержание галогенидов или концентрацию хлорид-иона, если концентрация иодид-иона будет известна из данных по титрованию до первого скачка.
5.4 Окислительно-восстановительное титрование
Кривые окислительно-восстановительного титрования могут быть построены в координатах или pM - V (титранта) или E - V (титранта), если pM=-lg[M] ([M] - концентрация участника реакции, E - потенциал системы, V (титранта) - объем титранта). Кривые титрования первого типа представляют практический интерес, когда имеется индикаторный электрод, чувствительный к M. Кривые второго типа имеют более общее значение, так как любое окислительно-восстановительное титрование может быть проведено по измерению E с использованием индикаторного электрода из благородного металла, чаще всего платины.
Результаты определения методом потенциометрического титрования более точны, чем при использовании прямой потенциометрии, так как в этом случае вблизи точки эквивалентности небольшому изменению концентрации соответствует большое изменение потенциала индикаторного электрода.
К недостаткам потенциометрического титрования можно отнести не всегда быстрое установление потенциала после добавления титранта и необходимость во многих случаях проводить при титровании большое количество отсчетов.
6. Измерение ЭДС электрохимических цепей
При измерении ЭДС электрохимических цепей, применяемых в потенциометрии, необходимо снимать ничтожно малые токи (10-13 - 10-14 А ), чтобы не вызвать поляризацию электродов. Это возможно лишь при использовании компенсационного способа измерения ЭДС. В настоящее время промышленность выпускает для этих целей специальные приборы: рН - метры и иономеры, позволяющие измерять ЭДС в интервале ± 1900 мВ. Наиболее распространенными являются иономер ЭВ-74 со стрелочной индикацией, а также иономеры И -130 и И -140 с цифровой индикацией. На этих приборах возможно измерение не только ЭДС, но и рН или рХ растворов, где Х - катион или анион, к которому селективен применяемый ионоселективный электрод.
Заключение
Главное преимущество потенциометрического метода по сравнению с другими методами анализа - быстрота и простота проведения измерений. Время установления равновесного потенциала индикаторных электродов мало, что удобно для изучения кинетики реакций и автоматического контроля технологических процессов. Используя микроэлектроды, можно проводить определения в пробах объемом до десятых долей, см3. Потенциометрический метод дает возможность проводить определения в мутных и окрашенных растворах, вязких пастах, при этом исключая операции фильтрации и перегонки. Потенциометрические измерения относят к группе неразрушающих способов контроля, и анализируемый раствор может быть использован для дальнейших исследований. Погрешность определения при прямом потенциометрическом измерении составляет 2 - 10 %, при проведении потенциометрического титрования - 0,5 - 1,0 %. Интервал определения содержания компонентов потенциометрическим методом в различных природных и промышленных объектах - в пределах от 0 до 14 рН для стеклянных электродов, и от 10 до 10-5(10-7) М определяемого иона для других типов ионоселективных электродов.
Одним из достоинств метода потенциометрического титрования является возможность полной или частичной его автоматизации. Автоматизировать можно подачу титранта, запись кривой титрования, отключение подачи титранта в заданный момент титрования, соответствующий точке эквивалентности.
Библиографический список
1. Лебедева М.И. Аналитическая химия и физико-химические методы анализа. Тамбов: Изд-во Тамб. гос. техн. ун-та, 2005. 216 с.
2. Васильев В.П. Аналитическая химия. Ч.2. М.: Высш. шк., 2002. 350 с.
3. Практикум по физико-химическим методам анализа. Под редакцией Петрухина О.М. М.: Химия, 1987.
4. Агасян П. К., Николаева Е. Р., Основы электрохимических методов анализа (потенциометрический метод), М., 1986.
5. Никольский Б.П., Матерова Е.А. "Ионоселективные электроды". Л.: Химия, 1980. 240 с.
6. http://multitest.semico.ru/ptitr.htm.
7. http://www.eurolab.ru/phmetriya,_vodorodnyy_pokazatel,_ponyatie_rn.
8. http://www.chemport.ru/chemical_encyclopedia_article_3088.html.
9. http://www.novedu.ru.
10. http://works.tarefer.ru/94/100214/index.html.
Размещено на Allbest.ru
...Подобные документы
Использование электрохимических методов в различных отраслях промышленности. Замена механической обработки твёрдых и сверхтвёрдых металлов и сплавов анодным растворением. Электрохимические методы анализа. Электроосаждение покрытий металлами и сплавами.
реферат [23,6 K], добавлен 13.09.2013Огнеупорные материалы и их свойства, классификация и условия эффективного использования. Современные физико-химические методы анализа. Химические реактивы, основное и вспомогательное оборудование. Стандартные методы анализа динасовых огнеупоров.
дипломная работа [882,1 K], добавлен 21.01.2016Понятие хроматографии как разделения сложных смесей на составные компоненты между двумя несмешивающимися фазами. Классификация хроматографических методов анализа, исследование с их помощью пищевых продуктов. Проникающая и аффинная хроматография.
курсовая работа [527,9 K], добавлен 03.06.2015Сущность и достоинства кондуктометрии. Контактные методы определения электропроводимости расплавов и жидких систем. Правило Маттиссена для разбавленных твердых растворов. Виды кривых высокочастотного титрования. Лабораторные и промышленные кондуктометры.
реферат [156,0 K], добавлен 03.04.2018Цели и задачи аналитического контроля на предприятии. Деятельность заводской лаборатории по проверке качества. Характеристика характеристика физико-химических методов анализа. Основные параметры в хроматографических и титриметрических методах анализа.
реферат [43,4 K], добавлен 28.12.2009Физические показатели воды; ее очистка методами серебрения, обеззараживания, хлорирования, озонирования. Применение ионоселективных электродов с целью определения в растворе концентрации различных ионов. Устройство и принцип действия иономера И-102.
курсовая работа [529,5 K], добавлен 31.08.2013Главный подход к исследованию сложных объектов - системный анализ. Практическая реализация системного анализа - структурный системный анализ, его принципы и методы. Истоки структурного моделирования. Классы моделей структурного системного анализа.
реферат [25,4 K], добавлен 18.02.2009Теоретические основы аналитического контроля качества продукции. Автоматизация аналитического контроля продукции химико-технологических производств. Оптические методы химических исследований. Электрохимические методы анализа. Хроматографический метод.
курс лекций [271,7 K], добавлен 30.08.2010Назначение автоматизированных районных конденсатных станций. Методы очистки конденсата с целью снижения содержания нефтепродуктов. Обескремнивание воды в водоочистках промышленных ТЭЦ высокого давления. Сущность колориметрического метода анализа раствора.
контрольная работа [29,6 K], добавлен 17.01.2010Характеристика, свойства и применение современных износостойких наноструктурных покрытий. Методы нанесения покрытий, химические (CVD) и физические (PVD) методы осаждения. Эмпирическое уравнение Холла-Петча. Методы анализа и аттестации покрытий.
реферат [817,5 K], добавлен 26.12.2013Методы молекулярно-абсорбционного фотометрического анализа древесины и технических целлюлоз. Построение градуировочных графиков. Хромофоры органических соединений и применение методов фотоколориметрии и спектрофотометрии в анализах древесины и целлюлозы.
реферат [94,9 K], добавлен 24.09.2009Метод дифференциального термического анализа. Общее понятие про метод термографии. Требования, предъявляемые к обычным термопарам. Влияние факторов на температурные характеристики термических кривых. Явления, происходящие в образце во время превращения.
контрольная работа [212,5 K], добавлен 01.09.2012Понятие термодинамико-топологического анализа, его сущность и особенности, сферы использования и эффективность. Принцип и порядок осуществления термодинамико-топологического анализа, его этапы и характеристика. Изучение эволюции тройной биазеотропии.
реферат [1,3 M], добавлен 15.02.2009Закономерности существования и развития технических систем. Основные принципы использования аналогии. Теория решения изобретательских задач. Нахождение идеального решения технической задачи, правила идеальности систем. Принципы вепольного анализа.
курсовая работа [3,3 M], добавлен 01.12.2015Структурная схема системы исследования микрошлифов. Методы анализа микрошлифов. Программное обеспечение для анализа на персональном компьютере полученных изображений микрошлифов: Intron-Set, ВидеоТесТ-Структура, ВидеоТесТ-Металл, ВидеоТесТ-Размер 5.0.
курсовая работа [2,1 M], добавлен 21.04.2011Изучение технологии изготовления электродов. Складирование материалов электродного покрытия и проволоки. Дробление и размол ферросплавов. Сортировка, взвешивание и упаковка готовых электродов. Виды сварочных электродов. Изготовление сварочной проволоки.
контрольная работа [1,8 M], добавлен 05.06.2010Масс-спектрометры - перспективные приборы для анализа содержания веществ независимо от их агрегатного состояния, химических и физических свойств. Назначение аналитической и измерительной частей, вспомогательных устройств, аппаратурное оформление.
контрольная работа [1,4 M], добавлен 14.10.2011Анализ конструкции поглощающего аппарата, выявление возможных дефектов. Цели, задачи и виды FMEA анализа. Формирование команды экспертов. Обеспечение выявления потенциальных несоответствий как основная задача системы менеджмента качества на предприятии.
курсовая работа [454,0 K], добавлен 28.04.2013Описание технологического процесса гамма-активационного анализа. Изучение требований к проектируемой системе. Расчёт сметы затрат на проектирование, на оплату труда сотрудников, на социальный налог, на материалы. Оценивания и выражения неопределенности.
дипломная работа [179,3 K], добавлен 09.03.2010Традиционный метод решения технических задач и кустарный промысел. Особенности чертежной тактики машиностроения и современного проектирования. Использование способов "мозгового штурма", синектики, морфологического анализа и ликвидации тупиковых ситуаций.
реферат [42,1 K], добавлен 09.02.2011