Метод прямоугольников

Задача вычисления интегралов. Дополнительный член в формуле прямоугольников. Вычисление определенных интегралов по формуле прямоугольников. Использование формулы Ньютона-Лейбница. Определение площади криволинейной фигуры. Формула среднего значения.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 18.12.2012
Размер файла 87,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Постановка задачи

Задача вычисления интегралов возникает во многих областях прикладной математики. В большинстве случаев встречаются определённые интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определёнными интегралами, сами подынтегральные функции не являются элементарными. Распространенными являются также случаи, когда подынтегральная функция задается графиком или таблицей экспериментально полученных значений. В таких ситуациях используют различные методы численного интегрирования, которые основаны на том, что интеграл представляется в виде предела интегральной суммы (суммы площадей), и позволяют определить эту сумму с приемлемой точностью.

Пусть требуется вычислить интеграл

при условии, что a и b конечны и f(x) является непрерывной функцией на всем интервале (a, b). Значение интеграла I представляет собой площадь, ограниченную кривой f(x),осью x и прямыми x=a, x=b. Вычисление I проводится путем разбиения интервала от a до b на множество меньших интервалов, приближенным нахождением площади каждой полоски, получающейся при таком разбиении, и дальнейшем суммировании площадей этих полосок.

Вывод формулы прямоугольников

Прежде, чем перейти к формуле прямоугольников, сделаем следующее замечание:

Замечание. Пусть функция f(x) непрерывна на сегменте [a, b], а

- некоторые точки сегмента [a, b]. Тогда на этом сегменте найдётся точка такая, что среднее арифметическое

В самом деле, обозначим через m и M точные грани функции f(x) на сегменте [a, b]. Тогда для любого номера k справедливы неравенства . Просуммировав эти неравенства по всем номерам и поделив результат на n, получим

Так как непрерывная функция принимает любое промежуточное значение, заключённое между m и M, то на сегменте [a, b] найдётся точка такая, что

.

Первые формулы для приближенного вычисления определённых интегралов проще всего получаются из геометрических соображений. Истолковывая определенный интеграл как площадь некоторой фигуры, ограниченной кривой , мы и ставим перед собой задачу об определении этой площади.

Прежде всего, вторично используя эту мысль, которая привела к самому понятию об определенном интеграле, можно разбить всю фигуру (рис. 1) на полоски, скажем, одной и той же ширины , а затем каждую полоску приближенно заменить прямоугольником, за высоту которого принята какая-либо из ее ординат. Это приводит нас к формуле

(1)

где , а R - дополнительный член. Здесь искомая площадь криволинейной фигуры заменяется площадью некоторой состоящей из прямоугольников ступенчатой фигуры (или - если угодно - определенный интеграл заменяется интегральной суммой). Эта формула и называется формулой прямоугольников.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

(рис.1)

На практике обычно берут ; если соответствующую среднюю ординату обозначить через , то формула перепишется в виде

.

Дополнительный член в формуле прямоугольников

Перейдём к отысканию дополнительного члена в формуле прямоугольников.

Справедливо следующее утверждение:

Утверждение. Если функция f(x) имеет на сегменте [a, b] непрерывную вторую производную, то на этом сегменте найдётся такая точка

, что дополнительный член R в формуле (1) равен

(2)

Доказательство.

Оценим , считая, что функция f(x) имеет на сегменте [-h, h] непрерывную вторую производную Для этого подвергнем двукратному интегрированию по частям каждый из следующих двух интегралов:

Для первого из этих интегралов получим

Для второго из интегралов аналогично получим

Полусумма полученных для и выражений приводит к следующей формуле:

(3)

Оценим величину , применяя к интегралам и формулу среднего значения и учитывая неотрицательность функций и . Мы получим, что найдутся точка на сегменте [-h, 0] и точка на сегменте [0 ,h] такие, что

В силу доказанного замечания на сегменте [-h, h] найдётся точка такая, что

Поэтому для полусуммы мы получим следующее выражение

Подставляя это выражение в равенство (3), получим, что

(4)

где

(5)

Так как величина представляет собой площадь некоторого прямоугольника с основанием (рис.1), то формулы (4) и (5) доказывают, что ошибка, совершаемая при замене указанной площадью, имеет порядок

Таким образом, формула

тем точнее, чем меньше h. Поэтому для вычисления интеграла естественно представить это интеграл в виде суммы достаточно большого числа n интегралов

И к каждому из указанных интегралов применить формулу (4).

Учитывая при этом, что длина сегмента равна , мы получим формулу прямоугольников (1), в которой

Здесь . Мы воспользовались формулой, доказанной в утверждении, для функции

Примеры вычисления определённых интегралов по формуле прямоугольников.

Для примеров возьмём интегралы, которые вычислим сначала по формуле Ньютона-Лейбница, а затем по формуле прямоугольников.

Пример 1. Пусть требуется вычислить интеграл .

По формуле Ньютона-Лейбница, получим

Теперь применим формулу прямоугольников

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10. .

Сумма .

Таким образом

В данном примере неточности в вычислениях нет. А значит, для данной функции формула прямоугольников позволила точно вычислить определённый интеграл.

Пример 2. Вычислим интеграл с точностью до 0,001.

Применяя формулу Ньютона-Лейбница, получим .

Теперь воспользуемся формулой прямоугольников.

Так как для имеем (если ), то

Если взять n=10, то дополнительный член нашей формулы будет Нам придётся внести ещё погрешность, округляя значения функции; постараемся, чтобы границы этой новой погрешности разнились меньше чем на С этой целью достаточно вычислять значение функции с четырьмя знаками, с точностью до 0,00005.

Имеем:

1. .

2. .

3. .

4. .

5. .

6. .

7. .

8. .

9. .

10.

Сумма 6,9284.

.

Учитывая, что поправка к каждой ординате (а следовательно и к их среднему арифметическому) содержится между , а также принимая во внимание оценку дополнительного члена , найдём, что содержится между границами и , а следовательно, и подавно между 0,692 и 0,694. Таким образом, .

Заключение

Изложенный выше метод вычисления определенных интегралов содержит четко сформулированный алгоритм для проведения вычислений. Другой особенностью изложенного метода является стереотипность тех вычислительных операций, которые приходится производить на каждом отдельном шаге. Эти две особенности обеспечивают широкое применение изложенного метода для проведения вычислений на современных быстродействующих вычислительных машинах.

Выше для приближенного вычисления интеграла от функции f(x) мы исходили из разбиения основного сегмента [a, b] на достаточно большое число n равных частичных сегментов одинаковой длины h и из последующей замены функции f(x) на каждом частичном сегменте многочленом соответственно нулевого, первого или второго порядка.

Погрешность, возникающая при таком подходе, никак не учитывает индивидуальных свойств функции f(x). Поэтому, естественно, возникает идея о варьировании точек разбиения основного сегмента [a, b] на n, вообще говоря, не равных друг другу частичных сегментов, которое обеспечивало бы минимальную величину погрешности данной приближённой формулы.

вычисление интеграл прямоугольник формула

Список литературы

1. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления в 3-х томах, том II. (§§ 332, 335).

2. Ильин В.А., Позняк Э.Г. Основы математического анализа, часть I. Москва «Наука», 1982г. (Глава 12, пп.1, 2, 5).

Размещено на Allbest.ru

...

Подобные документы

  • Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.

    курсовая работа [187,8 K], добавлен 18.05.2019

  • Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа [1,0 M], добавлен 11.03.2013

  • Построение квадратурной формулы максимальной степени точности. Определение алгебраической степени точности указанной квадратурной формулы. Сравнительный анализ квадратурных формул средних прямоугольников и трапеций на примере вычисления интеграла.

    лабораторная работа [195,9 K], добавлен 21.12.2015

  • Расчет неопределенных интегралов, проверка результатов дифференцированием. Вычисление определенного интеграла по формуле Ньютона-Лейбница. Нахождение площади фигуры, ограниченной заданной параболой и прямой. Общее решение дифференциального уравнения.

    контрольная работа [59,8 K], добавлен 05.03.2011

  • Расчет неопределенных интегралов по частям и по формуле Ньютона-Лейбница. Вычисление несобственного интеграла или доказательство его расходимости. Расчет площади фигуры, ограниченной кардиоидой. Расстановка пределов двумя альтернативными способами.

    контрольная работа [251,2 K], добавлен 28.03.2014

  • Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.

    реферат [99,0 K], добавлен 05.09.2010

  • Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.

    контрольная работа [123,7 K], добавлен 14.01.2015

  • Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.

    курсовая работа [473,4 K], добавлен 15.02.2010

  • Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.

    методичка [327,4 K], добавлен 01.07.2009

  • Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.

    контрольная работа [459,6 K], добавлен 16.04.2010

  • Методика и основные этапы нахождения параметров: площади криволинейной трапеции и сектора, длины дуги кривой, объема тел, площади поверхности тел вращения, работы переменной силы. Порядок и механизм вычисления интегралов с помощью пакета MathCAD.

    контрольная работа [752,3 K], добавлен 21.11.2010

  • Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.

    презентация [1,2 M], добавлен 15.01.2014

  • Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.

    курсовая работа [1,3 M], добавлен 13.02.2013

  • Математическая модель: определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула прямоугольников, трапеций, парабол. Программа для вычисления значения интеграла методом трапеций в среде пакета Matlab. Цикл if и for.

    контрольная работа [262,8 K], добавлен 05.01.2015

  • Понятие определённого интеграла, расчет площади, объёма тела и длины дуги, статического момента и центра тяжести кривой. Вычисление площади в случае прямоугольной криволинейной области. Применение криволинейного, поверхностного и тройного интегралов.

    курсовая работа [2,1 M], добавлен 19.05.2011

  • Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.

    курсовая работа [349,3 K], добавлен 12.10.2009

  • Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.

    презентация [117,8 K], добавлен 18.09.2013

  • Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.

    контрольная работа [75,6 K], добавлен 23.10.2010

  • Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.

    контрольная работа [194,2 K], добавлен 28.03.2014

  • Вычисление пределов функций, производных функций с построением графика. Вычисление определенных интегралов, площади фигуры, ограниченной графиками функций. Общее решение дифференциального уравнения, его частные решения. Исследование сходимости ряда.

    контрольная работа [356,6 K], добавлен 17.07.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.