Редуктор: назначение и типы
История редуктора: от древних времен до наших дней. Классификация редукторов по типам передач и числу ступеней, расположению осей входного/выходного валов в пространстве, способу крепления. Модернизация редукторов как современная стабильная тенденция.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 30.10.2020 |
Размер файла | 119,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
Введение
1.История редуктора: от древних времен до наших дней
1.1 Античность
1.2 Средние века
1.3 Новое время
2. Основная информация
2.1 Классификация редукторов
2.2 Типы используемых передач
2.2.1 Червячные редукторы
2.2.2 Червячный глобоидный редуктор
2.2.3 Цилиндрические редукторы
2.2.4 Конические редукторы 14
2.2.5 Коническо-цилиндрические редукторы
2.2.6 Насадные редукторы
2.2.7 Планетарные редукторы
2.3 Способы крепления редукторов
3. Смазка редукторов
4. Зацепления
5. Корпуса редукторов
6. Модернизация редукторов - стабильная тенденция
редуктор ось вал
Введение
Редуктором называют механизм, состоящий из зубчатых и червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи.
Назначение редуктора - понижение угловой скорости и соответственно повышение крутящего момента ведомого вала по сравнению с ведущим.
Редуктор состоит из корпуса, в который помещают элементы передачи - зубчатые колеса, валы, подшипники и т.д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацепления и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).
Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке и передаточному числу без указания конкретного назначения.
Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т.д.); типу зубчатых колес (цилиндрические, конические и т.д.); относительному расположению валов в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т.д.).
1. История редуктора: от древних времен до наших дней
Легенда об изобретении Архимедом многоступенчатого редуктора и червячной передачи - механизмов, примененных для перемещения корабля «силой одного человека», появилась еще в античные времена. Такой механизм, как полиспаст с достаточным числом блоков, был описан задолго до Архимеда и вполне мог им использоваться для перемещения триер, весивших более сотни тонн. То же относится и к многоступенчатым зубчатым передачам. Однако многоступенчатые редукторы не нашли (да и не могли найти) широкого применения в античности, когда главным источником энергии была сила людей и животных, которые в принципе не могли развивать больших мощностей и скоростей. Древние греки и римляне в основном довольствовались такими нехитрыми механизмами, как одиночный блок и ворот, просто потому, что большего им и не требовалось.
1.1 Античность
Первое применение зубчатых передач началось несколько тысячелетий назад. В Древнем Египте на берегах Нила для орошения плодородных земель уже использовались оросительные устройства, состоявшие из деревянной зубчатой передачи и колеса с большим числом ковшей. Такое устройство приводилось в действие быком. Вода поднималась на более высокий уровень и по каналам доставлялась к потребителю.
Первоначально зубчатые колеса изготовлялись ремесленниками и имели самую простую форму. Вместо зубьев применяли деревянные цилиндрические или прямоугольные пальцы, которые устанавливали по периферии деревянных ободьев.
Для откачки воды из шахт или подъема воды для орошения в древности использовались как архимедовы винты, так и водочерпальные колеса. Это устройство - «архимедов винт» - состояло из наклонной деревянной трубы, погруженной одним концом в воду, подлежащую откачке. Внутри трубы была укреплена винтовая переборка. «Улитка» вращалась мускульной силой рабов или животных. Вода выливалась из верхнего конца трубы. Использовался «архимедов винт» и для откачки воды из трюмов больших грузовых судов. Сами по себе нехитрые механизмы, тем не менее, они означали гигантский технологический прорыв человечества […].
В книге Герона Александрийского «Механика», дошедшей до нас полностью лишь в арабском переводе, Герон подробно рассматривает простые механизмы (ворот, рычаг, блок, клин, винт), зубчатые передачи и другие более сложные механизмы. «Механика» Герона являлась своеобразной энциклопедией античной техники. По-настоящему полезным было следующее изобретение Герона. Герон изобрел механизм, названный им годометром (измерителем пути). В настоящее время такие приборы называются в зависимости от назначения спидометрами и таксометрами. Годометр Герона состоял из системы зубчатых колес, приводившихся в движение при езде повозки. Пройденный путь фиксировался стрелками на циферблате с делениями. Усовершенствовав водяные часы (клепсидру), известные в Греции с V века до н. э., древнеримский изобретатель Витрувий в I веке до н. э. присоединил к клепсидре механизм, где зубчатое колесо, приводимое в движение поплавком, передвигало стрелки на циферблате. Это был один из первых примеров создания привода с постоянной заданной скоростью вращения. Однако в конструкции древних часов входили зубчатые колеса, но регулирование их движения, т. е. измерение времени, производилось скоростью истечения воды. Поэтому отличительным признаком клепсидры служат не сами зубчатые колеса и не гири как движущая сила, а именно течение воды. Древними римлянами в это же время была изобретена и широко начала использоваться мельница на водяном колесе, в которой применялись зубчатые передачи. Витрувий описывает большое лопастное колесо, которое приводилось в движение водой с помощью двух поставленных под углом зубчатых колес. Это колесо и вращало жернова, на которых размалывалось зерно.
А вот найденный в 1901 году археологами на затонувшем судне античный астрономический прибор, известный как «компьютер Антикиферы», изготовленный из бронзы, служил для определения положения Луны и Солнца. Это оказался очень сложный прибор, состоящий из десятков зубчатых колес. Механизм загадочного артефакта сложнее любого другого устройства, относящегося к древнегреческой культуре. В нем применены дифференциальная передача (считалось, что она была изобретена не ранее XVI века), бронзовые шестерни, циферблаты со стрелками. При этом уровень механической обработки деталей (их размеры и сложность изготовления) сравним с тем, что был достигнут в производстве механических часов XVII века. Изготовленный в I веке до н.э., этот древний «компьютер» предвосхитил и массовое появление астролябий и механизмов на основе зубчатых колес (первых редукторов) в Западной Европе в Средние века, и создание механических арифмометров в XX веке. Несомненно, это меняет наши представления об уровне развития античной цивилизации и о влиянии технологий на ход исторического развития. Чем же является «компьютер Антикиферы» - результатом технической эволюции некой исчезнувшей «цивилизации Атлантиды» или прорывом античного духа, преобразившего косную материю в упорядоченный механизм?
Сама по себе идея механической передачи восходит к идее колеса. Простейшая колесная передача работает следующим образом. Пусть два колеса с параллельными осями вращения плотно соприкасаются своими ободьями. Если одно из колес начинает вращаться (его называют ведущим), то благодаря трению между ободьями начнет вращаться и другое (ведомое). Причем пути, проходимые точками, лежащими на их ободьях, равны. Большее колесо будет делать, по сравнению со связанным с ним меньшим, во столько же раз меньше оборотов, во сколько раз его диаметр превышает диаметр последнего. Если ведомым будет меньшее колесо, мы потеряем на выходе в скорости, но зато крутящий момент этой передачи увеличится в два раза. Эта передача удобна там, где требуется «усилить движение» (например, при подъеме тяжестей). Таким образом, применяя систему из двух колес разного диаметра, можно не только передавать, но и преобразовывать движение. В реальной практике передаточные колеса с гладким ободом почти не используются, так как сцепления между ними недостаточно жесткие и колеса проскальзывают. Этот недостаток античными изобретателями был устранен - вместо гладких колес начали использовать зубчатые. Так и появились первые редукторы. Но широкое распространение они получили значительно позже.
1.2 Средние века
Леонардо Да Винчи: «Тот, кто порицает высшую точность математики, кормится за счет путаницы и никогда не отступится от уловок софистических наук, порождающих бесконечную болтовню».
В это время появляются новые источники энергии для нужд ремесел и промышленности. Соответственно, возникает необходимость преобразовывать параметры вращательного движения. Эпоха Возрождения была своеобразным историческим итогом, воплотившим лучшие достижения тысячи лет европейского и арабского Средневековья.
Гений эпохи Возрождения, Леонардо Да Винчи, оставил потомкам множество записей, чертежей и даже действующих моделей различных механизмов, использующих колесные зубчатые передачи. В Средние века существовали только два механических двигателя - ветряной и водяной. Леонардо одним из первых в полную силу заставил служить людям еще одну энергию - потенциальную энергию упругости. Именно эти источники энергии и служили основой устройств и механизмов, спроектированных Леонардо. Это и шагомер, и механическая пила с вертикальным полотном. Токарный станок с педальным приводом он снабдил массивным маховым колесом, которое обеспечивало равномерное вращение. Печатный станок Леонардо дополнил устройством для автоматической подачи листов бумаги - так появился прототип современного принтера с автоподачей бумаги. Механику Леонардо не зря называл «раем математических наук», именно в этой области разум гения взмывал в неведомые и беспредельные высшие сферы творчества.
В наследии Леонардо оказались представлены (правда, невостребованные при жизни гения) весьма сложные и разнообразные варианты зубчатых передач, начиная от простейшей, так называемой цевочной, где зубьями колес служат цилиндрические шпеньки, до весьма сложной глобоидной червячной, в которой поверхность ведущего элемента (винта или червяка) имеет вогнутую форму и охватывает ведомую шестерню под большим углом. Леонардо начертил эскизы устройств для преобразования вращательного движения в поступательное и наоборот. Он сконструировал коническую и спиральную передачи, придумал роликовую цепь, которая и сегодня применяется в велосипедах, мотоциклах и множестве других механизмов. Конструирование сложных машин и их элементов привело Леонардо к созданию основ теории передаточных механизмов - пространственных и плоских зубчатых зацеплений, передач с гибкими звеньями и с переменными скоростями вращения. Оно послужило фундаментом, на котором спустя века выросла классическая инженерная механика, обретшая строгую математическую форму только в Новое время, когда индустриализация Европы востребовала все накопленное цивилизацией научное наследие. Еще одно значение Леонардо - он был реалистом, одним из предтеч классической науки, который своим появлением ознаменовал отказ передовой мысли Европы от мистических соблазнов и пустых поисков алхимии: «О, искатели вечного движения, сколько пустых проектов создали вы в подобных поисках! Прочь идите вместе с делателями золота!»
1.3 Новое время
Промышленная революция ознаменовалась переходом от деревянных передач к металлическим. Ветряные и водяные движители уже могли создавать усилия, которые не выдерживали деревянные детали. Поиск новых источников энергии и создание механизмов, способных заменить ручной труд, явились одним из основных факторов промышленной революции. Только во Франции к началу 18 века имелось 80 тыс. мукомольных мельниц, 15 тыс. мельниц, используемых в промышленных целях, и 500 мельниц для измельчения железной руды. По сравнению со Средними веками, передаточные механизмы начали использоваться очень широко. От мельниц с помощью зубчатых и ременных передач приводились в движение токарные станки, сверлильные станки, роликовые станки для получения металлических листов и ротационные резаки для их разрезания, вентиляторы для шахт, шахтные подъемники и насосы для шахт с цепным приводом. Для преобразования вращательного движения в возвратно-поступательное с целью приведения в действие ударных устройств средневековые мастера стали применять кулачковый и кривошипный механизмы. Таким образом, механизированные фабрики Европы Нового времени в результате промышленной революции заменили ручной труд машинами, а также сконцентрировали большие мощности на относительно небольших площадях. Однако передаточные механизмы были в 17-18 веках достаточно громоздкими и неэффективными. Именно в это время ученые-механики начали разрабатывать классическую теорию зацепления профилей зубьев (Ф.Делахир, М.Камус, Л.Эйлер).
С появлением паровой машины возникла необходимость в передаче еще больших мощностей. Соответственно, потребовалось конструировать металлические редукторы. К 1850 году ткацкие станки с механическим приводом были уже втрое производительнее ручных станков. Более дешевая энергия дала возможность повысить быстродействие станков, и это укрепило их экономическое преимущество. Паровой двигатель был достаточно мощным, чтобы приводить в движение несколько текстильных станков, и соответствующие станки приходилось размещать вокруг двигателя. Паровой двигатель также сделал возможным размещение производств не только у воды, а там, где были уголь, рабочие руки, рынки сбыта и транспорт. Новое время проводило и селекцию самых оптимальных конструкций зубчатых передач - тиражироваться начинали именно те, что давали максимальный экономический эффект. К середине 19 века, по-видимому, следует отнести появление первых серийных редукторов. Ну а появление во второй половине 19 века электрического привода, бензиновых и дизельных двигателей означало разработку редукторов с заданными параметрами. Зубчатые механизмы предназначались для передачи вращательного движения от высокооборотных двигателей и преобразования (снижения) его параметров. Даже самые первые электродвигатели и ДВС обладали скоростью и моментом, как правило, не подходящим для использования в технологическом процессе.
Это сегодня трудно найти такую машину, в которой нет зубчатого механизма. Они применяются практически во всех машинах, во всех разновидностях технологического оборудования. Но, как мы видим, зубчатые передачи прошли многовековой путь развития.
2. Основная информация
2.1 Классификация редукторов
Редуктор общемашиностроительного назначения. Этот тип оборудования представляет собой самостоятельный агрегат, используемый в приводах машин. Его технические характеристики отвечают общим для разных применений требованиям. Конструктивно общемашиностроительные редукторы могут отличаться.
Специальные редукторы разработаны для автомобильной, авиационной и других узкоспециализированных отраслей. Из названия понятно, что агрегаты этой группы должны соответствовать специфике и параметрам конкретного применения.
Редукторы можно классифицировать по следующим признакам:
По типам передач и числу ступеней;
По расположению осей входного/выходного валов в пространстве и относительно друг друга;
По способу крепления.
1.1 Количество ступеней и расположение валов
У двух- и трехступенчатых редукторов развернутых и раздвоенных схем (в случае с двухступенчатыми моделями еще и соосных схем) есть ряд преимуществ перед агрегатами других типов - прежде всего это высокий КПД и устойчивость к нагрузкам. Соосные цилиндрические редукторы могут комплектоваться тихоходной ступенью с внутренним зацеплением. Планетарные и волновые агрегаты с соосным расположением осей валов также обеспечивают высокую производительность и широкий диапазон передаточных чисел.
При комплектации машин и механизмов, требующих пересекающегося расположения валов, будут эффективны двух- и трехступенчатые конические (коническо-цилиндрические) редукторы.
Агрегаты с червячными (червячно-цилиндрическими, цилиндрическо-червячными) передачами характеризуются высоким передаточным числом и низким уровнем шума. Однако КПД у таких моделей ниже, чем у цилиндрических аналогов.
Вертикальное расположение выходных валов требует меньшего пространства. В механизмах, где необходима подобная компоновка, чаще используются червячные или конические редукторы. Удобство заключается в том, что ось двигателя находится в горизонтальном положении.
Таблица 1. Классификация редукторов по расположению осей валов
Редуктор |
Расположение осей |
|
Параллельные оси входного/выходного валов |
1. Горизонтальное: - оси в горизонтальной плоскости; - оси в вертикальной плоскости (входной вал - над или под выходным валом); - оси в наклонной плоскости. 2. Вертикальное |
|
Совпадающие оси входного/ и выходного валов (соосный) |
1. Горизонтальное 2. Вертикальное |
|
Пересекающиеся оси входного/выходного валов |
1. Горизонтальное 2. Горизонтальная ось входного вала и вертикальная ось выходного вала 3. Вертикальная ось входного вала и горизонтальная ось выходного вала |
|
Скрещивающиеся оси входного/выходного валов |
1. Горизонтальное (входной вал - над или под выходным валом) 2. Горизонтальная ось входного вала и вертикальная ось выходного вала 3. Вертикальная ось входного вала и горизонтальная ось выходного вала |
2.2 Типы используемых передач
2.2.1 Червячные редукторы
Червячный редуктор - наиболее распространенный тип редукторов. Привод имеет компактные размеры (в сравнении с цилиндрическими агрегатами). Передаточное отношение червячной пары может достигать 1-100 (иногда и выше).
Потенциал увеличения крутящего момента при снижении частоты вращения вала у червячных редукторов выше, чем у оборудования с другими типами передач. Передаточное число того же порядка можно получить при эксплуатации трехступенчатого цилиндрического редуктора. В червячных агрегатах для решения этой задачи достаточно одной ступени. Еще одно преимущество - простота и низкая стоимость червячных редукторов. Использование червячного зацепления позволяет снизить уровень шума передачи, обеспечить высокую плавность хода.
Функция самоторможения присутствует только в червячных редукторах. Ее принцип основан на торможении ведомого вала при отсутствии движения на ведущем валу (червяке). Самоторможение в передаче осуществляется в тот момент, когда угол подъема ведущего вала меньше или равен 3,5 градусам.
При выборе червячного редуктора следует учитывать тот факт, что при увеличении передаточного числа снижается КПД червячной передачи. Отсюда - потери энергии вследствие трения червяка об зубья колеса.
Ресурс червячных приводов составляет, в среднем, 10 тысяч часов.
2.2.2 Червячный глобоидный редуктор
Винт глобоидного червячного редуктора имеет выпуклую форму (в других червячных передачах он цилиндрический). Эта конструктивная особенность увеличивает передачу крутящего момента и мощность привода.
Глобоидные редукторы предназначены для использования в условиях, предполагающих высокую надежность, отсутствие обратного проскальзывания и динамических толчков на выходном валу. Чаще всего редукторы этого типа применяются в барабанных приводах лифтов: глобоидная пара адаптирована к переменным нагрузкам, возникающим при подъеме и торможении кабины, в состоянии поддерживать нормальную реверсивность при эксплуатации.
Таблица 2. Допустимые нагрузки для червячных глобоидных редукторов типа ЧГ
Типоразмеры |
Номинальное передаточное число |
Частота вращения червяка, об/мин |
||||||
750 |
1000 |
1500 |
||||||
Рвх, кВт |
Твых, Н м |
Рвх, кВт |
Твых,Н·м |
Рвх, кВт |
Твых, Н·м |
|||
Чг-63 |
10 |
1,2 |
120 |
1,5 |
- |
1,9 |
110 |
|
12,5 |
1,1 |
130 |
1,3 |
130 |
1,7 |
110 |
||
16 |
1,0 |
150 |
1,2 |
150 |
1,5 |
130 |
||
20 |
0,8 |
150 |
0,9 |
150 |
1,3 |
130 |
||
25 |
0,5 |
125 |
0,6 |
110 |
0,8 |
110 |
||
31,5 |
0,4 |
110 |
0,5 |
110 |
0,6 |
90 |
||
40 |
0,3 |
110 |
0,3 |
100 |
0,5 |
90 |
||
50 |
0,2 |
100 |
0,3 |
100 |
0,3 |
90 |
||
63 |
0,1 |
90 |
0,2 |
90 |
0,3 |
80 |
||
Чг-80 |
10 |
2,4 |
250 |
2,8 |
220 |
3,1 |
170 |
|
12,5 |
2,0 |
260 |
2,4 |
240 |
2,6 |
180 |
||
16 |
1,6 |
260 |
1,9 |
240 |
2,1 |
180 |
||
20 |
1,5 |
300 |
1,7 |
260 |
1,8 |
200 |
||
25 |
1,0 |
250 |
1,1 |
220 |
1,5 |
190 |
||
31,5 |
0,7 |
220 |
0,8 |
200 |
1,1 |
180 |
||
40 |
0,6 |
220 |
0,7 |
200 |
0,9 |
180 |
||
50 |
0,5 |
210 |
0,5 |
180 |
0,6 |
160 |
||
63 |
0,3 |
200 |
0,4 |
170 |
0,5 |
150 |
||
Чг-100 |
10 |
4,3 |
460 |
4,7 |
380 |
6,3 |
350 |
|
12,5 |
3,8 |
500 |
4,0 |
400 |
5,5 |
380 |
||
16 |
3,0 |
500 |
3,6 |
450 |
4,6 |
400 |
||
20 |
2,7 |
550 |
3,2 |
500 |
3,9 |
420 |
||
25 |
2,0 |
500 |
2,3 |
450 |
3,0 |
400 |
||
31,5 |
1,4 |
420 |
1,6 |
380 |
2,1 |
350 |
||
40 |
1,2 |
420 |
1,3 |
380 |
1,8 |
350 |
||
50 |
0,9 |
400 |
1,0 |
350 |
1,3 |
320 |
||
63 |
0,7 |
380 |
0,8 |
320 |
1,1 |
300 |
||
Чг-125 |
10 |
8,4 |
900 |
10,4 |
850 |
12,3 |
700 |
|
12,5 |
7,1 |
950 |
8,9 |
900 |
10,0 |
700 |
||
16 |
5,6 |
950 |
7,0 |
900 |
8,5 |
750 |
||
20 |
5,3 |
1100 |
6,3 |
1000 |
7,8 |
850 |
||
25 |
4,0 |
1000 |
4,6 |
900 |
5,2 |
700 |
||
31,5 |
2,9 |
900 |
3,4 |
800 |
3,9 |
650 |
||
40 |
2,4 |
900 |
2,8 |
800 |
3,2 |
650 |
||
50 |
1,7 |
800 |
2,1 |
750 |
2,6 |
650 |
||
63 |
1,4 |
750 |
1,7 |
700 |
2,1 |
600 |
||
Чг-160 |
10 |
16,7 |
1850 |
20,3 |
1700 |
28,3 |
1600 |
|
12,5 |
13,9 |
1900 |
16,3 |
1700 |
22,8 |
1600 |
||
16 |
11,0 |
1900 |
13,7 |
1800 |
18,6 |
1650 |
||
20 |
9,7 |
2050 |
11,9 |
1900 |
16,5 |
1800 |
||
25 |
7,6 |
1950 |
8,6 |
1700 |
11,2 |
1500 |
||
31,5 |
5,7 |
1800 |
6,4 |
1550 |
8,2 |
1350 |
||
40 |
4,6 |
1800 |
5,1 |
1550 |
6,6 |
1350 |
||
50 |
3,6 |
1650 |
4,0 |
1450 |
5,0 |
1250 |
||
63 |
2,8 |
1550 |
3,4 |
1450 |
4,1 |
1200 |
2.2.3 Цилиндрические редукторы
В цилиндрических редукторах устанавливаются цилиндрические зубчатые передачи. Комплектация таких приводов может отличаться положением входного/выходного валов и количеством ступеней. Одноступенчатые цилиндрические агрегаты классифицируются только по расположению валов. Передаточные числа варьируются в диапазоне 1,6-6,3.
Схемы исполнения цилиндрических пар:
развернутая узкая;
развернутая;
раздвоенная;
соосная.
Наиболее распространена развернутая схема. Она позволяет выпускать унифицированные колеса, валы и шестерни, которые подходят для производства редукторов разных типоразмеров. Этот фактор является определяющим для серийного производства, т.к. способствует снижению себестоимости выпускаемой продукции.
С той же целью выбирается левое направление зуба шестерни и правое направление колеса для всех ступеней редуктора. При индивидуальной комплектации единичного редуктора целесообразнее использовать следующую схему: левое направление зуба шестерни на первой ступени, правое - на второй ступени. Такая комплектация снизит осевую нагрузку на опоры.
Форма редукторов, проектируемых по развернутой схеме, удлиненная. Вес такого агрегата будет на 15-20% больше приводов, сконструированных по раздвоенной схеме.
Раздвоенная схема применима для тихоходной и быстроходной ступеней. Во втором варианте она наиболее рациональна, так как промежуточный вал может быть изготовлен по принципу вала-шестерни, а быстроходный вал становится «плавающим».
При соосной схеме оси быстроходного и тихоходного валов совпадают. Вес и габариты редуктора, собранного по соосной схеме, аналогичны моделям с развернутой схемой. Стоимость обоих типов агрегатов практически одинакова.
Одна из основных технических характеристик соосного редуктора - увеличенная мощность быстроходной ступени, что достигается за счет снижения нагрузки на нее. Однако конструктивно такие агрегаты более сложные.
Ресурс цилиндрического редуктора - 25 тысяч часов и более.
Таблица 3. Допустимые нагрузки для цилиндрических редукторов ЦУ (одноступенчатых горизонтальных)
Типоразмеры |
Номинальный вращающий момент на выходном валу, Нм |
Номинальная радиальная сила, Н |
||
входной вал |
выходной вал |
|||
ЦУ-100 |
250 |
500 |
2000 |
|
ЦУ-160 |
1000 |
1000 |
4000 |
|
ЦУ-200 |
2000 |
2000 |
5600 |
|
ЦУ-250 |
4000 |
3000 |
8000 |
Таблица 4. Технические параметры цилиндрических редукторов Ц2С (двухступенчатых соосных)
Типоразмеры |
Номинальные передаточные отношения |
Номинальный вращающий момент на выходном валу, Нм |
Номинальная радиальная сила, Н |
КПД |
||
входной вал |
выходной вал |
|||||
Ц2С-63 |
8; 10; 12,5 |
125 |
500 |
2800 |
0,98 |
2.2.4 Конические редукторы
Конструкцией конического редуктора предусмотрены колеса с прямыми и круговыми зубьями. Направления наклона линии зуба и вращения колеса должны совпадать. Соблюдение этого условия позволяет предотвратить затягивание шестерни в зацепление, возникающее под действием отрицательной осевой силы на шестерне.
Передаточное отношение конического редуктора - 1-5.
Зубчатое колесо устанавливается между опорами редуктора. Шестерни монтируются консольно.
2.2.5 Коническо-цилиндрические редукторы
Данный тип механизмов представляет собой гибрид цилиндрического одноступенчатого и конического редукторов. Соответственно, этой группе оборудования присущи все достоинства и недостатки агрегатов обоих типов.
Все коническо-цилиндрические редукторы имеют быстроходную коническую ступень. Такая конструктивная особенность объясняется невысокой нагрузочной способностью и, соответственно, большими габаритами агрегата. С целью уменьшения размеров привода и используется быстроходная коническая ступень.
Коническая передача может использоваться в тихоходных и промежуточных ступенях, что оправдано необходимостью снижения ее чувствительности к погрешностям при производстве и установке, минимизацией их влияния на механизм в целом.
Направление зуба в косозубой цилиндрической паре должно быть выбрано с учетом возможности вычитания осевых сил на промежуточных валах.
Таблица 5. Коэффициент режима эксплуатации коническо-цилиндрических редукторов (двухступенчатых и трехступенчатых)
Характер режима нагрузки |
Суточная продолжительность эксплуатации |
|||
3 часа |
8 часов |
24 часа |
||
Спокойный |
1,25 |
1,0 |
0,8 |
|
Умеренные толчки |
1,0 |
0,8 |
0,65 |
|
Сильные толчки |
0,55 |
0,65 |
0,5 |
2.2.6 Насадные редукторы
Насадными редукторами называются агрегаты с полым выходным валом. Они монтируются непосредственно на вал - без дополнительных соединений и передач. Преимущество насадных редукторов заключается в более компактных габаритах и сравнительно невысоком весе.
Насадный способ монтажа, как правило, применим к червячным и некоторым другим типам редукторов. Исключение составляет цилиндрическая соосная группа оборудования, конструктивные особенности которой затрудняют такую установку.
При резкой динамике нагрузки на выходной вал (чаще всего при нештатных ситуациях) отсутствие соединительной муфты может стать причиной преждевременного выхода из строя приводного оборудования. Поэтому эксплуатация редуктора требует создания условий эксплуатации при равномерной нагрузке. Как вариант - дополнительная защита привода.
2.2.7 Планетарные редукторы
Планетарные (дифференциальные) редукторы состоят из центральной шестерни (солнечной), расположенной в центре редуктора, вспомогательных шестерней одинакового размера (сателлитов), установленных вокруг центральной шестерни, и фиксатора (водила), обеспечивающего их надежное крепление. Конструкцией планетарного редуктора также предусмотрена кольцевая шестерня, внешне напоминающая зубчатое колесо. Ее предназначение - обеспечение сцепления с сателлитами. Центральная шестерня является ведущим элементов, сателлиты - ведомыми. Кольцевая шестерня всегда неподвижна.
Конструктивно исполнения планетарных редукторов могут отличаться. Модели классифицируются по количеству ступеней (одно-, двух- и трехступенчатые), кинематической схеме планетарной передачи. Тип подшипников также отличается. Подшипники качения предназначены для режимов эксплуатации на низкой скорости. В свою очередь, подшипники скольжения рассчитаны на режим высоких скоростей. Основная сфера использования планетарных редукторов - машиностроение.
Планетарные агрегаты МПО классифицируются как универсальное приводное оборудование. Они широко используются в приводах перемешивающих механизмов медицинской, химической, микробиологической промышленностях, а также в приводах общепромышленного назначения. Редукторы серии МПО могут эксплуатироваться в режиме 24 часа в сутки при постоянной и переменной нагрузках.
К планетарным редукторам предъявляются жесткие требования. Производство такого оборудования требует высокой точности, чтобы зубцы плотно соприкасались между собой, но при этом легко приводились в движение.
Таблица 6. Технические параметры планетарных редукторов Пз (зубчатые одноступенчатые)
Типоразмер |
Радиус водила, мм |
Передаточные числа |
Вращающий момент на выходном валу, Н·м |
Консольная сила, Н |
КПД |
Частота вращения входного вала |
|||
входной вал |
выходной вал |
максимум |
минимум |
||||||
Пз-31,5 |
32,35 |
8, 10 |
125 |
80 |
140 |
0,96 |
3000 |
500 |
|
Пз-40 |
40 |
6,3 |
250 |
120 |
200 |
0,98 |
3000 |
500 |
|
8, 10, 12,5 |
0,97 |
||||||||
Пз-50 |
50 |
6,3 |
500 |
170 |
280 |
0,98 |
3000 |
500 |
|
8, 10, 12,5 |
0,97 |
||||||||
Пз-63 |
63 |
6,3 |
1000 |
240 |
400 |
0,98 |
3000 |
500 |
|
8, 10, 12,5 |
0,97 |
||||||||
Пз-80 |
80 |
6,3, 8, 10, 12,5 |
2000 |
340 |
560 |
0,97 |
1500 |
500 |
|
Пз-100 |
100 |
6,3, 8, 10, 12,5 |
4000 |
480 |
800 |
0,97 |
1500 |
500 |
|
Пз-125 |
125 |
6,3, 8, 10, 12,5 |
8000 |
680 |
1130 |
0,97 |
1500 |
500 |
|
Пз-160 |
160 |
6,3 |
16000 |
960 |
1600 |
0,97 |
1000 |
500 |
|
8, 10, 12,5 |
1500 |
||||||||
Пз-200 |
200 |
6,3, 8, 10, 12,5 |
31500 |
1340 |
2240 |
0,97 |
1000 |
500 |
2.3 Способы крепления редукторов
Крепление на лапах часто используется с легкосплавными корпусами, чтобы максимально облегчить конструкцию агрегата. В корпусе предусмотрены специальные зоны для быстрого крепления редуктора к основанию.
При использовании фланцевых креплений редуктор устанавливается с помощью фланца, расположенного на корпусе. Выходной вал проходит через этот фланец.
Крепление насадкой связывает редуктор с рабочим механизмом посредством полого выходного вала. Этот вал насаживается на окончание вала рабочего механизма.
Таблица 7. Классификация редукторов по способу крепления
Способ крепления |
Пример |
Способ крепления |
Пример |
|
Приставные лапы или плита (потолочная или стеновая): |
Фланцевое со стороны входного вала |
|||
на уровне плоскости основания корпуса |
Фланцевое со стороны выходного вала |
|||
над уровнем плоскости основания корпуса |
Фланцевое со стороны входного/выходного валов |
|||
Насадное |
2. Смазка редукторов
3.
С целью профилактики преждевременного износа комплектующих редуктора и сокращения потерь мощности в результате трения используется смазка подшипников и зацеплений.
В редукторах небольшой мощности и невысокой скорости зацепления смазка производится методом разбрызгивания либо с использованием масляной ванны. В то же масло, которое заливается в корпус, частично погружаются червяк, колесо (зубчатое или червячное) и разбрызгивающее кольцо.
Для смазки быстроходного оборудования высокой мощности масло в зону зацепления подается насосом из масляной ванны. Для подшипников используется смазка жидкой или густой консистенции.
4. Зацепления
При эвольвентном зацеплении профиль зуба имеет форму эвольвенты. Эвольвентная передача поддерживает постоянное передаточное отношение при движении.
При зацеплении Новикова профиль зуба очерчен окружностью определенного радиуса. Этот тип зацепления эффективен при передаче зубчатым механизмом больших усилий.
5. Корпуса редукторов
Главные требования к корпусу редуктора - жесткость и прочность, исключающие вероятность перекоса валов. В современном производстве редукторов выпускаются два типа корпусов - разъемные и неразъемные.
Конструкция разъемного корпуса включает в себя основание и съемную крышку. Отдельные модели вертикальных цилиндрических редукторов имеют разъемы по 2-3 плоскостям. Чтобы предотвратить протекание масла, разъемы корпуса редуктора обрабатывают герметиком. Устанавливать прокладки между крышкой и основанием не рекомендуется, так как при фиксации крепежных болтов они деформируются. Как следствие, посадка подшипников может быть нарушена.
Неразъемный корпус чаще используется для червячных редукторов и других типов оборудования, имеющих легкий вес. В такой конструкции предусмотрена съемная крышка.
Для производства корпусов редукторов используется, главным образом, чугун марок СЧ 10-15. Листовая сталь применяется реже, как правило, при комплектации габаритного приводного оборудования по индивидуальному заказу. У стального сварного корпуса толщина стенок примерно на треть меньше, чем у чугунных редукторов. В последнее время для производства корпусов все чаще используются алюминиевые сплавы.
6. Модернизация редукторов - стабильная тенденция
В модельном ряду производителей представлены стандартные и модернизированные решения. В усовершенствованных агрегатах сохраняются прежние габариты и размеры присоединений.
Основу модернизации составляют:
Стандарты ISO.
Блочно-модульные конструкции.
Усовершенствованные механизмы защиты редукторов.
Модификации зубчатых зацеплений.
Модернизация корпусов редукторов, ориентированная на производство монолитных конструкций небольшого веса, характеризующихся высокой теплоотдачей.
Применение технологии литья под давлением при производстве корпусов из алюминиевых сплавов.
Использование синтетического масла для всего периода эксплуатации редуктора.
Отсутствие необходимости в техническом обслуживании приводных механизмов в процессе их эксплуатации.
Непрерывный процесс модернизации способствует улучшению технических характеристик редукторов, расширению их функциональности и вариативности исполнений. Сегодня продукция крупных российских производителей не уступает по качеству иностранным аналогам.
Размещено на Allbest.ru
...Подобные документы
Классификация редукторов по типу передачи, числу ступеней, особенностям кинематической схемы, относительному расположению валов. Кинематический и силовой расчёт привода. Параметры клиноременной передачи и конического прямозубого зубчатого редуктора.
курсовая работа [972,4 K], добавлен 16.07.2014Расчет ременной, тихоходной и быстроходной передач редуктора, подшипников, шпонок и соединительных муфт. Определение конструктивных размеров корпуса и крышки редуктора. Выбор входного, промежуточного и выходного валов. Смазывание зубчатого зацепления.
курсовая работа [702,1 K], добавлен 15.09.2010Назначение редуктора и особенности его устройства. Признаки классификации редукторов. Энергетический и кинематический расчёты привода. Расчёт зубчатой цилиндрической и открытой конической передач редуктора. Предварительный расчёт валов, выбор муфты.
курсовая работа [355,7 K], добавлен 18.12.2012Выбор электродвигателя и расчет основных параметров для всех ступеней передачи. Расчет зубчатых передач редукторов. Методика проектирования ременной передачи, ее структура и назначение. Предварительная компоновка редуктора, его промежуточный расчет.
курсовая работа [270,3 K], добавлен 03.01.2011Основные характеристики планетарных зубчатых редукторов; определение передаточного числа двигателя, мощности на входе и на выходном валу редуктора; расчет к.п.д. в режимах постоянного числа оборотов двигателя и постоянного значения выходного момента.
лабораторная работа [40,5 K], добавлен 28.06.2013Особенности применения двухступенчатых горизонтальных редукторов, выполненных по развернутой схеме. Расчет механических передач, передачи с гибким звеном, шпоночных соединений и элементов корпуса редуктора. Конструирование валов и подшипниковых узлов.
курсовая работа [804,0 K], добавлен 23.01.2022Основные понятия и типы параметризации. Выбор типа и параметров многоступенчатого редуктора. Построение компоновки цилиндрического двухступенчатого редуктора. Проектный расчет валов. Конструирование корпусных деталей и крышек. Эскизы стандартных деталей.
курсовая работа [428,2 K], добавлен 23.11.2010Основные признаки классификации редукторов. Двухступенчатые горизонтальные редукторы, выполненные по развернутой схеме. Расчет привода, передач, валов и шпоночных соединений. Расчет и конструирование подшипниковых узлов и элементов корпуса редуктора.
курсовая работа [433,6 K], добавлен 19.07.2013Характеристика редукторов, их виды, назначение и применение в промышленности. Цилиндрический, червячный и конически-цилиндрический редукторы, их применение для изменения скорости вращения при передаче вращательного движения от одного вала к другому.
реферат [36,8 K], добавлен 03.04.2013Кинематика и энергетика силовой станции. Расчет передач (цепной, косозубой и прямозубой), валов (входного, промежуточного, выходного), подшипников, элементов корпуса редуктора и шпоночных соединений. Выбор сортов масла для смазывания зубчатых зацеплений.
курсовая работа [1,3 M], добавлен 15.09.2010Расчет зубчатых и цепных передач, закрытой цилиндрической передачи и предварительных диаметров валов привода. Подбор подшипников для выходного вала редуктора. Расчет выходного вала редуктора на прочность. Проверка прочности шпоночного соединения.
курсовая работа [185,8 K], добавлен 01.03.2009Выбор электродвигателя привода. Расчет цилиндрической зубчатой, червячной и клиноременной передач. Конструктивные размеры элементов одноступенчатого редуктора. Определение сил, нагружающих подшипники входного и выходного валов и их расчет на прочность.
дипломная работа [6,3 M], добавлен 08.04.2015Перспективы развития проектирования отечественных и зарубежных мотор-редукторов. Выбор трехмерной модели электродвигателя из базы данных t-flex. Расчет зубьев на контактную прочность и определение ширины колеса и шестерни. Расчет валов мотор-редуктора.
курсовая работа [7,4 M], добавлен 23.03.2018Методика расчета и условные обозначения допусков формы и расположения поверхностей деталей машин, примеры выполнения рабочих чертежей типовых деталей. Определение параметров валов и осей, зубчатых колес, крышек подшипниковых узлов, деталей редукторов.
методичка [2,2 M], добавлен 07.12.2015Определение вращающих моментов на валах привода двухступенчатого цилиндрического редуктора, передаточных чисел ступеней редуктора. Расчет тихоходной и быстроходной цилиндрических передач. Определение реакций в опорах валов и изгибающих моментов.
курсовая работа [369,8 K], добавлен 14.02.2013Срок службы машинного агрегата. Выбор двигателя: определение мощности и частоты вращения двигателя, передаточного числа привода и его ступеней, силовых и кинематических параметров привода. Расчет зубчатых передач редуктора. Нагрузки валов редуктора.
курсовая работа [1,0 M], добавлен 31.05.2010Назначение и классификация редуктора. Кинематический и силовой расчет двигателя. Проектный расчет валов; конструирование зубчатых колес и корпуса и крышки цилиндрического редуктора. Эскизная компоновка редуктора, подбор механических муфт, расчет валов.
курсовая работа [1,8 M], добавлен 25.03.2012Кинематический расчет привода, компоновка редуктора, предварительный и уточненный расчет для промежуточных валов. Выбор передаточных отношений тихоходной и быстроходной передачи, муфты и смазки редукторов. Проверка долговечности роликоподшипников.
курсовая работа [80,7 K], добавлен 30.09.2010Компоновка двухступенчатого цилиндрического редуктора, выполненного по развернутой схеме, на основе расчета зубчатой передачи. Компоновка двухступенчатого соосного, конического и червячного редуктора. Рекомендации по проектированию корпуса редуктора.
методичка [23,6 K], добавлен 07.02.2012Редуктор - передача или сочетание передач, установленных в картере или вписанных в другой агрегат - служит для снижения (редуцирования) угловой скорости и повышения крутящего момента. Виды редукторов и технические требования, предъявляемые к ним.
реферат [2,5 M], добавлен 15.12.2010