Волокнистый заполнитель из рисовой соломы и его взаимодействие с модифицированной гипсовой матрицей
Данные о строительном материале на базе гипсового вяжущего вещества и сельскохозяйственного отхода - рисовой соломы. Влияние щелочной обработки рисовой соломы на свойства волокнистого заполнителя. Изменение прочности в зависимости от его содержания.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 04.01.2021 |
Размер файла | 354,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Волокнистый заполнитель из рисовой соломы и его взаимодействие с модифицированной гипсовой матрицей
Адилходжаев А.И.1, Игамбердиев Б.Г.2
Адилходжаев Анвар Ишанович - доктор технических наук, профессор, проректор по научной работе и инновациям;
2Игамбердиев Бунёд Гайратович - базовый докторант, кафедра строительства зданий и промышленных сооружений,
Ташкентский институт инженеров железнодорожного транспорта, г. Ташкент, Республика Узбекистан
Аннотация
строительный гипсовый рисовая солома прочность
В статье приводятся данные о строительном материале на основе гипсового вяжущего вещества и сельскохозяйственного отхода - рисовой соломы. Рассматривается влияние параметров щелочной обработки рисовой соломы на характеристики получаемого волокнистого заполнителя, используемого для дисперсного армирования в строительном материале. Произведен сравнительный анализ прочностных характеристик гипсоволокнистого материала с разным содержанием волокнистого заполнителя. Также приводятся результаты исследования синергического влияния модифицирующей добавки на формование структуры композиционного строительного материала.
Ключевые слова: волокнистый заполнитель, рисовая солома, возобновляемое недревесное сырье, гипсоволокнистый лист, доступный строительный материал.
Abstract
RICE-STRAW BASED FIBER AGGREGATE AND ITS INTERACTION WITH A MODIFIED GYPSYM MATRIX Adilhodzhaev A.I.1, Igamberdiev B.G.2
IAdilhodzhaev Anvar Ishanovich - Doctor of Technical Sciences, Professor,
Vice-Rector for Research and Innovation;
2Igamberdiev Bunyod Gayratovich - basic doctoral Candidate,
DEPARTMENT OF CONSTRUCTION OF BUILDINGS AND INDUSTRIAL STRUCTURES, TASHKENT INSTITUTE OF RAILWAY ENGINEERS,
TASHKENT, REPUBLIC OF UZBEKISTAN
the authors present experimental data on the building material made from the gypsym fiber binder and rice straw as an agricultural waste. The effect of the alkali treatment of the rice straw on the properties of the resulting fiber aggreagate used for dispersed reinforcement of the building material has been analyzed. The comparative analysis of the strength properties of the fiber gypsum material with a varied content offiber aggregate has been performed as well. Furthermore, the findings on the synergy effect by the modifying additive on the structure formation of the composite building material has been also analyzed.
Keywords: fiber filler, rice straw, renewable non-wood raw materials, gypsum fiber, low- cost building material.
В данный момент во всем мире неуклонно растет интерес к использованию натурального растительного сырья при производстве строительных материалов. Это обусловлено требованием поиска альтернатив применяемым сегодня материалам, часто оказывающих негативное влияние на окружающую среду и здоровье человека.
Отходы сельскохозяйственной промышленности, включая солому зерновых культур и костру льна, формируют значительный сырьевой ресурс во всем мире. Одним из путей рационального использования таких отходов является их применение в качестве сырья в производстве стеновых материалов для гражданского строительства [1]. К материалам, производимым с использованием натурального растительного сырья, относится гипсоволокнистый лист, обладающий высокими теплотехническими и физико-механическими параметрами, а также малой трудоемкостью при монтаже изделия.
Гипсоволокнистый лист - это гомогенный, экологически чистый строительный материал, представляющий собой гипсовый лист, дисперсно армированный волокнами целлюлозы. Применяется при отделке помещений, в частности в устройстве сборных оснований пола и при устройстве облицовок стен.
Все свои технические свойства гипсоволокнистый лист приобретает от синергии совместного использования волокон и гипса. Существует ряд строительных материалов, где использование волокон даёт такой же синергический эффект. К примеру, ещё в древности египтянами было замечено, что если в глину, которую использовали для строительства жилищ, добавить солому, овечью шерсть или камышовый тростник, конструкция приобретала более высокие прочностные качества и была меньше подвержена растрескиванию [1]. Таким образом, за долгое время до появления современных строительных материалов человечество уже имело представление о дисперсном армировании органическими волокнами строительных материалов.
Дисперсное армирование повышает прочность сечений сжатых, изгибаемых и растянутых элементов конструкций, увеличивает трещиностойкость, термическое сопротивление, ударную вязкость и многие другие физико-механические параметры.
Однако производство традиционного, армированного целлюлозными волокнами гипсового листа из вторичной целлюлозы в условиях нашей страны является затруднительным ввиду дефицитности такого рода сырья, а использование местных хлопковых или импортных хвойных целлюлозных волокон обходится в огромную сумму, что делает гипсоволокнистый лист неконкурентоспособным. Поэтому целью авторов стала разработка технологии производства гипсоволокнистой плиты, где в качестве армирующих волокон будет использовано доступное сырье - местные сельскохозяйственные отходы, имеющие волокнистую природу.
Технологии по утилизации отходов растениеводства в виде заполнителей композиционных материалов применяются во многих странах [1], что указывает на значительный интерес и востребованность данного направления в строительной отрасли. Предпочтительными примерами крупнотоннажных волокносодержащих сельскохозяйственных отходов местного происхождения являются стебли и шелуха рисовой соломы, а также шрот корня солодки. В данной статье мы рассмотрим в качестве сырья стебли рисовой соломы.
Рисовая солома является возобновляемым ресурсом и доступна в регионах выращивания зерновых культур как сопутствующий продукт сельскохозяйственного производства, который, к сожалению, не находит своего широкого применения в данное время. Основной причиной непопулярности рисовой соломы в качестве кормовой добавки, например, для домашнего скота, является повышенное содержание трудноперевариваемой клетчатки, что может привести к снижению питательности кормовой смеси на 15-20%, несмотря на сравнительно большее, чем в кукурузной соломе количества перевариваемого протеина. При скармливании коровам рисовой соломы более 1,5 кг в сутки наблюдалось ухудшение качества молока, выражающегося в уменьшении плотности получаемого из него масла [2].
Химический анализ показал, что целлюлоза рисовой соломы в основном состоит из а-целлюлозы (до 80%). Пентозаны, лигнин, легкогидролизующиеся вещества во время обработки остаются в варочных растворах.
Массовая доля соломы риса составляет 42-62% от общей наземной части растений, а шелухи - 20% от массы производимого товарного риса[3].
По данным Государственного комитета статистики Республики Узбекистан за 2019 год было получено 300,9 тыс. тонн риса [4]. При переработке зерна риса образуется большое количество отходов в виде шелухи и стеблей соломы. В среднем при получении 1 тонны риса образуется 1 т соломы. Это означает, что каждый год в стране образуется около 250-300 тыс. тонн рисовой соломы, 80-90% которой до сих пор не находит своего рационального метода использования, приносящего экономическую выгоду.
Для использования целлюлозы рисовой соломы в качестве волокнистого наполнителя в строительном гипсовом листе необходимо в первую очередь избавиться от жировоскового слоя стеблей и делигнифицировать оставшуюся массу. В связи с тем, что в литературе недостаточно освещены эксперименты с использованием рисовой соломы, авторы рассматривали традиционные методы деструктуризации целлюлозосодержащего сырья. В поисках самого оптимального варианта был проведен ряд испытаний. Предпочтение было отдано термической обработке в присутствии слабого водяного раствора щелочного натрия, ведь этот способ делигнификации растительного сырья отличается эффективностью благодаря избирательно-высокой нитрующей и окислительной активности оксидных соединений азота по отношению к лигнину соломы.
Варку сухой и разрезанной по 12-20 мм рисовой соломы проводили водным раствором №ОН при следующих условиях: соотношение солома-раствор - 1/8; количество №ОН - 1-6% от количества рисовой соломы; температура обработки - 90 °С; продолжительность подъема температуры - 15 мин; продолжительность щелочной обработки - 60-240 мин. Полученный волокнистый материал промывали дистиллированной водой до нейтральной среды, просеивали, истирали, высушивали и взвешивали. Результаты предварительных исследований щелочной варки рисовой соломы и зависимость выхода волокнистого продукта от концентрации щелочи и продолжительности обработки представлены на рис. 1.
Судя по графику, при концентрации щелочи 6% и продолжительности обработки 240 мин наблюдается значительное снижение выхода волокнистого заполнителя, и, следовательно, дальнейшее увеличение концентрации щелочи и продолжительности обработки представляется нецелесообразным.
При визуальном осмотре проваренного в 1-2% щелочном растворе материала, отмечено что, обработка даже при продолжительности 240 мин не обеспечивает требуемых значений по выходу и по качеству. Полученные данные после варки первой партии рисовой соломы позволяют установить диапазон для дальнейших исследований: концентрация щелочи - от 3 до 5%, продолжительность обработки - от 60 до 240 мин.
После ряда экспериментов удалось найти оптимальные условия для щелочной варки рисовой соломы. С учетом оптимизации щелочной варки (продолжительность щелочной варки - 240 мин; концентрация щелочи - 3, 5%) был получен волокнистый заполнитель с выходом - 57,1%, визуально напоминающий хлопковые волокна.
Рис. 1. Зависимость выхода волокнистого заполнителя от концентрации щелочи и продолжительности варки
С целью изучения полученного материала в роли заполнителя были проведены сравнительные испытания. Для улучшения адгезии волокон к гипсу, увеличения времени схватывания теста для формования будущего листа, а также для увеличения прочности самого гипсового камня использовали модификатор.
В ходе испытаний в качестве основного вяжущего вещества использовался строительный гипс (ГОСТ 125-70), наполнителем служили полученные вышеописанным способом волокна из рисовой соломы. В качестве модифицирующей добавки использовалась добавка для гипсовых смесей «FremNanogips» производства ЗАО «Завод добавок и смазок «ФРЭЙМ». Волокна в материале располагались хаотично.
Для изготовления образцов взяли пробу гипсового вяжущего и добавили в него сухие волокна. Полученную после перемешивания массу засыпали в чашку с водой, взятой в количестве, необходимом для получения теста стандартной консистенции. После засыпки смесь интенсивно перемешивали ручной мешалкой до получения однородного теста, которым заливали предварительно смазанную маслом форму. Для удаления вовлеченного воздуха форму встряхивали несколько раз [5].
Для определения прочности на сжатие образцы помещали между двумя пластинами и подвергали сжатию на прессе с предельной нагрузкой до 5-10 т/с. Предел прочности на сжатие одного образца определяли как частное от деления величины разрушающей нагрузки на рабочую площадь образца, равную 25 см2 [5]. Предел прочности на сжатие вычисляли как среднее арифметическое результатов шести испытаний без наибольшего и наименьшего результатов.
Ниже приводятся зависимости пределов прочности при изгибе и сжатии гипсоволокнистых образцов от содержания волокнистого заполнителя и добавки для гипсовых смесей «FremNanogips» (Рис. 2).
Рис. 2. Зависимости предела прочности при изгибе гипсоволокнистых образцов в возрасте 28 суток от содержания модификатора
^^^"1 % заполнителя и1 2 % заполнителя ^^^"3 % заполнителя
Рис. 3. Зависимость прочности при сжатии гипсоволокнистых образцов в возрасте 28 суток от содержания модификатора
Как видно из рис. 2. 3, введение модификатора в состав гипсоволокнистой смеси оказывает различное влияние на предел прочности при изгибе образцов в зависимости от объемного содержания волокнистого заполнителя. С увеличением содержания модификатора в составе смеси (0-1%) увеличивается предел прочности при изгибе на 12,1-40,8%. Дальнейшее увеличение содержания модификатора приводит к снижению прочности. При этом следует отметить, что максимальное увеличение прочности достигается при меньшем содержании волокон в составе смеси (1%), что, на наш взгляд, обусловлено лучшей анкерующей способностью матрицы на основе модифицированного вяжущего.
Максимальный показатель предела прочности при сжатии гипсоволокнистых образцов на основе модифицированной матрицы также достигается при содержании волокон в количестве 1%. Прочность при этом увеличивается на 39-51%. Дальнейшее увеличение количества модификатора в составе смеси приводит к снижению прочности.
Необходимо отметить, что при добавлении модифицирующей добавки даже в 12% волокносодержащую смесь водопотребность смеси снижается, что приводит к увеличению плотности изделия. За счет уменьшения водопотребности смешивание теста проходит легче, а при дальнейшем увеличении количества волокон их максимальный порог сдвигается на 2-3 процента.
Добавка модификатора Frem Nanogips уплотняет матрицу и образует слой на поверхности заполнителя, уменьшает возможность диффундирования легкогидролизируемых сахаров из соломы в гипсовое тесто. Это одновременно улучшает сцепление волокон соломы с кристаллами гипса.
Учитывая вышеперечисленное, можно сделать вывод, что введение добавки в гипсовые смеси «FremNanogips» позволяет значительно увеличить пределы прочности дисперсно-армированного гипсового камня при малом содержании волокон в составе матрицы. Так, максимальные повышения значений пределов прочности при изгибе (5,02 МПа) и сжатии (11,4 МПа) достигаются при введении модификатора в состав гипсоволокнистой смеси в количестве 1%.
Полученные результаты указывают на эффективность волокнистого заполнителя, полученного путем щелочной варки из рисовой соломы для дисперсного армирования модифицированной гипсовой матрицы на основе низкомарочного гипса. Помимо этого, максимальные показатели пределов прочности достигаются при введении в состав волокнистого заполнителя в количестве 2% при изгибе и 1% при сжатии.
Список литературы /References
1. Mansour A. Development of straw-cement composite sustainable building material for low-cost housing in Egypt / A. Mansour, J. Srebric, J. Burley // J Appl Sci Res., 2007. №3. P. 1571-1580.
2. Ялпачик Ф.Е., Ялпачик Г.С. “Переработка рисовой соломы на корм”. Москва: Агропромиздат, 1988. С. 63.
3. Вураско А.В., Дрикер Б.Н., Мозырева Е.А., Земнухова Л.А., Галимова А.Р., Гулемина Н.Н. Ресурсосберегающая технология получения целлюлозных материалов при переработке отходов сельскохозяйственных культур // Химия растительного сырья, 2006. № 4.
4. Статистический ежегодник регионов Узбекистана // Статистический сборник Государственного комитета Республики Узбекистан по статистике. Ташкент, 2020.
5. Адилходжаев Анвар Ишанович, Игамбердиев Бунёд Гайратович, Карабаева Муслима Ифтихоровна. Перспективы использования рисовой соломы в качестве волокнистого наполнителя в производстве строительных материалов // Проблемы Науки, 2019. № 12-1 (145).
Размещено на Allbest.ru
...Подобные документы
Подбор оборудования для увеличения производительности линии по производству молочной рисовой каши "Умница". Расчет новой рецептуры каши с учетом введения молочного жира для получения функционального продукта сбалансированного по жирно-кислотному составу.
дипломная работа [738,4 K], добавлен 18.06.2016Переработка рисового зерна в крупу. Химическое содержание рисовой шелухи. Способы использования рисовой шелухи. Технологические схемы выделения чистого кремнезема. Переработка отходов рисового производства для получения аморфного диоксида кремния.
статья [991,8 K], добавлен 05.10.2017Характеристика хозяйства и разработка плана получения продукции. Составление технологических карт по возделыванию культур и описание их расчета. Определение количества физических и эталонных тракторов, а также расчет потребности в смазочных материалах.
курсовая работа [59,6 K], добавлен 22.01.2013Предназначение и особенности сотового заполнителя, характеристика линии для его производства. Технологический процесс формования сотовой структуры. Подбор оборудования, его компоновка в цехе. Проектирование транспортно-накопительной и складской систем.
курсовая работа [1,6 M], добавлен 28.05.2013Физико-химические свойства бетона: удобоукладываемость, водопотребностъ заполнителя, ползучесть, морозостойкость и теплопроводность. Основные типы напорных труб. Требования к материалам. Подбор состава бетона. Расчет и проектирование складов заполнителей.
курсовая работа [830,5 K], добавлен 20.12.2010Определение волокнистого состава образца ткани, вида ткацкого переплетения, отделки и структуры поверхности. Анализ расположения нитей основы и нитей утка, плотности. Оценка качества исследуемого образца. Техника безопасности при выполнении работы.
контрольная работа [41,2 K], добавлен 08.12.2014Анализ подбора основного, подкладочного, прокладочного, прикладного материалов, фурнитуры и отделки для конкретной выбранной модели женского полупальто. Определение волокнистого состава, структуры нитей материалов верха и подкладки, сочетания тканей.
курсовая работа [631,6 K], добавлен 03.04.2012Производство гипсовых вяжущих с использованием в качестве сырья только фосфогипса. Расчет основного технологического и транспортного оборудования. Правила техники безопасности (варка гипса в гипсоварочных котлах). Определение производительности завода.
курсовая работа [1,5 M], добавлен 06.02.2011Создание установки, позволяющей получить качественную смесь песка, классифицированного и транспортированного из карьера. Технологическая схема производства мелкого заполнителя. Изготовление оси роликоопоры ленточного конвейера при серийном производстве.
дипломная работа [84,0 K], добавлен 22.09.2011Технологическая схема производства портландцемента - гидравлического вяжущего вещества, получаемого путем измельчения клинкера и гипса. Добыча материала и приготовление сырьевой смеси. Обжиг сырья и получение клинкера. Размол, упаковка и отгрузка цемента.
курсовая работа [759,2 K], добавлен 09.04.2012Трубы (газо- и нефтепроводы) и основные требования к ним. Влияние параметров контролируемой прокатки на структуру и свойства низкоуглеродистой низколегированной стали 10Г2ФБ. Влияние исходной структуры стали после дополнительной термической обработки.
курсовая работа [1,5 M], добавлен 02.07.2012Подбор номинального состава бетона. Определение расхода крупного заполнителя, цемента, воды, песка. Коэффициент раздвижки зёрен для пластичных бетонных смесей. Подбор производственного состава бетона и расчёт материалов на замес бетоносмесителя.
контрольная работа [276,8 K], добавлен 05.06.2019Влияние времени на деформацию. Упругое последействие, влияние температуры на свойства материалов. Механические свойства материалов. Особенности испытаний на сжатие. Зависимость предела прочности пластмасс от температуры, неоднородность материалов.
реферат [2,5 M], добавлен 01.12.2008Методы, применяемые для определения прочности клеевых соединений при производстве верхней одежды. Влияние температуры, давления и времени дублирования и скорости расслоения на стойкость склейки. Конъюнктура рынка термоклеевых прокладочных материалов.
дипломная работа [6,7 M], добавлен 22.12.2010Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.
реферат [27,1 K], добавлен 18.05.2011Зависимость деформационных свойств пластмасс от температуры. Зависимость прочности полимеров от скорости нагружения. Усталостные свойства пластмасс. Проектирование экономически эффективных изделий из пластмасс. Метод механической обработки заготовок.
реферат [20,9 K], добавлен 29.01.2011Определение эффективного содержания железа в рудном материале путем расчета расхода концентрата, флюса и топлива на производство агломерата. Оценка стоимости железорудной и "коксовой" частей доменной шихты на базе агломерата из исходной концентрата.
курсовая работа [32,1 K], добавлен 22.11.2012Характеристики, состав и твердение ангидритового вяжущего. Анализ существующих технологических схем производства. Расчет удельных энергетических нагрузок и оценка эффективности подобранного механического и теплотехнического оборудования по энергозатратам.
курсовая работа [1,4 M], добавлен 24.02.2012Производство, строение и синтез полиимидных пленок. Диэлектрические и электрические свойства, влияние повышенной температуры и радиационного облучения. Энергетические характеристики разрушения изоляционных материалов под воздействием частичных разрядов.
дипломная работа [3,6 M], добавлен 18.10.2011Анализ существующих технологических процессов алмазно-абразивной обработки напылённых покрытий и технической минералокерамики. Физико-механические свойства керамических материалов. Влияние технологических факторов на процесс обработки напылённой керамики.
дипломная работа [4,0 M], добавлен 28.08.2011