Товароведческая характеристика материалов

Основные виды, термической и химической обработки металлоизделий. Товароведческий анализ различных видов керамики, их состав, свойства и отличительные признаки. Применяемое сырье в производстве материалов для полов. Проведение экспертизы качества.

Рубрика Маркетинг, реклама и торговля
Вид контрольная работа
Язык русский
Дата добавления 03.05.2016
Размер файла 29,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра торговли и экспертизы потребительских товаров

Контрольная работа

По дисциплине «товароведение и экспертиза металлохозяйственных, силикатных, мебельных, строительных товаров»

Товароведение строительных материалов

Выполнила: студентка группы 3322з\с

Кирпиченко З.А.

Зачетная книжка №13529

Санкт-Петербург 2015 год

1. Термическая и химико-термическая обработка металлоизделий

товароведческий экспертиза качество керамика

Химико-термической обработкой стали называется процесс, сочетающий поверхностное насыщение стали тем или иным элементом при высокой температуре и термическое воздействие, в результате которых происходит изменение химического состава, микроструктуры и свойств поверхностных слоев деталей.

Химико-термическая обработка включает в себя цементацию, азотирование, цианирование, алитирование, силицирование и т. д. Насыщение поверхностного слоя происходит при нагреве детали до определенной температуры в среде, легко выделяющей насыщающий элемент в активном состоянии, и выдержке при этой температуре. Среды, выделяющие насыщающий элемент, могут быть газообразными, жидкими и твердыми. В отличие от поверхностной закалки при химико-термической обработке разница в свойствах достигается не только изменением структуры металла, но и его химического состава. Х-ТО не зависит от формы деталей. Она обеспечивает получение упрочненного слоя одинаковой толщины по всей поверхности. Х-ТО дает более существенное различие в свойствах поверхности и сердцевины деталей. Х-ТО изменяет химический состав и структуру поверхностного слоя, а поверхностная закалка -- только структур. Вместе с тем Х-ТО уступает поверхностной закалке по производительности.

Основными элементарными процессами любого вида химико-термической обработки являются:

Диссоциация-- выделение насыщающего элемента в активном атомарном состоянии в результате разложения исходных веществ: 2СО -СО2 + С; 2NH3 - ЗН2 + 2N и т. д. Степень распада молекул газа (%) называют степенью диссоциации.

Абсорбция -- захват поверхностью металла свободных атомов насыщающего элемента. Атомы металла, находящиеся на поверхности, имеют направленные наружу свободные связи. При подаче к поверхности детали атомов насыщающего элемента эти свободные связи вступают в силу, что уменьшает поверхностную энергию металла. С повышением температуры абсорбционная способность металла увеличивается. Развитию процесса абсорбции способствует способность диффундирующего элемента образовывать с основным металлом твердые растворы или химические соединения.

Диффузия -- проникновение насыщающего элемента вглубь металла. В результате абсорбции химический состав поверхностного слоя меняется, образуется градиент концентраций насыщающего элемента в поверхностных и нижележащих слоях. Диффузия протекает легче при образовании твердых растворов внедрения (С, N), чем твердых растворов замещения (Al, Cr, Si). Поэтому при диффузионной металлизации процесс ведут при более высоких температурах.Поверхностный слой детали, отличающийся от исходного материала по химическому составу, называется диффузионным слоем. Материал детали под диффузионным слоем с неизменившимся химическим составом называется сердцевиной.

2. Цементация стали

Цементацией называется процесс диффузионного насыщения поверхностного слоя стальных деталей углеродом.

Цель цементации -- получение на поверхности детали высокой твердости и износостойкости в сочетании с вязкой сердцевиной. На цементацию поступают механически обработанные детали g припуском на шлифование 0,05--0,10 мм.

Цементации подвергают стали с низким содержанием углерода 0,1--0,2 %.

На поверхности концентрация углерода достигает 1,0 %. Глубина цементованного слоя (при содержании углерода порядка 0,4 %) обычно лежит в пределах 0,5--2,5 мм. Для достижения высокой твердости поверхности и вязкой сердцевины после цементации всегда проводится закалка с низким отпуском.

Различают два основных вида цементации; в твердой и газовой средах. Среда, поставляющая углерод к поверхности детали, подвергаемой цементации, называется карбюризатором. Твердая цементация производится в специальных стальных ящиках, в которых детали укладываются попеременно с карбюризатором. Ящики закрываются крышками и замазываются огнеупорной глиной для предотвращения утечки газов.

В качестве твердого карбюризатора используют дубовый или березовый древесный уголь и активизаторы ВаСО3 или Na2CO3. При нагреве до температуры 930--950 °С идут реакции:

2С + О2 > 2СО,

ВаСО3 + С > ВаО + 2СО,

2СО > СО2 + С.

Образующиеся активные атомы углерода диффундируют в решетку г-железа.

Процесс цементации в твердом карбюризаторе проводят выше Ас3, когда сталь находится в аустенитном состоянии, в котором растворимость углерода выше. В течение 8--10 ч образуется слой толщиной около 1мм.Газовая цементация является основным процессом массового производства. Стальные детали нагревают в газовых смесях, содержащих СО, СН4 и др. Газовая цементация проходит быстрее, так как не требует времени на прогрев ящика и карбюризатора. Слой толщиной 1 мм образуется за 6--7 ч.

После цементации характерно неравномерное распределение углерода по сечению детали. Полученный в результате цементации наружный слой содержит более 0,8 % углерода и имеет структуру заэвтектоидных сталей -- перлит и вторичный цементит. Глубже лежит слой эвтектоидного состава с перлитной структурой, а далее -- слой с феррито-перлитной структурой. Кроме того, после цементации из-за длительной выдержки при высоких температурах стали приобретают крупнозернистость.

3. Азотирование стали

Азотированием называется процесс насыщения поверхностного слоя азотом.

Целью азотирования является создание поверхностного слоя с высокой твердостью, износостойкостью, повышенной усталостной прочностью и сопротивлением коррозии.

Процесс азотирования состоит в выдержке в течение довольно длительного времени (до 60 ч) деталей в атмосфере аммиака при 500--600 °С. При более высокой температуре образуются более крупные нитриды и твердость уменьшается. Азотирование проводят в стальных герметически закрытых ретортах, в которые поступает аммиак.. Реторту помещают в нагревательную печь. Поступающий из баллонов аммиак при нагреве разлагается на азот и водород:

NH3>3H + N.

Активные атомы азота проникают в решетку б-железа и диффундируют в ней. Образующиеся при этом нитриды железа еще не обеспечивают достаточно высокой твердости. Высокую твердость азотированному слою придают нитриды легирующих элементов, прежде всего хрома, молибдена, алюминия. При совместном легировании стали Cr, Mo, A1 твердость азотированного слоя по Вик-керсу достигает HV 1200, в то время, как после цементации и закалки твердость HV 900.Благодаря высокой твердости нитридов легирующих элементов азотированию обычно подвергают легированные среднеуглеродистые стали. К таким сталям относятся 38Х2МЮА, 35ХМА, более дешевая 38Х2Ю, а также некоторые штамповые стали, например 3X2BS, 5ХНМ.Азотированию обычно подвергают готовые изделия, прошедшие механическую и окончательную термическую обработку (закалку с высоким отпуском). После такой термической обработки металл приобретает структуру сорбита, имеющую высокую прочность и вязкость. Эта структура сохраняется в сердцевине детали и после азотирования. Высокая прочность металлической основы необходима для того, чтобы тонкий и хрупкий азотированный слой не продавливался при работе детали. Высокая твердость после азотирования достигается сразу и не требует последующей термической обработки. Это важное преимущество процесса азотирования.

Участки, не подлежащие азотированию, защищают нанесением тонкого слоя олова (10--15 мкм) электролитическим методом или жидкого стекла. Глубина азотированного слоя составляет 0,3-- 0,6мм. Из-за сравнительно низких температур скорость азотирования значительно меньше, чем при цементации и составляет всего 0,01 мм/ч и менее.

По сравнению с цементацией азотирование имеет ряд преимуществ и недостатков. Преимуществами азотирования являются более высокая твердость и износостойкость поверхностного слоя, сохранение им высоких свойств при нагреве до 500 °С, а также высокие коррозионные свойства. В азотированном слое создаются остаточные напряжения сжатия, что повышает усталостную прочность. Кроме того, после азотирования не требуется закалки, что позволяет избежать сопутствующих закалке дефектов.

Недостатками азотирования по сравнению с цементацией является более высокая длительность процесса и необходимость применения дорогостоящих легированных сталей. Поэтому азотирование применяют в случае изготовления более ответственных деталей, от которых требуется особо высокое качество поверхностного слоя.

Азотирование применяют в машиностроении для изготовления мерительного инструмента, гильз, цилиндров, зубчатых колес, шестерен, втулок, коленчатых валов и др.

4. Цианирование стали

Цианированием (нитроцементацией) называется процесс совместного насыщения поверхности стальных деталей азотом и углеродом.Основная цель цианирования состоит в повышении твердости и износостойкости деталей. При цианировании нагрев осуществляется либо в расплавленных солях, содержащих цианистые соли NaCN или KCN, либо в газовой среде, состоящей из смеси СН4 и NH3. Состав и свойства цианированного слоя зависят от температуры проведения цианирования. В зависимости от температуры процесса различают высокотемпературное (850--950 °С) и низкотемпературное (500--600 °С) цианирование. Чем выше температура цианирования, тем меньше насыщение поверхностного слоя азотом и больше углеродом. Совместная диффузия углерода и азота протекает быстрее, чем у этих элементов в отдельности. При низкотемпературном цианировании поверхностный слой насыщается преимущественно азотом. Низкотемпературному цианированию обычно подвергают окончательно изготовленный и за- точенный режущий инструмент из быстрорежущих марок стали с целью повышения его износостойкости и красностойкости. После низкотемпературного цианирования отпуск не производится. Глубина цианированного слоя 0,01--0,04 мм о твердостью HV 1000.После высокотемпературного цианирования на глубину 0,6-- 1,8 мм в течение 3--10 ч детали подвергают закалке и низкому отпуску, Твердость после термообработки составляет HRC 59--62.По сравнению с цементированным цианированный слой имеет несколько более высокую твердость и износостойкость, а также более высокое сопротивление коррозии. В ваннах можно подвергать цианированию мелкие детали, например детали часовых механизмов, для которых достаточно получение слоя небольшой толщины. Недостатком цианирования является более высокая стоимость процесса, связанная с необходимостью строгого соблюдения правил техники безопасности из-за высокой токсичности цианистых солей.

5. Диффузионная металлизация

Диффузионной металлизацией называется процесс диффузионного насыщения поверхностных слоев стали различными металлами. Детали, поверхность которых насыщена алюминием, хромом, кремнием, бором, приобретают ряд ценных свойств, например жаростойкость, коррозионную стойкость, повышенную износостойкость и твердость.

Металлизация бывает твердая, жидкостная и газовая. При жидкостной металлизации стальная деталь погружается в расплав металла. При твердой и газовой металлизации насыщение происходит с помощью летучих соединений хлора с металлом А1С13, CrCl3, SiCl4, которые при температуре 1000--1100 °С вступают в обменную реакцию с железом с образованием диффундирующего элемента в активном состоянии. При алитировании, т. е. насыщении алюминием, которое обычно проводится в порошкообразных смесях или расплавленном алюминии, детали приобретают повышенную коррозионную стойкость благодаря образованию плотной пленки А12О3, предохраняющей металл от окисления. Толщина слоя составляет 0,2--0,5 мм. При хромировании обеспечивается высокая стойкость против газовой коррозии до 800 °С, а также стойкость против коррозии в воде, морской воде и кислотах. Толщина слоя составляет до 0,2 мм.

Силицирование, т. е. насыщение кремнием, придает высокую кислотоупорность в соляной, серной и азотной кислотах и применяется для деталей, используемых в химической и нефтяной промышленности. Толщина слоя колеблется в пределах 0,3--1,0 мм.

Борирование придает поверхностному слою исключительно высокую твердость (до HV 1800--2000), износостойкость и устойчивость против коррозии в различных средах. Борирование часто проводят при электролизе расплавленных солей, например буры Na2B2O7, когда стальная деталь является катодом. При температуре около 150 °С и выдержке 2--5 ч на поверхности образуется твердый борид железа и толщина слоя достигает 0,1--0,2 мм.

6. Характеристика различных видов керамики, их состав, свойства, отличительные признаки

Керамика - неорганические поликристаллические материалы, получаемые из сформованных минеральных масс (глины и их смеси с минеральными добавками) в процессе высокотемпературного спекания.

Состав керамики образован многокомпонентной системой, включающей:

- кристаллическую фазу (более 50%) - химические соединения или твердые растворы;

- стекловидную фазу - прослойки стекла, химический состав которого отличается от химического состава кристаллической фазы;

- газовую фазу - газы, находящиеся в порах.

Свойства керамики определяются ее составом, структурой и пористостью. Керамику классифицируют по вещественному составу, составу кристаллической фазы, структуре и назначению.

По вещественному составу разновидностями керамики является фаянс, полуфарфор, фарфор, терракота, керметы, корундовая и сверхтвердая керамика и так называемая каменная масса.

По составу кристаллической фазы различают керамику из чистых оксидов и бескислородную.

По структуре керамика делится на плотную и пористую. Пористые керамики поглощают более 5% воды, а плотные - 1…4% по массе или 2..8% по объему. Пористую структуру имеют кирпич, блоки, черепица, дренажные трубы и др.; плотную - плитки для полов, канализационные трубы, санитарно-технические изделия.

Керамику классифицируют по характеру строения, степени спекания (плотности) черепка, типам, видам и разновидности, наличию глазури.

По характеру строения керамику подразделяют на грубую и тонкую. Изделия грубой керамики (гончарные изделия, кирпич, черепица) имеют пористый крупнозернистый черепок неоднородной структуры, окрашенный естественными примесями в желтовато-коричневые цвета.

Тонкокерамические изделия отличаются тонкозернистым белым или светлоокрашенным, спекшимся или мелкопористым черепком однородной структуры.

По степени спекания (плотности) черепка различают керамические изделия плотные, спекшиеся с водопоглощением менее 5% - фарфор, тонкокаменные изделия, полуфарфор и пористые с водопоглощением более 5% - фаянс, майолика, гончарные изделия.

Типы, виды и разновидности керамических изделий

Основные типы керамики - фарфор, тонкокерамические изделия, полуфарфор, фаянс, майолика, гончарная керамика.

Тип керамики определяется характером используемых материалов, их обработкой, особенно тонкостью помола, составом масс и глазурей, температурой и длительностью обжига. В состав масс всех типов керамики входят пластичные глинистые вещества (глина, каолин), отощающие материалы (кварц, кварцевый песок), плавни (полевой шпат, пегматит, перлит, костяная зола и др.) При обжиге отформованных изделий в результате сложных физико-химических превращений и взаимодействий компонентов масс и глазурей, формируется их структура. Структура черепка неоднородна и состоит из кристаллической, стекловидной и газовой фаз.

Кристаллическая фаза образуется при разложении и преобразовании глинистых веществ и других компонентов массы. Кристаллическая фаза и особенно муллит придают черепку прочность, термическую и химическую устойчивость.

Стекловидная фаза возникает за счет расплавления плавней и частично других компонентов. Она соединяет частицы массы, заполняет поры, повышая плотность черепка; в количестве до 45 - 50% увеличивает прочность изделий, при большем содержании - вызывает хрупкость изделий, снижает их термостойкость. Стекловидная фаза способствует уменьшению водопоглощения, обуславливает просвечиваемость черепка.

Газовая фаза (открытые и замкнутые поры) оказывает неблагоприятное влияние на физико-химические свойства изделий; снижает прочность, термическую и химическую устойчивость, вызывает водопоглощение и водопроницаемость черепка.

Различие между отдельными типами керамики обусловлено спецификой их внутренней структуры, то есть составом и соотношением отдельных фаз, составом и структурой глазури.

Свойства керамики

Керамические изделия и материалы классифицируют по назначению и свойствам, по основному используемому сырью или фазовому составу спекшейся керамики. В зависимости от состава сырья и температуры обжига керамические изделия подразделяют на 2 класса: полностью спекшиеся, плотные, блестящие в изломе изделия с водопоглощением не выше 0,5% и пористые, частично спекшиеся изделия с водопоглощением до 15%. Различают грубую керамику, имеющую крупнозернистую, неоднородную в изломе структуру (например, строительный и шамотный кирпич), и тонкую керамику с однородным, мелкозернистым в изломе и равномерно окрашенным черепком (например, фарфор, фаянс). Основным сырьём в керамической промышленности являются глины и каолины вследствие их широкого распространения и ценных технологических свойств. Важнейшим компонентом исходной массы при производстве тонкой керамики являются полевые шпаты (главным образом микролин) и кварц. Полевые шпаты, особенно чистых сортов, и их сростки с кварцем добываются из пегматитов. Во все возрастающих количествах кварцево-полевошпатовое сырье добывается из разнообразных горных пород путем обогащения и очистки от вредных минеральных примесей.

По способу приготовления керамические массы подразделяют на порошкообразные, пластичные и жидкие. Порошкообразные керамические массы представляют собой увлажнённую или с добавкой органических связок и пластификаторов смесь измельченных и смешанных в сухом состоянии исходных минеральных компонентов. Перемешиванием глин и каолинов с отстающими добавками во влажном состоянии (18--26% воды по массе) получают пластические формовочные массы, которые при дальнейшем увеличении содержания воды и с добавкой электролитов (пептизаторов) превращаются в жидкие керамические массы (суспензии) -- литейные шликеры. В производстве фарфора, фаянса и некоторых других видов керамики пластичную формовочную массу получают из шликера частичным обезвоживанием его в фильтр-прессах с последующей гомогенизацией в вакуумных массомялках и шнековых прессах. При изготовлении некоторых видов технической керамики литейный шликер приготовляют без глин и каолинов, добавляя в тонкомолотую смесь исходного сырья термопластические и поверхностно-активные вещества (например, парафин, воск, олеиновую кислоту), которые потом удаляются предварительным низкотемпературным обжигом изделий.

Выбор метода формования керамики определяется в основном формой изделий. Изделия простой формы -- огнеупорный кирпич, облицовочные плитки -- прессуются из порошкообразных масс в стальных пресс-формах на механических и гидравлических пресс-автоматах. Стеновые стройматериалы -- кирпич, пустотелые и облицовочные блоки, черепица, канализационные и дренажные трубы и т.д. -- формуются из пластичных масс в шнековых вакуумных прессах выдавливанием бруса через профильные мундштуки. Изделия или заготовки заданной длины отрезают от бруса автоматами, синхронизированными с работой прессов. Хозяйственный фарфор и фаянс формуются преимущественно из пластичных масс в гипсовых формах на полуавтоматах и автоматах. Санитарно-строительная керамика сложной конфигурации отливается в гипсовых формах из керамического шликера на механизированных конвейерных линиях. Радио- и пьезо- керамика, керметы и другие виды технической керамики в зависимости от их размеров и формы изготовляются главным образом прессованием из порошкообразных масс или отливкой из парафинового шликера в стальных пресс-формах.

Заформованные тем или иным способом изделия подвергаются сушке в камерных, туннельных или конвейерных сушилках.

Обжиг керамики является самым важным технологическим процессом, обеспечивающим заданную степень спекания. Точным соблюдением режима обжига обеспечиваются необходимый фазовый состав, и все важнейшие свойства керамики. За редким исключением спекание кристаллических фаз протекает с участием жидких фаз, образующихся из эвтектических расплавов. В зависимости от состава керамической массы и температуры обжига в фарфоровых, стеатитовых и других плотно спекшихся изделиях содержание жидкой фазы в процессе спекания достигает 40--50% по массе и более. Силами поверхностного натяжения, возникающими на границе жидкой и твёрдой фаз, зёрна кристаллических фаз (например, кварца в фарфоре) сближаются, а газы, распределённые между ними, вытесняются из капилляров. В результате спекания размеры изделий уменьшаются, возрастают их механическая прочность и плотность. Спекание некоторых видов технической керамики (например, корундовой, бериллиевой, циркониевой) осуществляется без участия жидкой фазы в результате объемной диффузии и пластического течения, сопровождающихся ростом кристаллов. Спекание в твердых фазах происходит при использовании весьма чистых материалов и при более высоких температурах, чем спекание с участием жидкой фазы, и потому получило распространение лишь в производстве технической керамики на основе чистых окислов и тому подобных материалов. В соответствии с комплексом предъявляемых требований степень спекания разных видов керамики колеблется в широких пределах. Изделия из электрофарфора, фарфора, фаянса и других видов тонкой керамики покрываются перед обжигом глазурью, которая при высоких температурах обжига (1000--1400 °C), плавится, образуя стекловидный водо- и газонепроницаемый слой. Глазурированием повышают технические и декоративно-художественные свойства керамики. Массивные изделия глазуруются после сушки и обжигаются в один прием. Тонкостенные изделия перед глазуровкой во избежание размокания в глазурной суспензии подвергают предварительному обжигу. В некоторых керамических производствах неглазурованная поверхность обожжённых изделий шлифуется абразивными порошками или абразивным инструментом. Изделия хозяйственной керамики украшаются керамическими красками, декалькоманией и золотом.

Таблица 1. Классификация керамических изделий

Назначение

Тип керамики

Исходные материалы

Температура обжига, 0C

Изделия

Класс пористых, частично спекшихся изделий с водовопоглощением до 15%

Строительная керамика:

стеновые материалы

Высокопористая, грубозернистая

Глина, песок и др. отощающие материалы

950-1150

Глиняный кирпич и пустотелые блоки

кровельные материалы

То же

Глина и песок

950-1150

Черепица

облицовочные материалы

То же

Пластичные и пироплавкие глины шамот, кварцевый песок, полевой шпат, тальк, каолин

1000-1200

Облицовочные фасадные плитки и блоки, терракота, плитки метлахские, мозаичные, глазурованные фаянсовые и др.

санитарно-технические изделия

Фаянс, полуфарфор

Глина, каолин, кварцевый песок

1150-1250

Оборудование санитарных узлов

Бытовая и художественно-декоративная керамика

Фаянс, полуфарфор, майолика

Глина, каолин, кварцевый песок, полевой шпат

1100-1250

Столовая и чайная посуда, художественно-декоративные изделия

Огнеупорная керамика

Алюмосиликатная, кремнеземистая, магнезиальная, хромистая, цирконовая и др.

Огнеупорная глина, каолин, шамот, кварциты, известь, доломит, магнезит, высокоогнеупорные окислы и др.

1350-2000

Кирпичи и блоки, применяемые при сооружении печей, топок и др.

Класс полностью спекшихся, блестящих в изломе изделий с водопоглощением не выше 0,5%

Техническая керамика:

электротехническая (для токов промышленной и высокой частоты)

Муллитовая, корундовая, стеатитовая, кордиеритовая, на основе чистых окислов, электрофарфор

Глина, каолин, андалузит, глинозем, полевой шпат, циркон, цирконосиликаты и др.

1250-1450

Изоляторы, чехлы для термопар, вакуумплотные колбы, термостойкие детали для печей и др.

кислотоупорная

"Каменная", кислотоупорный фарфор

Беложгущиеся глины и каолин, кварц, полевой шпат, циркон, цирконосиликаты и др.

1250-1300

Сосуды для хранения кислот и щелочей, аппаратура химических заводов, посуда и др.

Бытовая и художественно-декоративная керамика

Твердый и мягкий хозяйственный фарфор

Беложгущиеся глины и каолин, кварц, полевой шпат

1300-1450

Столовая и чайная посуда, статуэтки, вазы и др.

Санитарно-строительные изделия

Низкотемпературный фарфор

Глина, каолин, полевой шпат, кварцевый песок

1250-1300

Умывальные столы, унитазы и др.

Грубокерамические материалы

Крупнопористые крупнозернистые керамические материалы применяются для изготовления крупногабаритных изделий в строительстве, архитектуре малых форм и т. п. Эти сорта выдерживают высокие температуры и термические колебания. Их пластичность зависит от содержания в породе кварца и алюминия (кремнезема и глинозема. -- Ред.). В общей структуре много глинозема с высоким содержанием шамота. Температура плавления колеблется от 1440 до 1600 °С. Материал хорошо спекается и дает незначительную усадку, поэтому используется для создания больших объектов и крупноформатных настенных панно. При изготовлении художественных объектов не следует превышать температуру в1300°С.

Каменная керамическая масса

Основу этого сырья составляют шамот, кварц, каолин и полевой шпат. Во влажном состоянии оно имеет черно-коричневый цвет, а после сырого обжига -- цвет слоновой кости. При нанесении глазури каменная керамика превращается в прочное, водостойкое и несгораемое изделие. Она бывает очень тонкой, непрозрачной или в виде однородной, плотно спекшейся массы. Рекомендуемая температура обжига: 1100-1300 °С. При ее нарушении глина может рассыпаться. Материал используют в различных технологиях изготовления гончарных изделий из пластинчатой глины и для моделирования. Отличают изделия из красной глины и каменную керамику в зависимости от их технических свойств.

Пористая керамическая масса

Глина для керамики представляет собой белую массу с умеренным содержанием кальция и повышенной пористостью. Ее натуральный цвет -- от чисто-белого до зеленовато-коричневого. Обжигается при низких температурах. Рекомендуется необожженная глина, так как для некоторых глазурей однократного обжига недостаточно.

Техническая керамика

К технической керамике относятся электро- и радиотехническая керамика, керметы, абразивные керамические материалы, пенокерамика и другие.

По электрическим свойствам керамику подразделяют на собственно электротехническую, применяемую при частотах до 20000 Гц, и радиотехническую, используемую преимущественно при высоких (более 20000 Гц) частотах.

Электротехническая керамика по области применения делится на изоляторную (установочную), конденсаторную (сегнетоэлектрики) и пьезокерамику, проведение экспертизы качества.

Изоляторная керамика должна иметь низкие потери, хорошие электроизоляционные свойства и прочность. Изоляторная керамика должна иметь большую диэлектрическую проницаемость, малые потери и температурный коэффициент. Основу конденсаторной низкочастотной сегнетокерамики составляют твердые растворы титанатов бария, кальция, циркония и станнатов кальция и магния и др. Использование конденсаторной керамики увеличивает надежность работы и теплостойкость конденсаторов и уменьшает их размеры.

Пьезокерамика - керамические материалы с пьезоэлектрическими свойствами. Структура пьезокерамики - твердые растворы на основе титанита бария, ниобата бария и ниобата и титаната свинца.

Абразивные керамические материалы (абразивы) - вещества повышенной твердости, применяемые в массивном или измельченном состоянии для механической обработки других материалов. Естественные абразивные материалы - кремень, наждак, пемза, корунд, гранат, алмаз и др.; искусственные абразивные материалы - электрокорунд, карбид кремния, боразон, эльбор, синтетический алмаз и др. По убыванию абразивной способности эти материалы располагаются так: синтетический алмаз, кубический нитрид бора, карбид кремния, карбид титана и электрокорунд. В настоящее время разрабатываются новые абразивные материалы на основе боридов и карбидов переходных металлов, а также типа белбора.

Основные характеристики абразивных материалов: твердость. Прочность и износ, размер и форма абразивного зерна, абразивная способность, зернистость. С увеличением прочности этих материалов улучшается сопротивляемость усилиям резания, так как сопротивление сжатию у них в несколько раз больше, чем сопротивление растяжению. Прочность абразивных материалов на растяжение и сжатие снижается с повышением температуры шлифования.

Измельченный и классифицированный абразивный материал называют шлифовальным. Зернистость шлифовальных материалов определяется размером абразивных зерен, т.е. группой материалов по ГОСТ 3647-80: шлифзерно, шлифпорошки, микрошлифпопрошки и тонкие микрошлифпорошки. Обозначение зернистости дополняют индексами В, П, Н и Д, которые характеризуют процентное содержание (массовую долю) основной фракции (36…60%).

Абразивные керамические материалы используются как в несвязанном виде (порошки, пасты, суспензии), так и в связанном (бруски, шлифовальные шкурки, круги, головки и др.).

7. Материалы для полов

По исходному сырью материалы для пола классифицируют на полимерные, древесные и керамические. Полимерные материалы для покрытия полов широко применяют, так как они устойчивы к истиранию, обладают низкой теплопроводностью, водонепроницаемостью, достаточно тверды и прочны. К ним относят линолеум, релин, ворсодии. Линолеум по сырью и составу пластической массы подразделяют на поливинилхлоридный, глифталевый и нитроцеллюлозный. Поливинилхлоридный линолеум изготовляют из поливинилхлорида, наполнителей, пластификаторов, красителей и других добавок. Выпускающего на тканевой основе и чаще безосновным. Безосновныи линолеум может быть одно-, двух- или многослойным. Кроме того, выраба-тывают тепло- и звукоизоляционный линолеум на войлочной, тканевой или пористой полимерной основе. Поливинилхлоридный линолеум имеет большую прочность, высокую износостойкость, гигиеничен, не подвержен гниению, имеет малую теплопроводность. Глифталевый линолеум изготов-ляют на тканевой основе с применением глифталиевого полимера, глицерина, красителей и модифицирующих добавок. Нитроцеллюлозный линолеум получают на основе нитроцеллюлозы, пластификаторов, наполнителей и красителей. Релин -- резиновый линолеум представляет собой двух- или трехслойный рулонный материал, полученный из дробленой старой резины и нефтяных битумов. Релин применяют для покрытия полов в жилых и промышленных помещениях. Ворсолин -- это нетканый ворсовый материал, покрытый пленкой поливинилхлорида. Древесные кровельные материалы для пола включают паркет и доски. Паркет бывает штучным в виде отдельных пластин и дощатым в виде щитов. Изготовляют паркет из твердых пород древесины -- дуба, ясеня, бука и др. Паркет является одним из лучших материалов для пола. Доски для полов делают из сосны, лиственницы, кедра, березы, бука и других пород древесины. Для пола применяют строганные доски

Список используемой литературы

1. Петрище Ф.А. Товароведение строительных товаров: учебное пособие - М.: Инфра-М, 2011.

2. Шепелев А.Ф. Товароведение и экспертиза непродовольственных товаров. М.:ИЦ «Март»,2003

Размещено на Allbest.ru

...

Подобные документы

  • Классификация и ассортимент игристых вин, их химический состав и физиологическая ценность, используемое при производстве сырье. Технология производства, экспертиза и требования к качеству, идентификация и выявление фальсификации, требования к упаковке.

    курсовая работа [67,6 K], добавлен 21.10.2010

  • Организация и проведение таможенной экспертизы: основные методы и характеристика требований к качеству. Порядок проведения товароведческой оценки пищевой и потребительской ценности и качества круп на таможенном посту, методики оценки пищевых продуктов.

    курсовая работа [46,5 K], добавлен 22.03.2013

  • Изучение номенклатуры, ассортимента, форм и методов контроля качества непродовольственных и продовольственных товаров. Товароведческая оценка соответствия качества, условий хранения и транспортирования продукции требованиям нормативных материалов.

    курсовая работа [75,9 K], добавлен 18.10.2013

  • История создания чая, его ассортимент и классификация, упаковка и хранение. Основные товароведческие показатели и методы определения качества чая. Запреты и ограничения на ввоз или вывоз чая. Документы, необходимые для назначения таможенной экспертизы.

    курсовая работа [584,4 K], добавлен 08.11.2013

  • Исследование порядка проведения сертификации керамической плитки. Анализ особенностей ассортиментной, качественной и информационной идентификации отделочных материалов из керамики. Экспертиза качества и методы проведения испытаний керамических плиток.

    курсовая работа [5,0 M], добавлен 19.03.2013

  • Товароведческая характеристика сыра, его химический состав и пищевая ценность, факторы определяющие качество. Технология производства сыра. Упаковка, маркировка и хранение продукта. Определение органолептических и физико-химических показателей качества.

    курсовая работа [66,1 K], добавлен 16.11.2010

  • Классификация меховых изделий по Товарной номенклатуре внешнеэкономической деятельности ЕврАзЭС. Анализ российского рынка и товароведческая характеристика меховых изделий. Порядок назначения и проведения экспертизы меховых изделий в таможенных целях.

    курсовая работа [525,1 K], добавлен 04.04.2018

  • Общая характеристика рынка морепродуктов. Строение тела рыбы и ее физические свойства. Применение и товароведческая характеристика морепродуктов. Химический состав, пищевая ценность и роль в питании рыбы и морепродуктов, основные требования к их качеству.

    курсовая работа [82,7 K], добавлен 21.10.2010

  • Рынок коньячного товара в Кыргызстане. Свойства и показатели ассортимента. Сырье и материалы для производства коньяков. Потребительские свойства и показатели качества коньяков. Упаковка, транспортирование и хранение товаров. Проведение экспертизы коньяка.

    курсовая работа [3,4 M], добавлен 14.12.2012

  • Проведение товароведческой таможенной экспертизы кожаных изделий. Определение номенклатуры потребительских свойств и показателей товаров. Характеристика ассортимента, условных обозначений показателей качества и характеризуемых свойств продукции.

    курсовая работа [313,4 K], добавлен 12.08.2019

  • Товароведческая характеристика сдобного печенья, его пищевая ценность, состав, влияние на организм человека. Сырье и способы производства сдобного печенья, экспертиза его качества. Анализ рынка мучных кондитерских изделий (сдобного печенья) в г. Кирове.

    курсовая работа [105,7 K], добавлен 16.02.2011

  • Потребительские свойства, предъявляемые к нетканым материалам; выбор сырья для их производства. Экспертиза качества сырьевого состава и строения изделия. Требования, предъявляемые к маркировке, упаковке, транспортированию и условиям хранения материалов.

    курсовая работа [1,6 M], добавлен 27.02.2015

  • Случаи, когда необходимо проведение экспертизы товаров. Основные понятия товарной экспертизы, ее виды и формы, составляющие. Методы определения различных количественных показателей товаров. Правила при проведении приемочной экспертизы по качеству.

    презентация [282,7 K], добавлен 03.06.2014

  • Классификация и ассортимент чая. Особенности химического состава и пищевая ценность. Требования, предъявляемые к его качеству. Дефекты и виды фальсификации чая. Методика проведения экспертизы. Органолептический анализ потребительских свойств продукта.

    курсовая работа [37,8 K], добавлен 08.06.2012

  • Анализ внешнеэкономической деятельности Российской Федерации в сфере оборота круп. Идентификационные признаки круп и классификация по ТН ВЭД ТС. Нормативно-правовая база, регламентирующая производство экспертизы. Анализ результатов экспертизы круп.

    курсовая работа [231,4 K], добавлен 10.07.2014

  • Общая характеристика фруктовых соков, технология их изготовления и классификация, состав и пищевая ценность, сертификация и требования, предъявляемые к качеству. Товароведная характеристика, методы исследования и результаты экспертизы фруктовых соков.

    курсовая работа [66,7 K], добавлен 15.11.2010

  • Состояние, перспективы развития рынка плодоовощных товаров. Товароведческий анализ плодоовощных товаров. Пищевая ценность плодоовощных товаров. Классификация и характеристика видов плодоовощных товаров. Повреждения, болезни и дефекты плодоовощных товаров.

    курсовая работа [59,4 K], добавлен 03.03.2009

  • Смысл профессии товароведа. Основные виды деятельности товароведа. Проведение товароведной экспертизы. Проведение экспертизы непродовольственных товаров. Функциональные обязанности товароведа. Качества, препятствующие профессиональной деятельности.

    презентация [1,1 M], добавлен 09.12.2015

  • Состояние производства в России, особенности предложения. Системы классификации мороженого, сырье и технология изготовления. Общая характеристика предприятия и его конкурентоспособность. Контроль качества мороженого, проведение экспертизы образцов.

    дипломная работа [78,1 K], добавлен 17.11.2014

  • Характерные свойства металлов. Сплавы драгоценных металлов: золота, серебра, платины и палладия. Методы определения проб. Приемы ручной обработки и украшения драгоценных металлов. Виды ювелирных украшений. Уход за изделиями из драгоценных металлов.

    курсовая работа [720,4 K], добавлен 18.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.