Снижение гидравлического трения в трубопроводах
Анализ современных концепций снижения гидравлического трения в напорных трубопроводах. Комплексное обеспечение концентрических по диаметру трубопровода и направленных к центру потока импульсных вибраций. Положительный эффект изобретения, его достижение.
Рубрика | Производство и технологии |
Вид | статья |
Язык | русский |
Дата добавления | 27.05.2021 |
Размер файла | 78,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Снижение гидравлического трения в трубопроводах
Повх Алексей Владимирович - студент, кафедра энергоэффективности газо- и теплоснабжения, климатотехники и водоснабжения, Саратовский государственный технический университет им. Гагарина Ю.А., г. Саратов
Аннотация
В статье анализируется снижение гидравлического трения в трубопроводах.
Ключевые слова: гидравлика, трубопровод, трения.
Современные решения проблемы снижения гидравлического трения связаны, в первую очередь, со снижением шероховатости внутренних поверхностей труб. Также эта проблема решается при помощи разнообразных синтетических и полимерных добавок, вводимых в транспортируемую жидкость или газ. При помощи воздействия на пограничный слой жидкости или газа переменным электромагнитным полем, а также путем накладывания на стенки трубопровода или канала импульсных колебаний, направленных по нормали к поверхности соприкосновения потока со стенками трубопровода или канала.
Нетрадиционный подход к проблеме транспортировки воды, основанный на использовании естественного течения воды, предложил еще в середине прошлого века австрийский исследователь Виктор Шаубергер, который разработал и запатентовал спиральную трубу для жидких и газообразных субстанций. В соответствии с проведенными исследованиями конструкций этих труб, которые позволяют сохранять скорость течения благодаря тому, что форма сечения трубы состоит из нескольких полукругов и сама труба закручена в спиральную конфигурацию. Сечение трубы яйцевидное, с изгибом у более узкого конца яйца. Тестирование этих труб в Институте Гигиены при Штутгартском Технологическом университете (Германия) от 1952 года показало, что при расходе воды, равном 310 см 3/сек, всасывающая способность спиральной трубы из меди в 4 раза больше, чем у прямой стеклянной трубы, и в 1,85 раза больше, чем у прямой медной. Это связано с увеличением скорости течения воды в спиральной трубе, что обусловлено снижением гидравлических потерь.
Материал и методы исследования
В. Шаубергер разработал конструкцию этих труб в результате многолетних наблюдений за динамикой естественного течения воды. Действительно, если внимательно посмотреть на конфигурацию струи воды, истекающей из водопроводного крана, то становится понятным источник аналогии запатентованных труб Шаубергера. К тому же, как известно, любое тело или вещество, будучи предоставлено само себе, стремится принять наиболее энергетически выгодное состояние и перемещается по наиболее выгодной траектории, обеспечивающей минимальные сопротивления среды. Это значит, что естественное композиционно закрученное (вихревое) течение жидкости энергетически более выгодно, чем прямолинейное. На первый взгляд это противоречит традиционной гидродинамике, да и реальная техническая практика подтверждает, что потери при ламинарном движении существенно меньше, чем при турбулентном режиме, и потому инженеры стараются предотвратить или хотя бы сократить образование турбулентностей.
На самом же деле никаких противоречий здесь нет. Турбулентное движение обусловлено беспорядочно зарождающимися и исчезающими вихрями жидкости, которые хаотично сталкиваются друг с другом, а также с ограничивающими поток стенками и тем самым бесполезно растрачивают кинетическую энергию, превращая её в тепло. Естественное природное течение жидкости, да и газа тоже, представляет собой композитное согласованное сообразно окружающей среде вихревое движение. При свободном течении (падании) жидкости, как в вышеописанных примерах в воздухе, который является менее плотным, она движется по естественной наиболее энергетически выгодной траектории, а именно в виде закрученной сужающейся к низу спирали.
В традиционных трубах круглого сечения жидкость стремится к естественной закрученной сужающейся форме потока. Однако эта форма потока не соответствует форме трубы. В связи с этим, при движении жидкости в круглой трубе в периферийных зонах возникает интенсивная турбулентность, которая приводит к дополнительным гидравлическим потерям.
Результаты исследования и их обсуждение
Анализ современных концепций снижения гидравлического трения в напорных трубопроводах позволил лаборатории инновационных технологий института прикладной физики и математики при КазНПУ им. Абая разработать новую комплексную технологию снижения гидравлических потерь в напорных трубопроводах. Суть технологии заключается в комплексном обеспечении концентрических по диаметру трубопровода и направленных к центру потока импульсных вибраций и/или промежуточного периферийного пристеночного винтового вихревого слоя жидкости и/или бегущей стоячей волны вдоль направления потока. При этом создаются, по крайней мере, три винтовых потока жидкости в виде вихревых шнуров, бегущая стоячая волна обеспечивается за счет создания встречных импульсов вибраций с разной частотой, а параметры концентрических вибраций выбирают в зависимости от свойств жидкости и диаметра трубопровода. Приоритет на данное техническое решение установлен.
Положительный эффект изобретения достигается за счет того, что импульсные вибрации в потоке жидкости в трубопроводе создаются концентрически по его диаметру и направлены к центру потока. При этом обеспечивается интерференционная фокусировка волн в центре потока. Это приводит при оптимальных условиях к возрастанию амплитуды и частоты кольцевых концентрических волн в центре потока жидкости. Принцип действия концентрических волн аналогичен механизму работы плетки, которая изготавливается таким образом, что у рукоятки плетка имеет наибольший диаметр, сужающийся к концу плетки. Когда на рукоятке создается небольшой импульс, то волна на конце плетки за счет постепенного уменьшения диаметра будет большей амплитуды и частоты. Этим свойством пользуются пастухи, закрепив на конце плетки гайку. Маленьким импульсом рукоятки достигают существенного удара гайкой. Если концы множества одинаковых плеток связать между собой, а рукоятки растянуть по диаметру, то получится механическая аналогия предлагаемого технологического приема. Если произвести одинаковое и одновременное импульсной воздействие на все рукоятки этого множества плеток, то это приведет к интерферированному всплеску их связанных концов.
Волна возбуждения без учета сопротивления среды и степени затухания колебаний будет связана с фокусированной волной в общем виде через объем активной массы или через площади:
где А 0, А 1 - амплитуды, соответственно возбуждения и фокусированной волны; гидравлический трение трубопровод
S0, S1 - площадь возбудителя и площадь, где была зафиксирована фокусированная волна с амплитудой А 1.
Из соотношения в первом приближении можно определить амплитуду фокусированной волны
Из выражения видно, что если, например, у плетки диаметр у рукоятки будет равен 20 мм, а на конце плетки диаметр будет равен 5 мм, то амплитуда конца плетки будет в 4 раза больше амплитуды возбудителя.
То же самое будет происходить с жидкостью, если обеспечить по диаметру трубы концентрические волны, направленные к центру потока. Поскольку жидкость имеет направленный градиент скорости, то центральный поток жидкости будет получать импульсы ускорений. Периодическое создание таких импульсов ускорений приведет в итоге к возрастанию скорости потока, снижению хаотических турбулентных потоков и, как следствие, к снижению гидравлических сопротивлений и увеличению пропускной способности трубопровода.
Операция периодического создания винтовых потоков жидкости в области её контакта со стенками трубопровода позволяет создавать промежуточный обкатывающий стенки трубы поток жидкости, которая будет служить естественным жидким "подшипников качения" между стенками трубопровода и центральным потоком жидкости. Это приведет к снижению турбулентности и соответственно к уменьшению гидравлических потерь. Кроме того, вращающиеся по винтовым линиям периферийные потоки жидкости будут закручивать, и разгонять внутренний поток жидкости за счет тангенциальных силовых импульсов, придавая ему вихревое ламинарное движение, при котором снижается турбулентность и, соответственно, гидравлические потери минимизируются.
Физическая сущность третьего признака изобретения сводится к следующему. Если навстречу друг другу в материальной среде от двух источников вибрации, которые создают колебания, например по синусоидальному закону на одинаковой частоте, то в среде возникнут стоячие волны. Если частоту колебаний одного из источников изменить, то стоячие волны превратятся в бегущие. Они будут перемещаться от одного источника к другому. Среда же начнет перемещаться в обратном направлении. Таким образом, если вдоль трубопровода обеспечить стоячую бегущую волну, то вода в трубопроводе будет перемещаться сообразно параметрам этой волны. Природой этот принцип реализован в системе кровообращения и желудочно-кишечного тракта. Стоячая волна в системе кровообращения человека проявляется в виде пульса и обеспечивает совместно с сердцем движение крови по сосудам артериальной и венозной систем [6].
Теоретическое обоснование описанных выше технологических приемов снижения гидравлического трения достаточно объемны и заслуживают отдельного рассмотрения и выходят за рамки данной статьи.
В настоящее время проводится комплекс работ направленных на экспериментальные исследования, оптимизации технологических параметров, а также разработку конструкторской документации и технологической подготовки производства напорных трубопроводов реализующих новую технологию применительно для гидроэнергетических станций.
Вывод
Практическое использование отмеченных физических приемов, как по отдельности, так и в совокупности в зависимости от технологической и экономической целесообразности позволит значительно снизить гидравлические потери жидкости в напорных трубопроводах. Это позволит сократить затраты энергии на транспортировку разнообразных жидкостей (вода, нефть и другие), а также повысить эффективность преобразования энергии воды в гидроэнергетических установках за счет снижения гидравлических потерь и повышения энергии потока в напорных трубопроводах.
Список литературы
1. Болотов Б.В. и др. Основы строения вещества с позиции авторов. К.: Универсариум, 2009. 656 с.
2. Высоцкий Л.И., Высоцкий И.С. Способ уменьшения отрицательной турбулентной вязкости. Патент РФ № 242445 . Опубл.: 20.07.2011.
3. Колосов Б.В. Способ снижения гидродинамического трения. Патент РФ № 2133891. Опубл.: 27.07.1999.
4. Рыженков В.А. и др. Способ уменьшения гидравлического сопротивления трубопроводных сетей для транспортировки жидких сред. Патент РФ № 2318140. Опубл.: 27.02.2008.
5. Шаубергер В. Труба для жидких и газообразных субстанций. Австрийский патент № 196680. Опубл. 25 марта 1958 года.
6. Шаубергер В. Энергия воды. М.: "Яуза", "Эксмо". 2008. 320 с.
Размещено на Allbest.ru
...Подобные документы
Разбиение трубопровода на линейные участки. Определение режима движения жидкости в трубопроводе. Значения коэффициентов гидравлического трения и местного сопротивления. Скорость истечения жидкости из трубопровода. Скоростные напоры на линейных участках.
курсовая работа [224,9 K], добавлен 06.04.2013Разработка гидравлического циклического привода пресса ПГ-200 для изготовления металлочерепицы. Определение нагрузочных и скоростных параметров гидродвигателя. Выбор насосной установки и гидроаппаратуры. Расчет потерь давления в аппаратах и трубопроводах.
курсовая работа [214,7 K], добавлен 20.03.2017Разбиение трубопровода на линейные участки. Определение режима движения жидкости в трубопроводе. Определение значений числа Рейнольдса, значений коэффициентов гидравлического трения и местного сопротивления. Скорость истечения жидкости из трубопровода.
курсовая работа [233,4 K], добавлен 26.10.2011Построение схемы трубопровода. Определение режима движения жидкости. Определение коэффициентов гидравлического трения и местных сопротивлений, расхода жидкости в трубопроводе, скоростного напора, потерь напора на трение. Проверка проведенных расчетов.
курсовая работа [208,1 K], добавлен 25.07.2015Расчет внутреннего диаметра трубопровода, скорость движения жидкости. Коэффициент гидравлического трения, зависящий от режима движения жидкости. Определение величины потерь. Расчет потребного напора. Построение рабочей характеристики насосной установки.
контрольная работа [187,7 K], добавлен 04.11.2013Назначение и механизм работы "Нановита" - нанотехнологического продукта, снижающего коэффициент трения, имеющего нанокристаллическую форму и защищающего двигатель от износа. Нановит-комплексы и поверхность трения. Создание антифрикционного покрытия.
презентация [201,4 K], добавлен 11.12.2011Механизм и роль контактного трения при обработке металлов давлением. Виды трения в условиях пластической деформации. Технологические особенности и проблемы процесса волочения в гидродинамическом режиме трения. Пути его дальнейшего совершенствования.
курсовая работа [2,2 M], добавлен 03.06.2012Анализ работы гидравлического привода. Предварительный и уточненный расчет гидросистемы. Выбор насоса, гидроцилиндра, трубопровода. Расчет предохранительного клапана, золотникового гидрораспределителя. Исследование устойчивости гидрокопировальной системы.
курсовая работа [2,4 M], добавлен 26.10.2011Назначение, устройство и принцип действия ленточного конвейера. Разработка конструкции гидравлического блока управления. Расчет и проектирование червячной фрезы. Определение потерь давления в трубопроводах. Программа обработки детали на токарном станке.
дипломная работа [953,0 K], добавлен 20.03.2017Расчет скорости потоков и потерь напора в трубопроводах. Напорная и пьезометрическая линии. Схема системы подачи и распределения воды. Получение напоров в узлах и расходов по участкам. Потери напора по кольцу. Определение гидравлического уклона.
курсовая работа [941,3 K], добавлен 13.11.2014Методы изучения защитных металлсодержащих пленок на поверхностях трения. Исследование контактной выносливости тел качения в моторных маслах с различными физико-химическими свойствами в двигателях внутреннего сгорания. Взаимодействие поверхностей трения.
дипломная работа [1,7 M], добавлен 09.06.2015Определение тепловой нагрузки теплообменника, средней разности температур, коэффициента теплопередачи и трения, гидравлического сопротивления. Эскиз конденсатора и схема адсорбционной установки непрерывного действия с псевдоожиженным слоем адсорбента.
курсовая работа [432,0 K], добавлен 03.07.2011Общие сведения о трубопроводах. Тепловое удлинение участка трубопровода. Защита трубопровода от дополнительных нагрузок. Компенсаторы, их основные группы: П-образные, линзовые, волнистые, шарнирные сдвоенные и их характеристики. Монтаж компенсаторов.
курсовая работа [15,2 K], добавлен 19.09.2008История развития триботехники. Триботехнический анализ работы колеса антифрикционных и фрикционных пар трения, электрических контактов. Сущность избирательного переноса при трении. Методы повышения долговечности узлов трения автотранспортных средств.
учебное пособие [1,9 M], добавлен 18.10.2011Устройства для испытания материалов и смазочных сред при динамическом управлении параметрами нагружения и реверсивного движения на малых скоростях. Расширение функциональных возможностей машины трения для повышения точности трибологических испытаний.
курсовая работа [479,3 K], добавлен 10.11.2013Наиболее распространенные неисправности, которые встречаются в процессе эксплуатации гидроприводов. Ремонт тормозных систем с гидравлическим приводом. Основные виды гидрораспределителей. Анализ схемы гидравлического подключения. Ремонт корпуса насоса.
презентация [1,2 M], добавлен 16.06.2017Расчет перестановочного усилия для перемещения затвора регулирующего органа, гидравлического сопротивления технологического трубопровода. Схема управления пневматическим поршневым исполнительным механизмом. Выбор исполнительного устройства и насоса.
курсовая работа [343,7 K], добавлен 13.03.2012Анализ системы автоматического регулирования. Устойчивость как показатель ее работоспособности. Алгебраические критерии исследования систем, процессы в которых описываются уравнениями невысокого порядка. Исследование следящего гидравлического привода.
контрольная работа [191,2 K], добавлен 12.01.2016Характеристика методов решения инженерных задач (морфологический анализ, мозговая атака, функционально-стоимостный анализ). Теории решения изобретательских задач. Поиск технического решения устранения трения при обработке изделий из алюминиевых сплавов.
курсовая работа [131,1 K], добавлен 26.10.2013Изучение устройства системы смазки двигателя, предназначенной для подачи масла к трущимся поверхностям с целью уменьшения трения, охлаждения поверхностей и удаления продуктов изнашивания из зон трения. Отказы системы смазки, техническое обслуживание.
курсовая работа [1,3 M], добавлен 18.03.2010