Исследование устойчивости многослойных круглых пластин переменной толщины из нелинейно-упругого материала
Проведение исследования устойчивости круглых многослойных пластин переменной толщины с функциональной градуировкой, подвергаемых радиальному сжатию. Использование теории пластин сдвиговых деформаций первого порядка и поля нелинейных смещений фон Кармана.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 28.08.2020 |
Размер файла | 601,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Азербайджанский Архитектурно-Строительный Университет
Исследование устойчивости многослойных круглых пластин переменной толщины из нелинейно-упругого материала
Садигов И.Р.
Стремительное развитие нелинейной теории круглых кольцевых пластинок переменной толщины из нелинейно-упругого материала обусловлено практическими и научными потребностями применения.
Актуальность темы исследований и дальнейшее совершенствование методов расчета устойчивости круглых и кольцевых пластин обусловлено широким распространением и применением круглых кольцевых пластин с использованием новых материалов, и изменением их толщин в необычных условиях при больших интенсивностях внешних воздействий.
Основная часть
Многие современные конструкционные решения состоят из элементов, которые можно классифицировать как пластинки. Данные пластинки могут быть постоянной или переменной толщины, различной сложной геометрической формы с вырезами или без них, а также на них могут оказывать влияния не только силовые, но и температурные воздействия.
Прогнозирование устойчивости силовых тонкостенных элементов конструкций (пластин) переменной толщины круглой кольцевой формы из нелинейно-упругого материала является важным моментом в проектировании всей конструкции в целом.
Развитие нелинейной динамики пластин, в том числе круглых кольцевых, и также оболочек, берёт своё начало, со второй половины ХХ в.
Особенно важное значение приобретает применение пластин переменной толщины для облегчения конструкций, при использовании в высокоскоростных самолетах. С особой аккуратностью распределения толщины можно добиться увеличения деформации пластины по сравнению с аналогом по толщине [1].
С целью создания пластин переменной толщины значительный интерес представляет применение функциональных композитных материалов, свойства которых могут различаться с различных сторон, сохраняя однородность материала. Эти материалы, зачастую, построены из смеси керамики и металла, и они могут сохранять свои функциональные характеристики в условиях температурных перепадов, таких как наблюдаются в ядерных реакторах и на высокоскоростных самолетах. Низкая теплопроводность керамики обеспечивает жаропрочность. Но с другой стороны, пластичный метал предотвращает разрушения, вызванные тепловыми напряжениями.
Значительное число исследований были сделаны на предмет потери устойчивости пластин постоянной толщины из функциональных композитных материалов. Тем не менее, в настоящее время предмет исследования пластин переменной толщины из данного типа материалов изучен в недостаточной степени. Пластины из подобного типа материалов будут составлять значительную часть структурного применения в будущем в аэрокосмической и в иных отраслях, где снижение веса конструктивных элементов имеет важное значение [2].
В данном исследовании предлагается исследование термостабильности и устойчивости круглых кольцевых пластин переменной толщины из нелинейно-упругого функционально-композитного материала.
Рассмотрим круглую пластину с радиусом b, которая находится симметрично посередине плоскости.
Пластина находится под равномерным напряжение с шагом увеличения или уменьшения ДS.
Начало цилиндрической системы координат лежит в центре плоскости. Здесь r и z определяют радиальное направление и толщину соответственно, ш определяет вращение вокруг радиальной оси, u и w - смещения в направлениях r и z соответственно.
Условное изображение геометрии круглой пластины переменной толщины представлено на рис. 1.
Рис. 1 - Геометрия круглой пластины переменной толщины (изображение условное)
Круглая пластина, представленная в данном исследовании для изучения, может рассматриваться как сэндвич-пластина с однородным ядром переменной толщины, hH(r), и двумя лицевыми панелями из функционального композитного материала с постоянной толщиной, hf. Поэтому общая толщина пластины, h(r), будет функцией от r.
где:
- толщины среднего слоя по центру и краю пластины соответственно;
р - определяет профиль толщины.
Хотя формулировка и метод являются общими для круглой пластины с любым профилем по толщине, анализ проводится только на пластинах с линейным и параболическим профилями.
Пластина состоит из трех слоев так, что k-ый слой находится между координатами zk и zk+1.
Учитывая, что пластина с постоянным объемом среднего слоя, VH, то соотношение между геометрическими параметрами дают:
где:
- толщина среднего слоя (равномерная толщина);
- параметр конусности в диапазоне от 0 до 1, определяя объемное распределение среднего слоя в радиальном направлении.
Свойства материала лицевых слоев пластины из функционального композитного материала определяются модулем Юнга и являются функциями объемных долей керамики и металла Vc и Vm, тогда:
где:
N - индекс объемной доли в диапазоне от 0 до ?.
Чтобы учесть нелинейность материала и потерю устойчивости, отношения осесимметричного смещения деформации запишем на основе теории пластин Кармана:
в которых напряжение в средней плоскости, заданы следующим образом:
а изгибы, , определяются как0:
где:
(),r - указатель дифференцирования по r.
Отношения между напряжением и деформацией основаны на законе Гука, а коэффициент Пуассона н считается постоянной величиной:
Полученные в результате силы и моменты напряжений определяются следующим образом:
где:
K - поправочный коэффициент сдвига в теории пластин деформации сдвига первого порядка, который соответствует 5/6.
Подставляя уравнения (20) - (22) в уравнения (23) - (25) получим следующие соотношения между результирующими силами, моментами и напряжениями:
Силы, действующие на круглую пластину, и изгибающие моменты, вычисляются следующим образом:
Уравнения равновесия круглой пластины с осесимметричными деформациями могут быть получены с использованием метода стационарной потенциальной энергии следующим образом:
Подставляя уравнения (13) - (19) и (26) - (28) в уравнение (33) - (35) получим уравнения равновесия в терминах смещения компоненты:
Из полученного выше уравнения можно получить все конфигурации пластины. Возможны два типа равновесных конфигураций пластины: под нагрузкой в плоскости, которая отклонена и изогнутыми конфигурациями при закреплении. пластина градуировка сжатие деформация
Когда происходит потеря устойчивости конфигурация пластины превратится из отклоненной конфигурации в изогнутую.
Пересечение этих двух равновесных конфигураций называется точкой бифуркации. Эту точку можно получить путем решения линейных дифференциальных уравнений устойчивости [3].
Уравнения устойчивости можно выразить следующим образом:
Уравнения устойчивости являются однородными и линейными и имеют решения только для дискретных значений приложенной нагрузки, что относится к проблеме собственных значений.
Наименьшее собственное значение называется критической нагрузкой потери устойчивости Pcr.
Следует отметить, что уравнение (39) отделено от формул (40) и (41).
Граничные условия для уравнений устойчивости принимаются следующие:
Центральный слой:
Заключение
Предложена методика определения устойчивости круглых многослойных пластин переменной толщины из функциональных композитных материалов при радиальном сжатии на основе теории пластин сдвиговых деформаций первого порядка и поля нелинейных смещений фон Кармана.
Предложенный метод актуален для определения устойчивости как круглых, так и кольцевых пластин переменной толщины из нелинейно-упругого материала, в том числе при радиальном сжатии.
Список литературы
1. Моховнев Д.В. Устойчивость ортотропных пластин при термосиловом нагружении: диссертация кандидата физико-математических наук: 01.02.04 / Моховнев Д.В. - Новосибирск, 2006. - 236 с.: ил.
2. Морс Ф.М. Методы теоретической физики / Морс Ф.М., Фешбах Г. // Том 2. - М.: Издательство иностранной литературы, 1960. - 898 с. Пер. с англ. Под ред. С.П. Аллилуева и др.
3. Ozakca M. Buckling analysis and shape optimization of elastic variable thickness circular and annular plates / M. Ozakca, N. Taysi, F. Kolcu - I. Finite element formulation. Eng Struct 2003; pp.181-92.
Аннотация
Точные методы решения задачи изгиба могут применяться лишь для некоторых частных случаев, когда пластина простой конфигурации и постоянной толщины. Эта задача также ограничена граничными условиями, и может быть решена лишь при определенных их видах. В настоящем исследовании рассмотрены вопросы устойчивости круглых многослойных пластин переменной толщины с функциональной градуировкой, подвергаемых радиальному сжатию, на основе теории пластин сдвиговых деформаций первого порядка и поля нелинейных смещений фон Кармана.
Ключевые слова: устойчивость, деформация, изгиб, круглая, кольцевая, пластина, переменная толщина.
Precise methods for solving the problem of bending can be used only for special cases where the plate is of simple configuration and constant thickness. This task is also limited by boundary conditions, and can be solved only under certain types. This study examines the stability of round multi-layered plates of variable thickness with functional grading subjected to radial compression based on the theory of plates of first-order shear deformations and the field of non-linear von Karman displacements.
Keywords: stability, deformation, bending, round, ring, plate, variable thickness.
Размещено на Allbest.ru
...Подобные документы
Вывод уравнений для прочностных ограничений; изгиба круглой симметрично нагруженной пластины переменной толщины. Определение градиентов целевой функции. Алгоритм расчетов оптимальных дисков методом чувствительности при различных граничных условиях.
дипломная работа [2,1 M], добавлен 21.06.2014Технологія виготовлення планарного діода: вхідний контроль, підготовка напівпровідникових пластин, епітаксія, окислювання кремнієвих пластин, фотолітографія, металізація. Скрайбування та розламування пластин на кристали. Розрахунок дифузійного процесу.
курсовая работа [696,4 K], добавлен 10.11.2013Дифференциальное уравнение изгиба абсолютно жестких пластин судового корпуса. Перемещения пластины и значения изгибающих моментов. Цилиндрическая жесткость пластины. Влияние цепных напряжений на изгиб пластин. Определение напряжений изгиба пластины.
курсовая работа [502,8 K], добавлен 28.11.2009Заготовки фасонного монолитного инструмента из твердого сплава. Припаивание пластин из твёрдых сплавов. Процесс шлифования. Смазочно-охлаждающие жидкости. Затачивание и доводка алмазными кругами. Шлифование многогранных неперетачиваемых пластин.
курсовая работа [8,8 M], добавлен 27.12.2008Ассортимент и характеристики выпускаемой продукции современным полиграфическим предприятием. Выбор и контроль качества изготовления печатных пластин. Тенденции развития цифровых допечатных технологий. Участок шахматных полей. Отработка режимов проявления.
презентация [819,4 K], добавлен 05.10.2014Рассмотрены методы шлифовки, которые разделяют по виду используемого абразива на обработку свободным и связанным абразивом, по конструкции станка и характеру удаления припуска – на одностороннюю и двустороннюю. Полировка полупроводниковых пластин.
реферат [90,4 K], добавлен 19.01.2009Расчет режимов аргонодуговой сварки неплавящимся электродом алюминия при заданных разделке кромок, толщины свариваемых пластин и скорости сварки. Распространение тепла в пластинах, необходимый подогрев при определенной скорости охлаждения металла.
контрольная работа [486,0 K], добавлен 17.01.2014Исследование роли композитных материалов в многослойных конструкциях в аэрокосмической промышленности. Анализ дефектов, встречающихся в процессе эксплуатации. Совершенствование ультразвуковой дефектоскопии с помощью многослойных композитных материалов.
дипломная работа [2,2 M], добавлен 08.04.2013Описание объекта исследования - резца борштанги: его структура, принцип работы, предназначение и основные недостатки. Исследование уровня техники режущей пластины, патентной чистоты усовершенствованного объекта, патентоспособности технического решения.
научная работа [37,3 K], добавлен 19.07.2009- Воздействие теплофизических и металлургических процессов на формирование свойств сварного соединения
Конструктивные особенности узла и условия выполнения сварки. Химический состав материалов. Расчетная схема нагрева изделия. Оценка склонности металла шва к образованию трещин. Расчет термического цикла для пластин. Построение температурного поля.
курсовая работа [2,1 M], добавлен 17.12.2015 Разработка технологии производства круглых электросварных прямошовных труб. Сортамент выпускаемой станом продукции. Техническая характеристика трубоэлектросварочного агрегата. Расчет калибровки валков, параметров калибровочного стана, турголовок.
дипломная работа [1,1 M], добавлен 08.06.2019Машинно-аппаратурная схема механизированной поточной линии производства многослойных неглазированных конфет с валковыми формующими механизмами. Расчет просеивателя и дозатора для сахара-песка. Расчет варочной колонки и валковой формующей машины.
контрольная работа [1,3 M], добавлен 29.11.2012Измерение пороков круглых лесоматериалов: сучков (глубины залегания), трещин (метиковой и отлупной), наростов, формы ствола, строения древесины, кривизны (величине стрелы прогиба сортимента в месте его наибольшего искривления), грибных поражений.
реферат [3,8 M], добавлен 06.12.2010Основные особенности заводской обработки кожи. Характеристика однослойных и многослойных кожаных ремней. Описание комбинированных многослойных кожаных ремней, основные слои. Необходимые этапы изготовления мужских и женских поясов из натуральной кожи.
доклад [199,6 K], добавлен 22.05.2012Методы экспериментального исследования теплообмена при конденсации, теплопередача в каналах пластинчатого конденсатора. Расчет площади поверхности теплопередачи и количества пластин пластинчатого конденсатора. Гомогенная структура двухфазного потока.
дипломная работа [3,5 M], добавлен 07.11.2011Конструктивные особенностей резцов с многогранными твёрдосплавными пластинами. Достоинства и недостатки различных способов установки в державке резца многогранных сменных пластинок. Крепление прихватом сверху для наилучшей точности установки пластины.
лабораторная работа [72,3 K], добавлен 12.10.2013Сварка стыковых соединений в нижнем положении пластин с подготовкой кромок (250*150*10) в соответствии с ГОСТ5264-80. Назначение и устройство трансформаторов. Инструменты и оборудование для проведения работы. Охрана труда и техника безопасности.
курсовая работа [237,2 K], добавлен 13.09.2015Назначение и классификация цепных передач, их достоинства и недостатки. Характеристика материалов для изготовления пластин зубчатых цепей и деталей шарниров. Кинематический и геометрический расчеты приводных роликовых однорядных и двухрядных цепей.
методичка [649,8 K], добавлен 28.12.2013Расчет температур молока и воды в пастеризационно-охладительной установке. Определение коэффициента теплопередачи, числа пластин. Выбор и обоснование схемы компоновки оборудования в производственных помещениях. Механизм и этапы расчета потерь давления.
курсовая работа [720,0 K], добавлен 04.05.2019Действие на конструкцию внешних или рабочих нагрузок. Стержень, работающий на изгиб. Методы расчета пластин, оболочек и массивных тел при больших деформациях. Принцип независимости действия сил и суперпозиции, неизменности геометрических размеров.
контрольная работа [238,8 K], добавлен 11.10.2013