Лазер и его применение

Оптический квантовый генератор - устройство, преобразующее энергию накачки в когерентные, монохроматические, поляризованные и узконаправленные потоки излучения. Лазерная дезактивация - процесс удаления радиоактивных веществ с заражённой поверхности.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 17.12.2020
Размер файла 45,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Лазер и его применение

Лялькин Н.В.

Введение

Человек никогда не хотел жить в темноте. Он изобрел много источников света: стеариновые свечи, газовые рожки, керосиновые лампы, лампы накаливания. Все эти источники света предназначались для освещения. В этом ряду появился еще один источник света - лазер. Благодаря особым свойствам их излучений, лазеры находят всё расширяющееся применение в различных областях человеческой деятельности.

Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков, считывания штрих-кодов в магазинах и заканчивая исследованиями в области управляемого термоядерного синтеза.

В последние годы открываются принципиально новые виды лазеров, обладающих высоким коэффициентом полезного действия. Так же, лазеры упрощаются и дорабатываются под нужды той или иной отрасли жизнедеятельности людей. В результате этого существенно расширился диапазон выполняемых функций лазерной техники. Наряду с увеличением производительности и качества традиционных лазерных технологических процессов обработки были разработаны новые процессы, обеспечивающие общий прогресс развития теории и практики в технологии приборостроения.

В настоящее время применение лазерных технологий в приборостроительном производстве чрезвычайно разнообразно. К числу таких технологий относятся сварка, термоупрочнение, легирование, наплавка, резка, размерная обработка, маркировка, прецезионная микросварка, гравировка, и многие другие. В некоторых случаях лучевые технологии находятся вне конкуренции, так как с помощью лазеров можно получить технические и экономические результаты, которых нельзя достичь другими техническими средствами.

Развитие современного производства обуславливает все возрастающее внедрение наукоемких технологий, в частности, лазерной обработки материалов. Такая обработка является одной из технологий, которые определяют современный уровень производства в промышленно-развитых странах. Использование лазерной обработки материалов позволяет обеспечить высокое качество получаемых изделий, заданную производительность процессов, экологическую чистоту, а также экономию людских и материальных ресурсов.

Актуальность темы:

Актуальность данной темы обусловлена постоянным ростом темпа развития лазерных технологий и их внедрения в нашу жизнь. Значимость лазеров очень велика, а так как в будущем будут совершаться еще более значимые открытия, их роль будет только возрастать. Следовательно, лазеры и лазерные технологии - одна из самых перспективных направлений в науке.

Цель исследования:

Целью данной работы является изучение лазерных технологий и применение в современной жизни.

Задачи исследования:

1) познакомиться с принципом работы различных типов лазеров;

2) узнать способы повышения мощности лазерного излучения;

3) рассмотреть варианты применения лазеров.

Предмет исследования:

Лазерные технологии.

1. Теоретическая часть

1.1 История изобретения лазеров

Несмотря на то, что наука о лазерах, лазерных технологиях и их применении в жизни человека относительно молода, она очень бурно развивается. Первые лазеры появились всего полвека назад, хотя наработки были и до этого, но первый работающий лазер был изобретен только в 1960 году.

В 1900 году один из талантливейших умов нашей планеты - немецкий ученый Макс Планк открывает элементарную порцию энергии - квант и теоретически описывает связь энергии кванта с частотой электромагнитного излучения, вызвавшей его появление.

Спустя 8 лет в 1918 году за свое открытие он получает Нобелевскую премию. Примерно в это же время, другой выдающийся ученый Альберт Эйнштейн открывает наименьшую элементарную частицу света - фотон и доказывает теорию дискретности света.

В 1917 году Эйнштейн формулирует теорию «Вынужденного излучения». В ней он охарактеризовал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна). Теория описывает возможность создания условий, при которых электроны одновременно излучают свет одной длины волны. То есть, по сути, он описал теоретическую возможность создания некоего управляемого электромагнитного излучателя, названного впоследствии лазером.

Но только спустя 34 года идея Эйнштейна из теории начала превращаться в реальность. В 1951 году профессор Колумбийского университета Чарльз Таунс решается использовать теорию «вынужденного излучения» для создания реального действующего прибора.

В 1954годуон со своими единомышленниками Гербертом Цайгером и Джеймсом Гордоном на практике реализует свой замысел, представив на суд общественности - первый в мире реально работающий лазер. Правда, тогда он назывался «мазер». Прибор генерировал очень тонкий луч света на частоте 100 Гц мощностью 10 нВт. Конечно же, по сегодняшним меркам это немного, но тогда это был настоящий прорыв в оптоэлектронике.

Спустя год в 1955 году советские ученые Александр Прохоров и Николай Басов из Института физики Академии наук CCCP совершенствуют конструкцию мазера, изменяя метод накачки электронов. В 1964 году они вместе с Таунсом получают за свои открытия Нобелевскую премию. В 1956 году американский ученый Николас Блумберген из Гарвардского университета разрабатывает твердотельный мазер. До этого существовали только газовые.

Что касается самого названия, то впервые термин «лазер» упоминает в своих научных работах выпускник Колумбийского университета и коллега по научным изысканиям Чарльза Таунса - Гордон Гуд. Это произошло в 1957 году. Почему такое изменение? Дело в том, что первые мазеры работали не в оптическом диапазоне и были невидимы для человеческого глаза. Таунс же разработал конструкцию оптического светогенерирующего прибора, а Гуд ввел понятие «лазер» и нотариально заверил право первого, кто описал принцип работы этого прибора.

В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10. В 1962 году Р. Н. Холл продемонстрировал первый диодный лазер из арсенида галлия (GaAs), излучавший на длине волны 850 нм.

В 1960 году американский физик Теодор Мейнман создает первый в мире лазер, который работает на кристалле драгоценного камня - рубине. Позже этот тип лазеров стали называть «рубиновыми» и они достаточно долгое время были самыми широко распространенными. Чуть позже в этом же году в ноябре месяце компания IBM представила свой твердотельный лазер, использующий технологию 4-уровневой накачки.

Первое коммерческое использование лазера произошло в 1961 году. Тогда на рынке работало уже несколько компаний, разрабатывающих и производящих подобные оптические приборы. В 1962 году был впервые использован рубиновый лазер. С его помощью сваривались швы на корпусе наручных часов.

Первый полупроводниковый лазер был создан в 1962 году в компании General Electric. Его разработчиком стал инженер Ник Холоньяк. Сейчас лазеры этого типа широко используются в бытовой электронике: CD-проигрывателях и DVD-плеерах.

1.2 Лазер, устройство и принцип действия

Лазер или оптический квантовый генератор - это устройство, преобразующее энергию накачки (энергию подводимую к активной среде) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Другими словами, это устройство, преобразующее энергию накачки в более качественную энергию - энергию электромагнитного поля (лазерный луч). Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительные расстояния. Преимуществом лазера является то, что его луч можно сфокусировать в очень маленькое пятнышко диаметром порядка световой волны и получить плотность энергии, превышающую плотность ядерного взрыва. К преимуществам лазера также относится то, что лазерный луч является самым емким носителем информации.

Излучение лазера может быть непрерывным, с постоянной мощностью или импульсным, достигающим предельно больших пиковых мощностей. Существует большое количество видов лазеров, использующих в качестве рабочей среды все агрегатные состояния вещества. Некоторые типы лазеров, например лазеры на растворах красителей или полихроматические(основаные на комбинации нескольких цветов) твердотельные лазеры, могут генерировать целый набор частот в широком спектральном диапазоне.

Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля.

В основе работы лазеров лежат три явления: поглощение веществом энергии, спонтанное и вынужденное излучения возбужденной системы атомов.

Устройство лазера зависит от его назначения, режима работы, диапазона генерируемых длин волн, уровня генерируемой мощности или энергии. Оно во многом определяется также тем, какой вид энергии преобразуется лазером в когерентное излучение.

В обычных условиях большинство атомов находится в низшем энергетическом состоянии. При прохождении электромагнитной волны через вещество ее энергия поглощается. За счет поглощенной энергии волны часть атомов возбуждается, то есть переходит в высшее энергетическое состояние. При этом от светового пучка отнимается энергия, вычисляемая по формуле

hv=E2-E1

Невозбужденный атом и электромагнитная волна, при этом электрон находится на низшем уровне. Атом возбуждается, поглощая энергию электромагнитной волны. В возбужденном состоянии атом может отдать свою энергию соседним атомам при столкновении или испустить фотон в любом направлении.

Тогда если большую часть атомов возбудить, то волна будет усиливаться, а не ослабевать. Под ее воздействием атомы согласованно переходят в низшее состояние излучая при этом волны, совпадающие по частоте и фазе с падающей волной.

Изображено как при прохождении электромагнитной волны рядом с возбужденным атомом, возбужденный атом испускает такую же волну, переходя при этом на низший уровень.

Этот процесс называется созданием инверсной населенности уровней в активной среде.

Следовательно, почти каждый лазер должен состоять из:

1. Активного элемента (активной среды)

2. Элемента накачки

3. Резонансного оптического усилителя (системы обратной связи)

4. Схемы отвода генерируемой мощности (только в мощных лазерах)

Мазер - устройство, схожее с лазером, но имеющее с ним существенные различия. Квантовый генератор, излучающий когерентные электромагнитные волны (волны, разность фаз которых остается постоянной с течением времени) сантиметрового диапазона (микроволны). Мазеры используются в технике (в частности, в космической связи), в физических исследованиях.

Главное различие - длина волны генерируемого излучения. Мазер работает в радиодиапазоне, а лазер начиная с инфракрасного излучения и до рентгена.

Предназначение элементов, входящих в строение лазера

Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. Чтобы лазер начал генерировать излучение, необходимо подвести энергию к его активной среде, чтобы создать в ней инверсную населенность. Данный процесс и называется накачкой лазера.

1. Активный элемент (активная среда) - Среда, которая «вбирает» в себя энергию и переизлучает ее виде когерентного излучения. Это может быть кристалл, раствор, газ или полупроводник, обеспечивающий конкретную длину волны в зависимости от своего химического состава. Среда, в которой создана инверсная населенность уровней, называется активной.

Активные элементы (среды) должны обладать свойством усиливать амплитуду световой волны, проходящей через него; вынужденным излучением с электрической или оптической накачкой.

2. Элемент накачки - устройство, поставляющее энергию для насыщения активной среды и переработки ее в когерентное излучение. Накачка может быть оптической (лампы), а также лазерной, химической и даже тепловой. Накачка лазера - осуществление инверсии населенности, в веществе. Она происходит за счет поглощения энергии внешнего электромагнитного излучения или другими воздействиями.

В среде с инверсной населенностью вероятность попадания фотона в возбужденную частицу больше, чем в невозбужденную. Поэтому процесс удвоения доминирует над процессом поглощения и свет усиливается.

Чтобы проходящая через слой вещества волна усиливалась, нужно искусственно создать условия, при которых n2>n1, т.е. создать инверсную населенность уровней.

3. Резонансный оптический усилитель - система с положительной обратной связью, состоящая из двух зеркал, одно из которых непрозрачное, а другое полупрозрачное. Зеркала, отражая часть излучения в активное вещество, играют роль резонатора, обеспечивающего многократное усиление и направленность генерируемого излучения. С выхода резонансного оптического усилителя часть сигнала снова поступает на вход, многократно при этом усиливаясь, при этом поступающий с выхода на вход сигнал согласован с изначальным входным сигналом по фазе. Это необходимо для возникновения генерации света.

Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него. При этом в среде должна поддерживаться инверсная населенность уровней. Достигнув значительного усиления, свет проникает сквозь полупрозрачное зеркало.

Обычно для усиления света применяют не плоские, а выпуклые зеркала.

Генерацию электромагнитных волн может породить даже наличие небольшого шумового сигнала на входе усилителя.

4. Схемы отвода генерируемой мощности (только в мощных лазерах).

Важным условием работы лазера является усиление лазерного излучения в так называемых активных средах из-за лавинного размножения квантов излучения. Понятно, что чем больше активной среды и уровень накачки, тем больше интенсивность выходящего из нее излучения. Лазерное излучение по своей структуре представляет собой совокупность отдельных порций фотонов, время образования и выхода которых, могут различаться.

Именно индуцированное излучение является физической основой работы лазеров.

1.3 Свойства лазерного излучения (принципы работы лазера)

Лазерные источники света обладают рядом существенных преимуществ по сравнению с другими источниками света.

Лазерный луч - это источник света с совершенно уникальными свойствами. Он практически не рассеивается, может излучаться на дальние расстояния, возвращаясь обратно. Также у лазера очень большая теплота, что позволяет ему резать материал, через который он проходит. Температура, до которой нагревается объект, определяется плотностью поглощенной мощности излучения, которая зависит от мощности излучения, ее распределения по облучаемой поверхности и поглощательной способности объекта.

Другим преимуществом лазеров является то, что лазеры - мощные источники света, превосходящие даже солнце (мощность излучения лазера 1017 Вт/см2, а солнца 7*103 Вт/см2)

Длину волны лазерного излучения выбирают так, чтобы обеспечить максимальное поглощение излучения веществом. Например, для обработки металлов используют излучение видимого и ближнего ИК-диапазона, а стекол -- среднего ИК-диапазона.

При использовании импульсных лазеров длительность воздействия определяется длительностью импульса излучения.

Частота следования импульсов определяет производительность обработки.

Принципы работы лазера основаны на свойствах лазерного излучения: монохроматичности и высокой когерентности. Также к числу особенностей излучения часто относят малую угловую расходимость (иногда можно встретить термин «высокая направленность излучения»), что, в свою очередь, позволяет говорить о высокой интенсивности лазерного излучения. Таким образом, чтобы понять принципы работы лазера, необходимо поговорить о характерных свойствах лазерного излучения и инверсно-населенной среды - одного из трех основных компонентов лазера.

Спектр лазерного излучения. Монохроматичность.

Одной из характеристик излучения любого источника является его спектр. Солнце, бытовые осветительные приборы обладают широким спектром излучения, в котором присутствуют компоненты с разными длинами волн. Наш глаз воспринимает такое излучение как белый свет, если в нем интенсивность разных компонент примерно одинакова, или как свет с каким-либо оттенком (например, в свете нашего Солнца доминируют зеленая и желтая компоненты).

Лазерные источники излучения, напротив, имеют очень узкий спектр. В некотором приближении можно сказать, что все фотоны лазерного излучения имеют одну и ту же (или близкие) длины волн. Так, излучение рубинового лазера, например, имеет длину волны 694.3 нм, что соответствует свету красного оттенка. Относительно близкую длину волны (632.8 нм) имеет и первый газовый лазер - гелий-неоновый. Аргон-ионный газовый лазер, напротив, имеет длину волны 488.0 нм, что воспринимается нашим глазом как бирюзовый цвет (промежуточный между зеленым и голубым). Лазеры на основе сапфира, легированного ионами титана, имеет длину волны, лежащую в инфракрасной области (обычно вблизи длины волны 800 нм), поэтому его излучение невидимо для человека. Некоторые лазеры могут перестраивать длину волны своего излучения. Общим для всех лазеров, однако, является то, что основная доля энергии их излучения сосредоточена в узкой спектральной области. Это свойство лазерного излучения и называется монохроматичностью (от греч. «один цвет»).

Степень монохроматичности излучения зависит от свойств активной среды и характеристик резонатора: ее необходимо учитывать в технологических процессах, основанных на селективном воздействии (лазерная химия, медицина, биология, разделение изотопов).

Для получения монохроматического излучения применяют монохроматоры, позволяющие выделить из сплошного спектра сравнительно узкую область, что достигается ценой громадных потерь энергии.

Когерентность лазерного излучения

Монохроматичность - важное, но не единственное свойство лазерного излучения. Другим определяющим свойством излучения лазера является его когерентность. Обычно говорят о пространственной и временной когерентности.

Когерентность излучения - этосогласованное протекание в пространстве и во времени нескольких колебательных или волновых процессов, при котором разность их фаз остается постоянной. Это означает, что волны (звук, свет, волны на поверхности воды и пр.) распространяются синхронно, отставая одна от другой на вполне определенную величину. При сложении когерентных колебаний возникает интерференция.

Интерференцией света называется пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн, в результате чего в одних местах возникают максимумы (светлые пятна), а в других минимумы (темные пятна) интенсивности света.

Именно из-за интерференции света и возникает явление дифракции.

Представим себе, что лазерный пучок разделен пополам полупрозрачным зеркалом: половина энергии пучка прошла через зеркало, другая половина отразилась и ушла в систему направляющих зеркал. После этого второй пучок вновь сводится с первым, но с некоторой временной задержкой. Длина продольной когерентности современных лазеров может превышать километр, хотя для большинства лазерных устройств (например, для лазеров промышленной обработки материалов) столь высокой пространственной когерентности лазерного пучка не требуется.

Когерентность излучения связана с направленностью пучка излучения, его монохроматичностью и поляризацией.

Угловая расходимость лазерного излучения.

Как бы мы ни стремились сделать пучок лазерного излучения параллельным, он всегда будет иметь ненулевую угловую расходимость.

Несмотря на малое значение (Примерно 10-5 рад. На луне пучок, испускаемый с земли, с таким значением угловой расходимости создаст пятно диаметром 3 км.), угловая расходимость может оказаться критичным в некоторых случаях (например, для использования лазеров в боевых спутниковых системах), поскольку оно задает верхний предел достижимой плотности мощности лазерного излучения.

Поляризация лазерного излучения

Излучение практически всех типов лазеров является поляризованным.

Свет представляет собой одну из разновидностей электромагнитного излучения, поэтому характеризуется источником и направленностью. Кроме того, не следует забывать о его двойственной природе: в одном случае он, как уже говорилось, представляет собой волну, а в другом - частицу (фотон). Поляризация света - это одно из свойств любого излучения в оптическом диапазоне. При поляризации колебания частиц светового луча, направленных на поперечную поверхность, осуществляются в одной и той же плоскости.

Поляризациясвета, упорядоченностьсветовыхколебанийвплоскости, перпендикулярнойнаправлениюраспространениясветовоголуча.Вестественном, неполяризованномсветовомлучеколебанияпроисходятхаотически, меняясь случайным образом и по величине и по направлению.

В поляризованном луче колебания (в плоскости, перпендикулярной лучу) совершаются:

1) По прямой - плоская поляризация;

2) По кругу - круговая поляризация;

3) По эллипсу - эллиптическая поляризация.

Высокая интенсивность лазерного излучения.

Благодаря другим свойствам лазерного излучения можно сфокусировать лазерное излучение до диаметра, сравнимого с длиной волны. Это позволяет получать высокие интенсивности излучения в очень локализованной области пространства.

Все эти уникальные свойства лазерного излучения возникают в результате согласованного, кооперативного испускания световых квантов многими атомами рабочего вещества.

Подводя итоги, можно сказать, что безусловными и значительными достоинствами лазеров являются:

· эффективная фокусировка, высокая направленность, малая расходимость лазерного излучения;

· концентрация световой энергии в небольших объемах, громадная плотность энергии, малая зона энергетического (теплового) воздействия;

· большая дальность действия, высокая точность и разрешающая способность лазерного луча;

· формирование кратковременных импульсов света, значительная мощность лазерного излучения;

· монохроматичность, высокая стабильность частоты лазерных колебаний;

· малая длина волны, высокая частота лазерных колебаний, большая пропускная способность каналов оптической (лазерной) связи;

· широкий спектральный диапазон (от ультрафиолетовой до далекой инфракрасной области), обеспеченный промышленными (серийными) источниками лазерного излучения;

· эффективная гальваническая развязка (бесконтактное взаимодействие) источника лазерного излучения и объектов оптического воздействия;

· повышенная помехоустойчивость и помехозащищенность («скрытность») лазерной связи;

1.4 Основные виды лазеров

Выбор лазера для осуществления поставленной задачи определяется спецификой воздействия лазерного излучения на данный материал и особенностями поставленной технологической задачи.

Видов лазерных устройств существует большое количество, однако все они берут свое начало от четырех основных типов:

· Газовые лазеры

· Жидкостные лазеры

· Твердотельные лазеры

· Полупроводниковые лазеры

В настоящее время для различной обработки материалов при помощи лазерного излучения в основном применяются твердотельные и газовые лазеры.

Газовые лазеры

Неоспоримым достоинством газов как активной среды лазера является высокая оптическая однородность. Поэтому для тех научных и технических применений, для которых необходимы максимально высокая направленность и монохроматичность излучения, газовые лазеры представляют самый больший интерес. После первого газового лазера, основой которого была смесь гелия и неона (1960), было создано большое количество разнообразных газовых лазеров. В них использовались квантовые переходы нейтральных атомов, молекул и ионов, имеющих частоты в широком диапазоне: от ультрафиолетовой до далёкой инфракрасной частей спектра.Среди лазеров непрерывного действия видимой и ближней инфракрасной областей спектра наибольшее распространение получил гелий-неоновый лазер. Этот лазер представляет собой заключённую в оптический резонатор газоразрядную трубку, заполненную смесью Не и Ne.

Существенным достоинством является их способность работать в непрерывном режиме. Применение новых методов возбуждения и переход к более высоким давлениям газа могут резко увеличить мощность газового лазера. С помощью газового лазера возможно дальнейшее освоение далёкого инфракрасного диапазона, а также диапазонов ультрафиолетового и рентгеновского излучений.

Жидкостный лазер

Лазер, активным веществом которого является жидкость. Среди преимуществ жидкостных лазеров можно выделить возможность реализации циркуляции жидкости с целью её охлаждения. Это позволяет получить большие энергии и мощности излучения в импульсном и непрерывном режимах.

Жидкостные лазеры, работающие на неорганических активных жидкостях, обладают большими импульсными энергиями при значительной средней мощности. При этом жидкостные лазеры генерируют излучение с узким спектром частот.

Интересными особенностями обладают жидкостные лазеры, которые работают на растворах органических красителей. Они работать жидкостному лазеру с непрерывной перестройкой длин волн излучения в широком диапазоне. Путем замены красителей, есть возможность обеспечения перекрытия всего видимого и части инфракрасного участков спектра. В жидкостных лазерах на красителях в качестве источника накачки обычно используются твердотельные лазеры. Для некоторых красителей можно использовать накачку от специальных импульсных газосветных ламп, дающих более короткие интенсивные вспышки белого света, чем обычные импульсные лампы (менее 50 мксек).

Твердотельные лазеры

Существует множество твердотельных лазеров, обладающих как импульсным, так и непрерывным излучением. Наиболее распространены среди импульсных твердотельных лазеров - лазер на рубине и неодимовом стекле. Неодимовый лазер работает на длине волны ? = 1,06 мкм. Изготовляют также сравнительно большие и достаточно оптически однородные стержни длиной до 100 см и диаметром 4 - 5 см. Один такой стержень способен дать импульс генерации с энергией 1000 Дж за время ~ 10-3 сек.

Неодимовое стекло используется из-за своей способности избирательно, в зависимости от длины волны, поглощать видимый свет. Максимум чувствительности человеческого глаза приходится на желто-зеленую часть спектра. Неодимовая лампа дает “ровный” свет, в котором одинаково представлены все цвета.

Лазеры на рубине, наряду с лазерами на неодимовом стекле, являются наиболее мощными импульсными лазерами. Полная энергия импульса генерации достигает сотен Дж при длительности импульса 10-3 сек. Также возможно реализовать режим генерации импульсов с большой частотой повторения (до нескольких КГц).

Примером твердотельных лазеров непрерывного действия являются лазеры на флюорите кальция CaF2 с примесью диспрозия Dy и лазера на иттриево-алюминиевом гранате с примесями различных редкоземельных атомов. Большинство таких лазеров работает в области длин волн от 1 до 3 мкм. Типичное значение мощности генерации твердотельного лазера в непрерывном режиме ~ 1 Вт или долей Вт, для лазера на иттриево-алюминиевом гранате ~ десятков Вт. Если не создать специальных условий, то спектр генерации твердотельных лазеров сравнительно широк, так как обычно реализуется многомодовый режим генерации. Однако введением в оптический резонатор селектирующих элементов удаётся получать и одномодовую генерацию, что обычно связано со значительным уменьшением генерируемой мощности. Существуют определенные трудности в процессе выращивания больших монокристаллов или варки больших образцов однородного и прозрачного стекла.

Полупроводниковые лазеры

Среди лазеров, работающих в видимом и инфракрасном диапазонах, полупроводниковые лазеры занимают особое место по ряду своих характеристик. Полупроводниковые инжекционные лазеры имеют очень высокий КПД преобразования электрической энергии в когерентное излучение, который практически равен 100%. Они способны работать в непрерывном режиме. Другими особенностями полупроводниковых лазеров, имеющими практическую значимость, являются:

1. Высокая эффективность преобразования электрической энергии в энергию когерентного излучения (30--50%)

2. Простая конструкция

3. Возможность перестройки длины волны излучения и наличие значительного количества полупроводников, которые непрерывно перекрывают интервал длин волн от 0,32 до 32 мкм.

Общим недостатком всех полупроводниковых лазеров является сравнительно невысокая направленность излучения, связанная с их малыми размерами, и трудность получения высокой монохроматичности, что связано со значительной шириной спектра спонтанного излучения на рабочих рекомбинационных переходах.

Полупроводниковые лазеры наиболее эффективны в том случае, когда требования к когерентности и направленности не велики, однако необходимы малые габариты и высокий КПД.

Полупроводниковые лазеры превосходят лазеры всех остальных типов плотностью энергии излучения и величиной КПД. Важное качество полупроводниковых лазеров заключается в возможности перестройки частоты излучения и управления световым пучком.

Технические помехи на пути изобретения лазера

Согласно одной известной шутке, физики-теоретики расходуют очень мало оборудования. Им нужны только бумага, карандаш и ластик. Но предсказанные ими явления требуют подтверждения на практике. Часто это бывает очень сложно. Например, подтвердить наличие гравитационных волн смогли только в XXI веке, хотя Эйнштейн предположил их наличие еще в начале XX. Изобретатель лазера и его предшественники решали следующие технические задачи:

1. Поиск материалов с инверсной заселенностью уровней.

2. Отбор стабильно работающих источников для оптической накачки.

3. Выращивание кристаллов с заданными оптическими свойствами для рабочего тела лазера.

4. Нанесение на торцы кристалла напыления с заданным коэффициентом отражения для создания оптического резонатора.

На данный момент все эти задачи успешно решаются и не представляют для ученых каких-либо трудностей.

2. Практическая часть

Применение лазеров

Сегодня различные типы лазеров помогают человеку во многих видах деятельности.

2.1 Вооружение

Лазеры активно используются и в военных целях. В основном на сегодняшний день лазеры используются для указания целей обнаружения и постановки помех снайперам, лазерного наведения.

Принцип работы системы обнаружения снайперов основывается на том, что луч, проходя через линзы, будет отражаться от какого-либо светочувствительного объекта (оптические преобразователи, сетчатка глаза и т.д.).

Как преимущество -- подобные системы являются активными, то есть обнаруживают снайперов до выстрела, а не после. С другой стороны, эти системы демаскируют себя, так как являются излучателями.

Постановка помех снайперам осуществляется путём «сканирования» лазерным лучом местности, не позволяя вражеским снайперам вести прицельную стрельбу или даже наблюдение в оптические приборы.

Лазерное стрелковое оружие (потенциально)

Первым военным применением лазеров, которое всем приходит на ум, обычно становится использование их в конструкции лазерного стрелкового оружия, способного уничтожать пехоту, танки и даже самолёты. На практике такие идеи сразу наталкиваются на серьёзное препятствие. При современном уровне технологий лазер, способный нанести повреждение человеку (с учётом источника питания) окажется слишком тяжёлым для переноски в одиночку, а устройство, обладающее достаточной мощностью для выведения из строя танка, будет крайне громоздким и чувствительным к вибрациям устройством, что сделает невозможным его полевое применение. В первую очередь это объясняется чрезвычайно низким КПД лазера: для получения достаточного (для повреждения цели) количества излучаемой энергии, необходимо затратить в десятки (иногда сотни) раз больше энергии для накачки рабочего тела лазера. В частности, для нанесения повреждения, аналогичного удару пули тридцатого калибра (в энергетическом соотношении) требуется лазерный импульс мощностью около 5 килоджоулей; 1,6 килоджоуль будет эквивалентен 9-мм пуле соответственно. Лучевой импульс продолжительностью в секунду, таким образом, должен иметь мощность 1600 ватт. При этом следует учесть указанный выше фактор низкого КПД лазера, соответственно, источник питания должен выдать мощность минимум в десять раз большую (в лучшем случае). Именно масса источников энергии для накачки, в значительной степени, определит тяжесть подобного оружия. На настоящее время портативных источников энергии с такой плотностью энергии не существует. Следует также отметить, что не излучённый в лазерном импульсе остаток энергии выделится в виде тепла в конструкции оружия, что потребует весьма эффективной и тяжёлой системы охлаждения для сброса тепла. А необходимое время для остывания, в свою очередь, чрезвычайно уменьшит скорострельность оружия. Однако, проблема теплоотвода отчасти решена в лазерах с химической накачкой (в частности, кислородно-йодном и дейтерий-фторном лазерах большой мощности, выдающих мегаватты в секундном импульсе), где отработанные химические компоненты выбрасываются из системы после импульса, унося тепло. В то же время, излучателю требуется большой запас этих, зачастую агрессивных, реагентов и соответствующие ёмкости для хранения.

Остаётся только возможность использования лазера для ослепления противника, потому что для этой цели нужны лазеры совсем небольшой мощности, которые можно сделать портативными. В настоящее время использование таких устройств запрещено международными правилами ведения войн.

Однако, в США уже имеются опытные образцы, которые способны наносить урон легкобронированным целям, беспилотникам и живой силе противника. Однако в данном вопросе у российских специалистов есть преимущество в развитии. Данный вид вооружения в будущем будет особенно полезен в отражении ракетных ударов. Ведь лазер точнее и намного дешевле противоракет.

1 марта 2018 года президент России Владимир Путин во время послания Федеральному собранию сообщил, что у России появилось новейшее лазерное оружие, и оно уже находится на страже интересов государства.

"Хорошо знаем и о том, что ряд государств работают над созданием оружия на новых физических принципах. Есть все основания полагать, что и здесь мы на шаг впереди. Во всяком случае, там, где нужнее всего. Так, существенные результаты достигнуты в создании лазерного оружия, и это уже не просто теория или проекты и даже не просто начало производства. С прошлого года в войска уже поступают боевые лазерные комплексы. Не хочу в этой части вдаваться в детали, просто пока не время. Но специалисты поймут, что наличие таких боевых комплексов кратно расширяет возможности России в сфере своей безопасности", -- сказал президент России.

Это новое оружие было названо путём голосования в интернете. Новейший боевой лазерный комплекс страны получил название «Пересвет».

2.2. Медицина

С появлением промышленных лазеров наступила новая эра в хирургии. При этом пригодился опыт специалистов по лазерной обработке металла. Приваривание лазером отслоившейся сетчатки глаза -- это точечная контактная сварка; лазерный скальпель-- автогенная резка; сваривание костей -- стыковая сварка плавлением; соединение мышечной ткани -- тоже контактная сварка.

Для того чтобы лазерное излучение оказало какое-либо действие, надо, чтобы ткань его поглощала. Самый популярный лазер в хирургии -- углекислотный. Другие лазеры монохроматичны, то есть нагревают, разрушают или сваривают только некоторые биологические тканис вполне определенной окраской. Например, луч аргонового лазерасвободно проходит через матовое стекловидное тело и отдает свою энергию сетчатке, цвет которой близок к красному.

Углекислотный лазерпригоден в большинстве случаев, например, когда нужно рассечь или приварить друг к другу ткани разного цвета. Однако при этом возникает другая проблема. Ткани насыщены кровью и лимфой, содержат много воды, а излучение лазера в воде теряет энергию. Увеличить энергию лазерного луча можно, но это может привести к прожигу тканей. Создателям хирургических лазеров приходится прибегать к всевозможным уловкам, что сильно удорожает аппаратуру.

Специалистам по сварке металлов давно известно, что при резке пакета тонких металлических листов необходимо, чтобы они плотно прилегали друг к другу, а при точечной контактной сварке для тесного контакта свариваемых деталей необходимо дополнительное давление.

Этот метод был использован и в хирургии: профессор О. К. Скобелкини его соавторы предложили при сварке тканей слегка их сдавливать, чтобы вытеснить кровь. Для осуществления нового способа был создан целый набор инструментов, который применяется сегодня в желудочно-кишечной хирургии, при операциях на желчных путях, селезенке, печени, лёгких.

2.3 Лазерная очистка

Лазерная очистка, в том числе лазерная дезактивация (удаление радиоактивных веществ с заражённой поверхности) -- используется для удаления разного рода загрязнений с поверхности предмета. Лазерная очистка является бесконтактным, безабразивным, высокопроизводительным и экологически чистым способом очистки поверхностей перед проведением различных технологических операций, в том числе покраски, нанесения защитных покрытий, сварки и т.д. Технология лазерной очистки лишена недостатков стандартных методов механической обработки поверхностей, таких как шлифование полирование, виброобработка, струйная абразивная и гидроабразивная обработка. Основные направления лазерной очистки: очистка произведений искусства и памятников; очистка металловв рамках технологических процессов производства; очистка поверхности от радиоактивного загрязнения (лазерная дезактивация); микроочисткав различных отраслях электроники.

Как известно, в основе промышленного использования лазерных источников излучения лежат выдающиеся свойства лазерного луча - монохроматичность, когерентность, малая расходимость, высокая мощность. Эти свойства определяют уникальные свойства лазерного луча, как технологического инструмента для обработки различных материалов, создавая исключительно высокие удельные энергетические характеристики. Важнейшим параметром для рассмотрения большинства технологических вопросов в промышленности является плотность мощности лазерного излучения в зоне обработки. Ещё один важнейший аспект взаимодействия лазерного излучения с веществом - имеющий место в большом числе случаев поверхностный характер поглощения излучения. Это явление приводит к очень высокому значению поглощаемой мощности на единицу объёма вещества и, соответственно, к высоким значениям его параметров, таких, как температура, давление, локальная скорость.

Основные направления лазерной очистки: очистка произведений искусства и памятников; очистка металлов в рамках технологических процессов производства; очистка поверхности от радиоактивных загрязнений (лазерная дезактивация); микроочистка в различных отраслях электроники. Очистка предметов искусства предполагает прежде всего отсутствие повреждения материала объекта. Поэтому это направление лазерной очистки имеет соответствующую специфику. Также разнородность обрабатываемых материалов предопределяет широкий спектр применимого лазерного оборудования, так как для удаления разных типов загрязнений с разных объектов требуются лазеры с различной длиной волны и с различной мощностью. Так, например, для очистки живописи применяют лазеры видимого спектра, для очистки металлодекора применяют инфракрасные импульсные волоконные лазеры, и так далее. При технологической очистке металлов помимо качества очистки требуется прежде всего производительность. На повреждения основного материала в большом числе случаев можно закрыть глаза. Поэтому первым кандидатом на источник лазерного излучения в этом случае являются импульсные волоконные лазеры максимально достижимой для этого типа источников мощности. В ряде случаев могут быть использованы твердотельные лазеры с коротким импульсом. При лазерной дезактивации радиационно-загрязнённых поверхностей применяются твердотельные лазеры с коротким импульсом. В определённых случаях могут применяться волоконные лазеры.

Основная проблема лазерной очистки - сравнительно высокая цена оборудования и необходимость конкурировать с малозатратными видами очистки, такими, как ручная или пескоструйная. Также существенной проблемой является отсутствие автоматизированного контроля процесса очистки. В ряде случаев невозможен даже визуальный контроль. Перспективы лазерной очистки в первую очередь связаны с созданием систем автоматического контроля процесса. Это сделает ненужным наблюдение за технологическим процессом со стороны оператора. Соответственно возрастёт число возможных применений лазерной очистки. Наиболее на данный момент перспективное направление исследований в этой области - совмещение технологии лазерной очистки со спектроскопией лазерной искры в режиме реального времени - LIBS.

2.4 Лазерный управляемый термоядерный синтез

Осуществление термоядерного синтеза и использование его в мирных целях позволит человечеству получить неограниченный источник энергии. Для зажигания дейтериево-тритиевойплазмы с температурой 60 млн. град. необходимо, чтобы произведение плотности плазмы n и времени ее существования t равнялось nt? 1014 c/cмі. Предлагают, что лазеры могут осуществить инерциальное удержание плазмы, поскольку лазерное излучение может обеспечить быстрый разогрев плазмы. Однако, как показали расчеты, для эффективного поджига термоядерной реакции требуется не только быстрый нагрев микросферы до очень высокой температуры, но и сжатие образующейся в ней плазмы до плотности, 104 раз больше, чем исходная плотность жидкости. Так как скорость термоядерных реакций зависит не только от температуры, но и плотности плазмы, то увеличение в 104 раз во столько же раз снижает требования к критической энергии лазерного импульса. Лазер, с помощью которого можно осуществить Д-Т плазмы, должен иметь длину волны250-2000 нм, энергию импульса в 106Дж, длительность импульса5·10-9 с и, следовательно, пиковую мощность 200 ТВт. Он должен генерировать с частотой повторения импульсов, равной нескольким герцам, и обеспечивать среднюю мощность 10 МВт. Лазер также должен иметь КПД 1 % и потребует для питания 1 ГВт электрической мощности. В США уже создан лазер мощностью 60 ТВт (60 кДж,10-9с). Лазерный импульс формируется генератором малой мощности, который позволяет с достаточной степенью точности управлять пространственными и временными параметрами импульса. Затем этот импульс усиливается и расщепляется на много пучков, каждый из которых усиливается. Усиленные пучки направляются порадиально-симметричнымпутям на мишень. В экспериментах уже было зарегистрировано большое число нейтронов, что указывает на возникновение термоядерной реакции. Наблюдалась также сжатие мишени. Однако получаемые результаты еще весьма далеки от того, чтобы термоядерная энергия была равна энергии, подводимой к лазеру. Существует мнение, что сооружение термоядерного реактора, если это вообще осуществимо, не будет закончено в 20-мстолетии.

Более близкой перспективой использования лазерного термоядерного синтеза может быть не электростанция, а лазерный термоядерный космический двигатель, который может иметь характеристики, недоступные двигателям на химическом топливе и плазменным двигателям на основе ядерных реакторов деления.

2.5 Лазерный телевизор

Лазерный телевизор -- проекционный телевизор, созданный на основе технологии цветных лазеров.

Технология впервые была представлена австралийской компанией Arasor на CES 2006, в виде прототипа. По договорённости с Mitsubishi Electric, в этом же году был выпущен ещё один прототип. Идею подхватили Seiko Epson, Samsung Electronics и Sony. Последняя компания, позже выпустила прототип на аналогичной технологии собственного производства. Правда на этом всё и закончилось, пока.

Идею продолжает развивать Mitsubishi Electric, выпустив первый серийный FullHD 65', лазерный телевизор Mitsubishi Laser Vue TV. Цена данного телевизора была равна ~ $7 тыс., что дороже, чем аналогичный плазменный телевизор.

Первые опыты с лазерными проекторами и телевизорами проводились в 1970-х годах. Тогда совмещались три лазерных луча (RGB), и через систему вращающегося и качающегося зеркал шла развёртка разноцветного луча на экран. В СССР об этих опытах писал журнал «Техника -- молодёжи».

Принцип технологии заключается в том, что лазерный RGB пучок, подаётся на специальную микросхему, которая отражает как зеркало в определённых участках только нужные цвета, в заданном разрешении. Этот пучок проходит через фильтр удвоения кадров и линзы для распределения пучка по проецируемой поверхности (экрану). Зритель видит обратную сторону проекции. То есть принцип заключается в знакомой всем проекции, только лазерным светом и с обратной стороны.

Качество изображения было превосходное, но от него очень быстро уставали глаза. Врачи-окулисты предположили причину: у лазера очень узкий спектр. Если спектр обычного цветного ЭЛТ-телевизора или ЭЛТ-монитора можно представить в виде трёх «холмов» - красного, зелёного и синего, то у лазерного телевизора спектр -- это три тонких «кола», и для создания приемлемой яркости амплитуду этих «колов» приходится делать очень большой. Человеческий глаз к этому не привычен, -- в природе не существует объектов, излучающих свет с таким спектром.

"Лепесток", охватывающий весь диапазон цветов, различимых человеческим глазом. Малый белый треугольник в центре показывает диапазон цветов, который может обеспечить обычная лампа подсветки (для систем цветности NTSC). Большой белый треугольник показывает диапазон, гарантируемый лазерными системами. Как можно видеть, цветовой охват увеличивается более чем вдвое и вплотную приближается к возможностям зрения человека.

Замена ртутных ламп полупроводниковым лазером, который светит монохроматическим светом в тех же диапазонах, позволила значительно расширить цветовую гамму проецируемой на экран картинки. Такие телевизоры при малых габаритах отличаются высоким качеством изображения, превосходящим, по утверждениям разработчиков, существующие плазменные и жидкокристаллические панели, а срок службы лазеров практически неограничен. К тому же лазеры работают не постоянно, а включаются по мере надобности, что снижает энергопотребление и увеличивает долговечность аппарата.

Лазерные телевизоры, отображают картинку намного реалистичней, чем плазменные. Наглядное сравнение плазменного телевизора Samsung (справа) и Mitsubishi Laser Vue TV (слева).

Существуют телевизоры с совмещёнными лазерной и диодной RGB подсветкой цветов. Данные телевизоры, как это ни парадоксально, тоже выпускает компания Mitsubishi Electric. Это позволяет телевизорам показывать контрастность одну из лучших на рынке, если не лучшую.

Преимущества и недостатки

Преимущества

· За счёт чистых основных цветов удаётся расширить цветовую гамму в 1,8 раза по сравнению с классическими телевизорами. Кроме того, преимущество лазерных телевизоров перед плазменными и жидкокристаллическими заключается в том, что в последних возникают проблемы с передачей оттенков чёрного, а в лазерном, когда нужно отобразить чёрный цвет, лазеры просто отключаются.

· Лазерные телевизоры способны поддерживать высокую действительную частоту обновления изображения экрана -- от 120 до 240 Гц, благодаря чему в комплекте с затворными стереоочками способны воспроизводить стереоизображение. Срок службы лазеров практически неограничен, пиксели лазерных дисплеев не подвержены деградации или выгоранию.

· Лазерные телевизоры имеют примерно, в 4-5 раз меньшее энергопотребление по сравнению с LCD и плазменными телевизорами сопоставимых размеров экрана. Беспрецедентная цветопередача, которая может достигать > 90% от видимого человеком диапазона, что создаёт очень реалистичную картинку

· Картинка лучше, чем на любом плазменном телевизоре

· Низкий нагрев при работе

· Долговечность. Срок службы источников света (минимум 20000 часов, что ~ равно 2,5 года беспрерывной эксплуатации)

· Отличная контрастность и насыщенность оттенков

· Высокие углы обзора

· Возможность создания 3D картинки из 2D

Недостатки

· Высокая цена

· Технология «не обкатана» и неизвестны все её изъяны, но эта проблема решится в скором будущем.

· Большая масса, сопоставимая с плазменными телевизорами.

· Лазерный телевизор имеет толщину, куда больше старых LCD (38 см для 75" модели и 25 см для 65").

· Производство лазерных телевизоров является коммерчески освоенной технологией. Официально в продаже лазерные телевизоры Mitsubishi имеются только в США, некоторых странах ЕС и Японии. По словам представителя Mitsubishi Electric, это связано со сложностями транспортировки этих крупногабаритных и хрупких устройств.

2.6 Голография

Метод фотографирования, используемый для сохранения изображения предметов, известен уже довольно долгое время и сейчас это самый доступный способ получения изображения объекта на каком-либо носителе (фотобумага, фотоплёнка). Однако информация, содержащаяся в фотографии весьма ограничена. В частности, отсутствует информация о расстояниях различных частей объекта от фотопластинки и других важных характеристиках. Другими словами, обычная фотография не позволяет восстановить полностью тот волновой фронт, который на ней был зарегистрирован. В фотографии содержится более или менее точная информация об амплитудах зафиксированных волн, но полностью отсутствует информация о фазах волн. Голография позволяет устранить этот недостаток обычной фотографии и записать на фотопластинке информацию не только об амплитудах падающих на неё волн, но и о фазах, то есть полную информацию. Волна, восстановленная с помощью такой записи, полностью идентична первоначальной, содержит в себе всю информацию, которую содержала первоначальная волна. Поэтому метод был назван голографией, то есть методом полной записи волны. Для того чтобы осуществить этот метод в световом диапазоне, необходимо иметь излучение с достаточно высокой степенью когерентности. Такое излучение можно получить при помощи лазера. Поэтому только после создания лазеров, дающих излучение с высокой степенью когерентности, удалось практически осуществить голографию. Идея голографии была выдвинута еще в 1920 году польским физиком М. Вольфке (1883-1947), но была забыта. В 1947 году независимо от Вольфке идею голографии предложил и обосновал английский физик Д. Габор, удостоенный за это в 1971 году Нобелевской премии.

Опыты по физиологии зрения показали, что человек видит изображение цветным или хотя бы близким к натуральной окраске объекта, если оно воспроизводится минимум в трех цветах, например, в синем, красном и зеленом. Учитывая особенности человеческого восприятия, чтобы восстановить цветное изображение объекта, необходимо сам объект осветить при записи голограммы одновременно или последовательно лазерным излучением трех спектральных линий, отстоящих по длинам волн достаточно далеко друг от друга. Тогда в толще фотоэмульсии образуется три системы стоячих волн и, соответственно, три системы пространственных решеток с различным распределением почернения. Каждая из этих систем будет формировать изображение объекта в своем спектральном участке белого цвета, используемого при восстановлении изображения. Благодаря этому в отраженном от обработанной голограммы расходящемся пучке белого света получится цветное изображение объекта, как результат суперпозиции трех участков спектра, что соответствует минимальным физиологическим требованиям зрения человека. Голографирование по методу Денисюка широко используется для получения высококачественных объемных копий различных предметов, например, уникальных произведений искусства.

...

Подобные документы

  • Традиционные способы очистки поверхности от загрязнений, их недостатки. Взаимодействие лазерного излучения с материалом, параметры, влияющие на эффективность очистки. Лазерная очистка поверхности, управление процессом в реальном масштабе времени.

    презентация [555,3 K], добавлен 19.02.2014

  • Лазерная технология. Принцип действия лазеров. Основные свойства лазерного луча. Монохромотичность лазерного излучения. Его мощность. Гиганский импульс. Применение лазерного луча в промышленности и технике, медицине. Голография.

    реферат [44,7 K], добавлен 23.11.2003

  • Свойства нелинейных кристаллов, эффект фоторефракции. Тепловое воздействие накачки как фактор, влияющий на эффективность работы оптического преобразователя. Эффективность непрерывных лазеров PPLN-преобразователей на градиентных кристаллах ниобата лития.

    дипломная работа [283,9 K], добавлен 12.10.2015

  • Двигатель внутреннего сгорания (ДВС) – устройство, преобразующее тепловую энергию, получаемую при сгорании топлива в цилиндрах, в механическую работу. Рабочий цикл четырехтактного карбюраторного двигателя.

    реферат [13,2 K], добавлен 06.01.2005

  • Технологический процесс концентрирования жидких растворов нелетучих веществ путем частичного удаления растворителя испарением при кипении жидкости. Описание технологической схемы выпарной установки, расчет основного аппарата и поверхности теплопередачи.

    курсовая работа [51,2 K], добавлен 10.11.2010

  • Анализ традиционных методов резки изделий из стекла: механическая, гидроабразивная. Приемы лазерной резки, их сравнение: скремблирование, термораскалывание. Принципы выбора лазера и его обоснование. Щелевой СО2 – лазер и волоконный, их главные функции.

    курсовая работа [896,7 K], добавлен 14.05.2015

  • Характеристика особенностей применения лазера в медицине. Лазерные радары. Различные проблемы, возникающие при использовании лазеров для измерений расстояний. Поверхностная лазерная обработка. Лазерное оружие. Лазеры в связи и информационных технологиях.

    реферат [118,4 K], добавлен 12.05.2013

  • Исследование особенностей аксиально–симметричных оптических элементов с конической либо тороидальной преломляющей поверхностью. Применение селектора рассеянного излучения при фотометрическом контроле. Коническая, сфероконическая и тороидальная линзы.

    дипломная работа [597,5 K], добавлен 07.05.2013

  • Свойства лазерного луча: направленность, монохроматичность и когерентность. Технология лазерной резки металла. Применение вспомогательного газа для удаления продуктов разрушения металла. Типы лазеров. Схема твердотельного лазера. Резка алюминия и сплавов.

    лабораторная работа [2,1 M], добавлен 12.06.2013

  • Механизмы формирования зон повышенной интенсивности оптических полей вблизи поверхности наноструктур. Пространственное распределение излучения в нанодисперсной среде. Расчет оптимальных концентраций наночастиц. Динамика деградации рабочих растворов.

    дипломная работа [2,9 M], добавлен 28.04.2014

  • Неровности поверхности, высотные параметры. Магнитный и визуально-измерительный метод контроля параметров профиля шероховатости. Теория светорассеяния, интегрирующая сфера и метод Тейлора. Применение мезооптических систем к анализу рассеянного излучения.

    дипломная работа [481,0 K], добавлен 14.04.2013

  • Достижения науки и техники XX века. Предсказание Эйнштейном в 1916 г. существования вынужденного излучения - физического базиса действия любого лазера. Широкое применение лазера во всех отраслях науки и техники. Развитие лазерной техники в России.

    реферат [21,3 K], добавлен 08.03.2011

  • Источники образования газообразных радиоактивных отходов, их характеристика. Технологии очистки ГРО: рассеивание радиоактивных загрязнений в атмосфере, очистка воздушных выбросов фильтрационным и осадительными методами. Промышленные системы газоочистки.

    курсовая работа [1,2 M], добавлен 29.05.2014

  • Профиль, параметры и методы измерения шероховатости поверхности. Использование профилометра PS1 компании Mahr (Германия) для измерения неровностей. Оптический метод светового сечения. Принцип деяния интерферометров, растровых и окулярных микроскопов.

    презентация [529,5 K], добавлен 26.02.2014

  • Медико-биологические основы взаимодействия лазерного излучения с кожей человека. Преимущества и недостатки лазерной эпиляции, допустимые уровни лазерного излучения. Конструкция и принцип действия лазерной установки, расчет параметров оптической системы.

    курсовая работа [126,8 K], добавлен 24.10.2009

  • Применение аэрируемых песколовок для удаления из сточных вод песка. Расчет песковых площадок и бункеров. Гидравлический расчет трубопроводов. Материальный баланс, выбор конструкционного материала. Подбор устройства для удаления осадка из песколовки.

    реферат [201,5 K], добавлен 16.06.2012

  • Подготовка стеклобоя до его поступления в стекловаренные печи, освобождение от металлических включений и обработка в моечном барабане. Использование бетонного лома, отходов цементных заводов. Применение стекол при иммобилизации радиоактивных отходов.

    курсовая работа [1,2 M], добавлен 15.10.2011

  • История развития мер и измерительной техники. Основные единицы системы измерений. Классификация видов измерений, механические средства для их проведения. Применение щуповых приборов для определения параметров шероховатости поверхности контактным методом.

    курсовая работа [1,7 M], добавлен 16.04.2014

  • Анализ технологии производства холоднокатаного листа и дефектов холоднокатаного проката на стане 2500. Применение технологических смазок и охлаждающих жидкостей при холодной прокатке. Устройство и принцип работы, преимущества системы "VacuRoll".

    дипломная работа [2,0 M], добавлен 23.08.2015

  • Общие сведения и классификация неорганических воздушных и гидравлических вяжущих веществ. Характеристика особенностей их производства и сферы применения. Применение воздушной извести, магнезиальных и гипсовых веществ. Способ получения портландцемента.

    курсовая работа [1,1 M], добавлен 07.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.