Effects of product network relationships on demand in russian ecommerce
Customer lifetime value like one of the key business indicators which we can predict net income, as well as future relations between the company and the client. Characteristics of the several measurements and evaluations of recommendation systems.
Рубрика | Маркетинг, реклама и торговля |
Вид | дипломная работа |
Язык | английский |
Дата добавления | 18.07.2020 |
Размер файла | 2,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
pam_fit<- pam(main_ozon_dist,
diss = TRUE,
k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
# Plot sihouette width (higher is better)
plot(1:12, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:12, sil_width)
#Now we understand, that we have to use 7 clasters, let`s do it!
#Cluster Interpretation
library(cluster)
library(ISLR)
pam_fit<- pam(main_ozon_dist, diss = TRUE, k = 7)
# IT works
main_ozon_tv[pam_fit$medoids, ]
#Plotting the results
library(Rtsne)
tsne_obj<- Rtsne(main_ozon_dist, is_distance = TRUE)
tsne_data<- tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering))
#Plot the results
ggplot(aes(x = X, y = Y), data = tsne_data) +
geom_point(aes(color = cluster))
#Save the segments inside our dataset
main_ozon_tv$segments = tsne_data$cluster
#Create dataset with relusts of our segmentation
seg_main_ozon=main_ozon_tv %>% group_by(segments) %>%summarise(avg_rating_main = mean(Rating_main), avg_price_main = mean(Price_main),avg_discout_main = mean(Discount_main),avg_review_main = mean(Reviews_main),avg_sales_main=(mean(Sales_main)))
main_ozon_tv$Brand = as.character(main_ozon_tv$Brand)
main_ozon_tv$Product.Name = as.character(main_ozon_tv$Product.Name)
seg_main_sales = main_ozon_tv %>% group_by(segments) %>% count(mean(Sales_main)) %>% filter(n==max(n))
seg_main_brand = main_ozon_tv %>% group_by(segments) %>% count(Brand) %>% filter(n==max(n))
seg_main
#Final cluster
seg_main_all = main_ozon_tv %>% group_by(segments) %>% count(Product.Name, mean(Sales_main),mean(Price_main), mean(Rating_main),mean(Discount_main), mean(Reviews_main)) %>% filter(n==max(n))
main_ozon_tv
#Numbers of our users by segments
main_ozon_tv%>% group_by(segments) %>% tally()
#Clustering analysis for also viewed products
library(dplyr) # for data cleaning
library(ISLR) # for college dataset
library(cluster) # for gower similarity and pam
library(Rtsne) # for t-SNE plot
library(ggplot2) # for visualization
# Remove college name before clustering and little bit prepare the data
av_ozon_tv<-ozon_tv[, c(-1, -4: -8, -14:-17)]
av_ozon_tv$Brand = as.factor(av_ozon_tv$Brand)
av_ozon_tv$Product.Name = as.factor(av_ozon_tv$Product.Name)
av_ozon_dist<- daisy (av_ozon_tv, metric = "gower", type = list(logratio = 3))
# Check attributes to ensure the correct methods are being used
summary(av_ozon_dist)
#Create matrix
av_df_mat<- as.matrix(av_ozon_dist)
# Output most similar pair
av_ozon_tv[which(av_df_mat == max(av_df_mat[av_df_mat != max(av_df_mat)]),
arr.ind = TRUE)[1, ], ]
#Choosing a clustering algorithm
#Calculate silhouette width for many k using PAM
sil_width<- c(NA)
for(i in 2:10){
pam_fit<- pam(av_ozon_dist,
diss = TRUE,
k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
# Plot sihouette width (higher is better)
plot(1:10, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:10, sil_width)
#Now we understand, that we have to use 7 clasters, let`s do it!
#Cluster Interpretation
library(cluster)
library(ISLR)
pam_fit<- pam(av_ozon_dist, diss = TRUE, k = 7)
# IT works
av_ozon_tv[pam_fit$medoids, ]
#Plotting the results
library(Rtsne)
av_tsne_obj<- Rtsne(av_ozon_dist, is_distance = TRUE)
av_tsne_obj<- av_tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering))
#Plot the results
ggplot(aes(x = X, y = Y), data = av_tsne_obj) +
geom_point(aes(color = cluster))
#Save the segments inside our dataset
av_ozon_tv$segments = av_tsne_obj$cluster
#Create dataset with relusts of our segmentation
seg_av_ozon=av_ozon_tv %>% group_by(segments) %>% summarise(avg_sales_av=mean(SAL_av),avg_price_av = mean(AP_av),avg_rating_av = mean(AR_av),avg_discount_av = mean(AD_av),avg_number_of_reviews_av = (mean(ANR_av)))
av_ozon_tv$Brand = as.character(av_ozon_tv$Brand)
av_ozon_tv$Product.Name = as.character(av_ozon_tv$Product.Name)
seg_av_sales = av_ozon_tv %>% group_by(segments) %>% count(mean(SAL_av)) %>% filter(n==max(n))
seg_av_brand = av_ozon_tv %>% group_by(segments) %>% count(Brand) %>% filter(n==max(n))
#Final cluster
seg_av_all = av_ozon_tv %>% group_by(segments) %>% count(Product.Name, mean(SAL_av),mean(AP_av),mean(AR_av), mean(AD_av)) %>% filter(n==max(n))
av_ozon_tv
#Numbers of our users by segments
av_ozon_tv%>% group_by(segments) %>% tally()
seg_lm_ozon<-merge(seg_main_ozon,seg_av_ozon)
#LM for seg_mean_ozon + seg_av_prod
library(car)
LM_main<- lm(avg_sales_main ~ avg_review_main + avg_rating_main + avg_sales_av + avg_price_av + avg_rating_av + avg_discount_av + avg_number_of_reviews_av, data=seg_lm_ozon)
summary(LM_main)
#Clustering analysis for co-purchased products
library(dplyr) # for data cleaning
library(ISLR) # for college dataset
library(cluster) # for gower similarity and pam
library(Rtsne) # for t-SNE plot
library(ggplot2) # for visualization
# Remove college name before clustering and little bit prepare the data
cp_ozon_tv<-ozon_tv[, c(-1, -4: -14)]
#here I deleted CO-purchase coloumn (binary)
cp_ozon_tv$Brand = as.factor(cp_ozon_tv$Brand)
cp_ozon_tv$Product.Name = as.factor(cp_ozon_tv$Product.Name)
cp_ozon_dist<- daisy (cp_ozon_tv, metric = "gower", type = list(logratio = 3))
# Check attributes to ensure the correct methods are being used
summary(cp_ozon_dist)
#Create matrix
cp_df_mat<- as.matrix(cp_ozon_dist)
# Output most similar pair
cp_ozon_tv[which(cp_df_mat == max(cp_df_mat[cp_df_mat != max(cp_df_mat)]),
arr.ind = TRUE)[1, ], ]
#Choosing a clustering algorithm
#Calculate silhouette width for many k using PAM
sil_width<- c (NA)
for(i in 2:15){
pam_fit<- pam(cp_ozon_dist,
diss = TRUE,
k = i)
sil_width[i] <- pam_fit$silinfo$avg.width
}
# Plot sihouette width (higher is better)
plot(1:15, sil_width,
xlab = "Number of clusters",
ylab = "Silhouette Width")
lines(1:15, sil_width)
#Now we understand, that we have to use 11 clasters, let`s do it!
#Cluster Interpretation
library(cluster)
library(ISLR)
pam_fit<- pam(av_ozon_dist, diss = TRUE, k = 11)
# IT works
cp_ozon_tv[pam_fit$medoids, ]
#Plotting the results
library(Rtsne)
cp_tsne_obj<- Rtsne(cp_ozon_dist, is_distance = TRUE)
cp_tsne_obj<- cp_tsne_obj$Y %>%
data.frame() %>%
setNames(c("X", "Y")) %>%
mutate(cluster = factor(pam_fit$clustering))
#Plot the results
ggplot(aes(x = X, y = Y), data = cp_tsne_obj) +
geom_point(aes(color = cluster))
#Save the segments inside our dataset
cp_ozon_tv$segments = cp_tsne_obj$cluster
#Create dataset with relusts of our segmentation
seg_cp_ozon=cp_ozon_tv %>% group_by(segments) %>% summarise(avg_price_av = mean(AP_cp),avg_rating_av = mean(AR_cp),avg_number_of_reviews_av = (mean(ANR_cp)))
cp_ozon_tv$Brand = as.character(cp_ozon_tv$Brand)
cp_ozon_tv$Product.Name = as.character(cp_ozon_tv$Product.Name)
seg_cp_price = cp_ozon_tv %>% group_by(segments) %>% count(mean(AP_cp)) %>% filter(n==max(n))
seg_cp_brand = cp_ozon_tv %>% group_by(segments) %>% count(Brand) %>% filter(n==max(n))
#Final cluster
seg_cp_all = cp_ozon_tv %>% group_by(segments) %>% count(Product.Name, mean(AP_cp), mean(AR_cp), mean(ANR_cp)) %>% filter(n==max(n))
cp_ozon_tv
#Numbers of our users by segments
cp_ozon_tv%>% group_by(segments) %>% tally()
#First regression attempts
library(car)
LM_control<- lm(Sales_main ~ Price_main + Rating_main + Discount_main + Reviews_main, data=ozon_tv)
summary(LM_control)
LM_sales<- lm(Sales_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_tv)
summary(LM_sales)
LM_rating<- lm(Rating_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_tv)
summary(LM_rating)
LM_reviews<- lm(Reviews_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_tv)
summary(LM_reviews)
LogM_sales<- lm(log(Sales_main) ~ log(Discount_main), data=ozon_tv)
summary(LogM_sales)
#Descriptive statistics
install.packages("pastecs")
library(pastecs)
descriptive <- stat.desc(ozon_tv[, 4:13])
round(descriptive, 2)
head(descriptive)
descriptive
str(descriptive)
decriptive_table<- table(descriptive)
as.data.frame(descriptive)
descriptive
install.packages("ggpubr")
library(ggpubr)
#ratings
ggboxplot(ozon_tv, y = "Rating_main", width = 0.5)
#reviews
ggboxplot(ozon_tv, y = "Reviews_main", width = 0.5)
#Discount
ggboxplot(ozon_tv, y = "Discount_main", width = 0.5)
#Price
ggboxplot(ozon_tv, y = "Price_main", width = 0.5)
#Sales
ggboxplot(ozon_tv, y = "Sales_main", width = 0.5)
#histograms
#sales
gghistogram(ozon_tv, x = "Sales_main", bins = 9,
add = "mean")
gghistogram(ozon_tv, x = "Rating_main", bins = 9,
add = "mean")
gghistogram(ozon_tv, x = "Discount_main", bins = 9,
add = "mean")
#qqplots
ggqqplot(ozon_tv, x = "Reviews_main")
ggqqplot(ozon_tv, x = "Rating_main")
ggqqplot(ozon_tv, x = "Sales_main")
#Sales by brand
ozon_brands<- read.csv("Ozon_brands.csv", header=TRUE, sep=",")
ggboxplot(ozon_brands, x = "Brand", y = "Sales_main",
color = "Brand")
ggstripchart(ozon_brands, x = "Brand", y = "Sales_main",
color = "Brand",
add = "mean_sd")
ggbarplot(df, x = "Brands", y = "Sales",
color = "Eye", position = position_dodge(),
palette = c("brown", "blue", "gold", "green"))
#Fitting the model
#Regression without outliers
#Without outliers first attempt
ozon_outliers<- read.csv("Ozon_outliers.csv", header=TRUE, sep=",")
LM_sales_outliers<- lm(Sales_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_outliers)
summary(LM_sales_outliers)
LM_rating_outliers<- lm(Rating_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_outliers)
summary(LM_rating_outliers)
LM_reviews_outliers<- lm(Reviews_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_outliers)
summary(LM_reviews_outliers)
#Without outliers second attempt
ozon_outliers2 <- read.csv("Ozon_outliers2.csv", header=TRUE, sep=",")
LM_sales_outliers2 <- lm(Sales_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_outliers2)
summary(LM_sales_outliers2)
LM_rating_outliers2 <- lm(Rating_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_outliers2)
summary(LM_rating_outliers2)
LM_reviews_outliers2 <- lm(Reviews_main ~ .-ID -Brand -Product.Name -Co_purchase, data=ozon_outliers2)
summary(LM_reviews_outliers2)
Размещено на Allbest.ru
...Подобные документы
The concept of brand capital. Total branded product name for the whole company. Nestle as the largest producer of food in the world. Characteristics of technical and economic indicators. Nestle company’s brands. SWOT-analysis and Nestle in Ukraine.
курсовая работа [36,2 K], добавлен 17.02.2012The internal and external communication systems of the Nestle company. Background of the company. SWOT analysis: strength, weaknesses, opportunities. Architecture of Intranet systems. Business use of intranet systems. Intranet tools and its benefits.
контрольная работа [304,7 K], добавлен 28.10.2013Business plans are an important test of clarity of thinking and clarity of the business. Reasons for writing a business plan. Market trends and the market niche for product. Business concept, market analysis. Company organization, financial plan.
реферат [59,4 K], добавлен 15.09.2012Основные сведения об интернет-торговле в Интернете как в B2B-секторе (business-to-business), так и в B2C-секторе (business-to-customer), а также о построении системы интернет-торговли и принципах работы интернет-магазинов. Организация интернет-аукционов.
курс лекций [63,5 K], добавлен 31.10.2009The current status of our business. Products and services. Benefits of location and challenges. Number of patients who received dental services in 2013. Impact from industry changes. Market description and characteristics. Market niche and share.
бизнес-план [302,5 K], добавлен 02.10.2014The history of the company. Entering the market of pastas and the present position of the company. The problem of the company. The marketing research. The history of the market of pastas of Saint Petersburg and its present state.
курсовая работа [28,2 K], добавлен 03.11.2003Strategy and major stages of project’s fruition. Production of Korean cuisine dishes. Analysis of the industry sector, of produce’s market, of business rivals. Marketing plan, volume of sales, personnel and company management. Cost of the project.
курсовая работа [724,1 K], добавлен 17.02.2013История и причины для размещения product placement. Виды размещения product placement: визуальный; вербальный; кинестетический. Отношение читательской аудитории к размещению торговой марки в книгах. Плюсы и минусы российского книжного product placement.
курсовая работа [40,9 K], добавлен 24.11.2010Историческое развитие и современное состояние Product Placement. Скрытая реклама в СМИ. Практическое применение Product Placement как инструмента маркетингового PR в РФ. Социологическое исследование Product Placement в российском кино, его преимущества.
курсовая работа [332,4 K], добавлен 09.06.2014Characteristics of the international regime for the protection of well known trademarks. Protection of trademarks under Paris Convention, TRIPS and WIPO joint recommendation. Comparative analysis of famous brands in Italy, Pakistan and Uzbekistan.
курсовая работа [55,5 K], добавлен 24.03.2012Product Placement в книжных изданиях: виды, преимущества и недостатки. Характеристика отечественного рынка книжной продукции: основные игроки. Популярные жанры художественной литературы и авторы для размещения Product Placement, их целевая аудитория.
дипломная работа [119,9 K], добавлен 19.07.2011The concept of advertising as a marketing tool to attract consumers and increase demand. Ways to achieve maximum effect of advertising in society. Technical aspect of the announcement: style, design, special effects and forms of distribution channels.
реферат [16,1 K], добавлен 09.05.2011The main products of the company Apple. The first programmable microcomputer. Apple's marketing policy. The encoding of the voice signal. Secure data transfer protocols. Infringement of the patent in the field of wireless data company Motorola Mobility.
презентация [640,7 K], добавлен 25.01.2013История развития и характеристика основных достоинств и недостатков Product Placement в российской киноиндустрии как рекламного приёма, заключающегося в использовании реального коммерческого бренда в качестве реквизита. Применение рекламного логотипа.
курсовая работа [98,6 K], добавлен 06.01.2011Основные понятия и определения, види и функции рекламы, ее закат и второе дыхание. Изучение основ public relations, его подъём и преимущества; создание и продвижение бренда. Рассмотрение основных сходств и различий между public relations и рекламой.
курсовая работа [884,5 K], добавлен 17.09.2014Поняття Public Relations, основні принципи та необхідність в сучасному світі. Поняття іміджу та іміджмейкінгу. Реклама в системі Public Relations. Світовий досвід PR-технології в сучасному спорті. "Помаранчеві" події в Україні з позиції Public Relations.
научная работа [47,3 K], добавлен 10.05.2009Скрытая реклама, ее понятие, характеристики и виды. Product placement как разновидность скрытой рекламы и техника его эффективного применения, ее отличия от других видов рекламы. Правовые основы размещения Product placement в современной телепродукции.
курсовая работа [895,1 K], добавлен 19.10.2010Research tastes and preferences of consumers. Segmenting the market. Development of product concept and determine its characteristic. Calculating the optimal price at which the firm will maximize profits. Formation of optimal goods distribution.
курсовая работа [4,4 M], добавлен 09.08.2014Понятие и структура Public Relations (PR). Основные этапы PR-деятельности. Роль корпоративного имиджа организации. Связи с общественностью для разных сфер бизнеса. PR в банковской сфере, на рынке недвижимости, в гостиничном и в ресторанном бизнесе.
курсовая работа [41,8 K], добавлен 03.06.2014Становление Public Relations. Основные средства организации связей с общественностью. Классификация PR-технологий. PR-технологии в информационно-психилогической войне. Public Relations - это искусство и наука анализа тенденций, предсказания последствий.
реферат [23,0 K], добавлен 25.05.2005