Линейная алгебра и аналитическая геометрия

Решение систем линейных уравнений методом Гаусса, Крамера и обратной матрицы. Геометрия на плоскости и в пространстве, каноническое уравнение прямой. Раскрытие неопределенностей и вычисление пределов. Производные и дифференцирования сложной функции.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 22.01.2013
Размер файла 352,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

46

Линейная алгебра и аналитическая геометрия

1. Решение систем линейных уравнений

Имеется три основных способа решения систем линейных уравнений. Первым является метод Гаусса последовательного исключения переменных. Два других способа - метод обратной матрицы и правило Крамера.

1.1 Задача

Решить систему линейных уравнений тремя способами: а) методом Гаусса последовательных исключений неизвестных; б) по формуле с вычислением обратной матрицы ; в) по формулам Крамера.

Решение

а) Начнем с метода Гаусса последовательных исключений неизвестных. Сначала нужно преобразовать систему уравнений так, чтобы переменная осталась только в одном уравнении системы, например, в первом. Затем уравнение, в которое входит , отбрасывают, и рассматривают систему из оставшихся уравнений, в котором число уравнений и число неизвестных уменьшилось. Эту редуцированную систему преобразуют так, чтобы переменная осталась только в одном уравнении. Затем уравнение, в которое входит , отбрасывают, и вновь рассматривают систему из меньшего числа уравнений. Преобразования с последовательным исключением неизвестных , , и т.д. продолжают до тех пор, пока к каждой неизвестной не будет применена процедура исключения. После этого значения , , ,… определяют сначала из последнего уравнения, затем из предпоследнего и т.д., вплоть до первого уравнения.

Итак, возьмем первое уравнение системы и с его помощью исключим переменную из второго и третьего уравнений. Для этого первое уравнение перепишем без изменений, а второе и третье уравнения сложим с подходящими коэффициентами с первым уравнений системы. Сначала умножим первое уравнение системы на 10, второе на , а затем сложим полученные уравнения. Получим

Аналогично, умножим первое уравнение системы на 8, второе на , а затем сложим.

Данное преобразование будем записывать в следующем виде:

Возьмем теперь второе уравнение и с его помощью исключим переменную из третьего уравнения системы. Для этого второе уравнение системы умножим на 63, третье уравнение умножим на , и сложим полученные уравнения.

Мы привели систему уравнений к так называемому верхне-треугольному виду. Теперь методом обратного хода можно определить сначала значение переменной из последнего уравнения системы, затем значение переменной из второго уравнения, и, наконец, значение переменной из первого уравнения.

Ответ: .

б) Решим теперь ту же систему уравнений матричным способом, с вычислением обратной матрицы.

Напомним основные понятия матричной алгебры. Матрицей размера называется таблица, в которой имеется строк и столбцов. Элемент матрицы , стоящий в -й строке, -м столбце, обозначается через . Матрицы и размера и можно перемножить, и получить в результате матрицу , , размера по следующему правилу:

.

Другими словами, элементы й строки матрицы умножается почленно на элементы -го столбца матрицы , затем полученные произведения складываются и записываются в -й строке, -м столбце матрицы .

Рассмотрим квадратные матрицы, у которых число строк и столбцов одно и то же. Единичной матрицей размера называется матрица, у которой на главной диагонали стоят 1, а остальные элементы равны 0,

.

Основное свойство единичной матрицы состоит в том, что для любой матрицы размера произведение равно . Матрица называется обратной для квадратной матрицы , если . Обозначается обратная матрица . Обратная матрица определена однозначно, но существует тогда и только тогда, когда . Как вычислять определитель и как находить обратную матрицу , будет объяснено ниже.

Используя правило умножения матрицы и векторстолбца размера , запишем исходную систему линейных уравнений в виде

где

Поскольку по определению обратной матрицы имеем

,

и так как , решение системы можно записать в виде

.

Чтобы находить , необходимо научиться вычислять определитель матрицы .

Нам понадобятся два понятия: знак элемента матрицы и минор элемента. Для элемента , стоящего в -й строке, -м столбце матрицы , знак равен числу . Удобно использовать следующее правило знакочередования: у элемента первой строки, первого столбца знак равен , а у любых двух соседних по строке или столбцу элементов знаки различны.

Минором элемента называется определитель матрицы, которая получается вычеркиванием й строки и -го столбца исходной матрицы .

Определение определителя матриц начнем с матриц размера . Определитель матрицы размера равен произведению элементов главной диагонали (то есть диагонали, идущей сверху вниз и слева направо) минус произведение элементов сопряженной диагонали,

.

В частности, .

Определитель матрицы размера сводится к вычислению трех определителей матриц размера по следующему правилу: надо выделить произвольную строку (или столбец) матрицы , умножить каждый элемент этой строки (столбца) на знак этого элемента, и умножить на минор элемента, а затем все полученные произведения сложить. Это правило называется разложением определителя по строке (столбцу). Можно показать, что результат не зависит от выбора строки или столбца.

Приведем результат разложения определителя матрицы 3*3 по 1 строке

В частном случае:

Поскольку , обратная матрица существует. Для вычисления используем формулу

,

где - алгебраические дополнения элементов матрицы (заметим, что алгебраические дополнения элементов строк записываются в соответствующие столбцы). Получаем:

, ,

, , ,

, , .

Обратная матрица, следовательно, имеет вид

Остается умножить матрицу на столбец ,

Результаты совпали.

в) Рассмотрим третий способ решения систем линейных уравнений, который является непосредственным следствием матричной формулы правило Крамера.

Обозначим через определитель матрицы . Пусть есть определитель матрицы , в которой вместо первого столбца стоит столбец . Пусть есть определитель матрицы , в которой вместо второго столбца стоит столбец . Наконец, пусть есть определитель матрицы , в которой вместо третьего столбца стоит столбец .

,

, ,

Если , то согласно правилу Крамера решение системы уравнений можно найти по формулам

, , .

Имеем:

Следовательно, по формулам Крамера,

, , .

Ответы вновь совпали.

2. Решение вырожденных систем линейных уравнений

Если определитель матрицы системы линейных уравнений равен нулю (или число уравнений системы меньше числа неизвестных), то либо имеется бесконечно много решений, либо система противоречива, и решений нет вовсе. Разберем на примере, как можно описать все решения вырожденной системы уравнений, используя метод Гаусса последовательного исключения неизвестных.

2.1 Задача

Решить систему уравнений

Решение. С помощью первого уравнения исключим переменную из второго и третьего уравнений системы.

Получаем:

Исключим теперь с помощью второго уравнения системы переменную из третьего уравнения.

В результате третье уравнение системы превращается в тождество 0=0, и остается только два уравнения:

Мы привели систему к верхнетреугольному виду, однако для двух неизвестных (а именно, для х3 и для х4) не хватило “своего” уравнения для преобразования исключения. В этом случае переменные х3, х4 объявляются свободными (то есть их значения могут выбираться произвольным образом), а значения остальных переменных (они называются базисными) могут быть выражены через значения свободных переменных.

Отсюда:

, где произвольные параметры.

3. Геометрия на плоскости

Каноническое уравнение прямой на плоскости имеет вид

,

где произвольная точка на прямой, а - направляющий вектор. Если уравнение прямой записано в виде

,

то - направляющий вектор, а вектор нормали (направленный по перпендикуляру к прямой). Нам потребуется еще формула деления отрезка пополам: если задан отрезок , и координаты точек , известны, то серединой отрезка является точка

.

3.1 Задача

В треугольнике ABC с вершиной A(10,7) известны уравнения высоты BB1: 2xy+37=0 и медианы CC1: 8x+11y162=0. Написать уравнения всех сторон треугольника ABC.

Решение

Проще всего написать уравнение стороны , поскольку мы знаем точку , через которую проходит прямая , и знаем направляющий вектор (вектор нормали к высоте ). Следовательно, уравнение имеет вид

Чтобы написать уравнение прямой , найдем сначала координаты точки . Обозначим эти координаты через . С одной стороны, точка лежит на прямой , и, следовательно,

С другой стороны, поскольку является серединой отрезка , то

.

Но лежит на прямой , поэтому

Решая совместно систему уравнений

получаем

Итак, точка имеет координаты , направляющий вектор прямой равен . Уравнение прямой имеет вид

Прежде чем написать уравнение прямой , найдем координаты точки . Она лежит на пересечении прямых и , поэтому ее координаты являются решением системы уравнений

За направляющий вектор прямой можно взять вектор

,

а уравнение запишется в виде

4. Аналитическая геометрия в пространстве

Нам необходимо знать следующие три операции над векторами в трехмерном пространстве.

1) Скалярное произведение векторов:

где , - длины векторов и , а угол между ними. В координатах: если , , то

2) Векторное произведение векторов: есть вектор,

а) направленный по нормали к плоскости, натянутой на вектора , ;

б) имеющий длину, равную площади параллелограмма , построенного на векторах , ;

в) и, наконец, направление вектора должно быть таким, что вращение от вектора к вектору внутри параллелограмма будет осуществляться против часовой стрелки, если глядеть с конца стрелки вектора .

В координатах:

.

3) Смешанное произведение векторов:

В координатах:

Геометрический смысл смешанного произведения векторов состоит в том, что есть объем параллелепипеда, построенного на векторах

Каноническое уравнение прямой в пространстве имеет вид:

где координаты произвольной точки прямой, а есть произвольный направляющий вектор.

Имеется два типа уравнения плоскости в пространстве

а) .

Здесь вектор нормали к плоскости, а координаты произвольной точки плоскости.

б) ,

где , любые два неколлинеарных вектора, параллельных плоскости, а , попрежнему, произвольная точка плоскости.

4.1 Задача

В пирамиде ABCD с вершинами A(10,7,1), B(7,10,0), C(1,10,7), D(7,1,17) найти:

а) угол между ребрами AB и AD;

б) угол между ребром AD и плоскостью ABC;

в) площадь основания ABC;

г) объем пирамиды;

д) расстояние от вершины D до плоскости ABC.

Написать уравнение высоты, опущенной из вершины D на плоскость ABC, и уравнение плоскости ABC.

Решение

а). Найдем векторы и в координатах. Напомним, что для этого следует из координат конца вектора вычесть координаты начала:

,

.

Чтобы найти угол между векторами , , вычислим скалярное произведение векторов и в координатах, затем найдем длины векторов и , и подставим полученные значения в формулу скалярного произведения. Получаем:

,

,

.

Подставляем в формулу скалярного произведения:

,

Откуда

, .

б) Угол между ребром AD и плоскостью ABC равен р/2-б, где б угол между ребром AD и нормалью к плоскости ABC. Начнем поэтому с вычисления нормали к плоскости ABC. В качестве вектора нормали можно взять векторное произведение векторов и (поскольку ). Вектор в координатах имеет вид

.

Следовательно,

Обозначим для краткости . Теперь, как и в пункте а) вычислим скалярное произведение векторов и , и с его помощью определим угол между векторами и .

,

,

,

.

Следовательно, угол между ребром AD и плоскостью ABC равен .

в) Площадь основания ABC равна половине площади параллелограмма, построенного на векторах и . По второму свойству векторного произведения, длина вектора как раз и равна площади этого параллелограмма. Следовательно,

.

г) Объем пирамиды равен одной шестой от объема параллелепипеда, построенного на векторах , , . Объем параллелепипеда можно вычислить как модуль смешанного произведения . Имеем:

.

Заметим, однако, что нам нет необходимости заново вычислять этот определитель, поскольку он равен скалярному произведению векторов и , а эта величина была найдена выше, в пункте б). Следовательно,

.

д) Расстояние от вершины D до плоскости ABС можно найти, используя формулу объема пирамиды

,

поскольку все величины в ней, кроме высоты (которая и равна расстоянию от точки D до плоскости ABС), уже известны. Получаем:

.

В заключение, напишем уравнение высоты, опущенной из вершины D на плоскость ABC, и уравнение плоскости ABC.

Направляющий вектор высоты равен (21,27, 18). Высота проходит через точку D(7, 1,17). Следовательно, каноническое уравнение высоты имеет вид

.

Чтобы написать уравнение плоскости , воспользуемся уравнением . В качестве вектора вновь можно использовать вектор нормали , а в качестве - точку A(10,7,1). Получаем:

Задача полностью решена.

5. Предел и производная

5.1 Раскрытие неопределенностей и вычисление пределов

Начнем с определения Вейерштрасса предела функции в конечной точке и на бесконечности.

Определение 1. Число называется пределом функции в точке , если для любого найдется такое положительное число , что для любого , удовлетворяющего неравенству , справедлива оценка . В этом случае пишут .

Если соответствующее неравенство в определении предела выполнено только для всех или для всех , то говорят, что существует односторонний предел функции в точке ( или соответственно).

Определение 2. Число называется пределом функции при , если для любого найдется такое число , что при выполнено неравенство .

Если неравенство выполнено только для всех положительных или всех отрицательных значений аргумента , говорят об одностороннем пределе при или при .

Функция называется непрерывной в точке , если . Как правило, любая композиция элементарных функций (типа , , , , , ) является непрерывной в любой точке определения. Поэтому вычисление предела таких функций в произвольной точке сводится к вычислению значения функции в этой точке. Если, однако, функция не определена в точке предела, этот прием не сработает. В таком случае говорят о наличии неопределенности в точке . Есть несколько стандартных типов неопределенностей и приемов вычисления предела (раскрытия неопределенности) в этих случаях.

5.2 Пределы алгебраических функций на бесконечности.

5.2.1 Задача

Вычислить

Решение. Старшая степень в числителе и знаменателе данной дроби равна 1. Поделим числитель и знаменатель одновременно на . Результат деления зависит от знака . Если , то тогда получаем:

При получаем:

Здесь использовано очевидное соотношение при любом , и формула , справедливая при .

5.3 Пределы алгебраических функций в конечных точках

5.3.1 Задача

Вычислить

Решение. Убедимся, что мы имеем дело с неопределенностью вида . Подставляя значение в качестве аргумента функции

,

.

Многочлен имеет корни и , и потому раскладывается на множители

.

Чтобы “разложить” на множители числитель дроби , умножим и поделим выражение на сопряженное к нему выражение .

Используя формулу , получаем

Сокращая числитель и знаменатель на , мы разрешаем особенность функции в предельной точке , и в результате, получаем

5.4 Первый замечательный предел

Можно показать, что справедливо соотношение, называемое первым замечательным пределом:

.

Рассмотрим на примере, как можно использовать данную формулу для разрешения особенностей тригонометрических функций в конечных точках.

5.4.1 Задача

Вычислить

.

Решение. Убедимся, что мы имеем дело с неопределенностью вида 0/0. При получаем:

Прежде всего, сделаем замену переменной , так, чтобы новая переменная стремилась к 0, когда :

Используя формулу преобразования суммы синусов в произведение и формулу для косинуса двойного угла, получаем

.

Отсюда

.

Пусть сначала , тогда

.

Чтобы свести полученное выражение к формуле , поделим и умножим на , а на :

Заменяя пределы дробей и на 1, получаем

При имеем , и предел отличается только знаком:

.

5.5 Второй замечательный предел

Справедлива формула

5.5.1 Задача

Вычислить

.

Решение. Выделим в основании показательной функции выражение вида , где при . Для этого прибавим и вычтем 1 из :

Получаем:

Используя формулу второго замечательного предела, заменим выражение в пределе при на :

Осталось найти предел показателя степени:

5.6 Комбинация первого и второго замечательных пределов

5.6.1 Задача

Вычислить

.

Решение

Убедимся сначала, что мы имеем дело с неопределенностью вида . Предел основания степени равен

Предел показателя степени равен . Неопределенность вида указывает, что для ее раскрытия следует воспользоваться вторым замечательным пределом. Выделим структуру второго замечательного предела в нашей формуле:

Теперь остается найти предел показателя степени. Делая замену переменной , получаем

5.7 Особенность вида

5.7.1 Задача

Вычислить

Решение. Чтобы свести данный предел к формуле первого замечательного предела, проведем следующее преобразование:

.

Мы воспользовались формулой

.

Поскольку

,

получаем

.

Остается сделать замену

,

Откуда

, , .

В результате получаем

Ответ: .

6. Производные

Производной функции в точке называется предел

.

Наряду с обозначением для производной используется еще обозначение .

Производные основных элементарных функций приведены в следующей таблице.

Рассмотрим дифференцирование степенной функции при некоторых n.

Имеется два основных приема дифференцирования функций

1) Формула дифференцирования произведения и частного двух функций

,

.

2) Формула дифференцирования композиции (или сложной функции)

.

6.1 Примеры дифференцирования сложной функции

1)

2)

3)

4)

5)

6)

6.1.1 Задача

Для функции требуется найти производную .

.

.

6.1.2 Задача

Для функции требуется найти производную .

.

6.1.3 Задача

Для функции требуется найти производную .

.

6.1.4 Задача

Для функции требуется найти производную .

.

6.1.5 Задача

Для функции требуется найти производную .

.

Решение. При дифференцировании этой функции удобно воспользоваться приемом, который называется логарифмическим дифференцированием. Прежде чем вычислять производную, найдем логарифм функции :

Теперь продифференцируем правую и левую часть полученной формулы, а затем приравняем соответствующие производные. Имеем:

;

Отсюда,

6.1.6 Задача

Для функции требуется найти производную .

.

Решение. Здесь также удобно воспользоваться приемом логарифмического дифференцирования.

;

откуда следует, что

6.1.7 Задача

Для функции требуется найти производную .

, .

Решение. Функция задана в параметрической форме, поэтому следует воспользоваться формулой для параметрической производной:

Получаем:

,

,

откуда

6.1.7 Задача

Для функции требуется найти производную .

.

Решение. Функция задана неявным уравнением. Чтобы найти производную , продифференцируем тождество . Получаем:

Перегруппируем слагаемые, выделяя члены, содержащие производную :

откуда следует, что

7. Непрерывность и типы разрыва функций

Имеется три типа разрывов функций.

а) Устранимый разрыв, когда существует предел функции в точке , но он не равен значению функции в предельной точке

.

б) Разрыв первого рода, когда в точке существует предел слева и предел справа, однако они не равны между собой

.

в) Все остальные виды разрыва называются разрывами второго рода.

7.1 Задача

Найти точки разрыва функций

,

и определить тип разрыва. Сделать схематический чертеж.

Решение. Функция может иметь разрыв в точках , . В точке в пределе имеет место соотношение , то есть функция становится неограниченной в окрестности . Поскольку при , и при , то функция стремится к при , и к при .

В точке ситуация сложнее. При в пределе получаем , то есть мы имеем дело с неопределенностью. Чтобы найти предел , воспользуемся правилом Лопиталя:

.

Получаем:

Следовательно,

В случае правостороннего предела ситуация проще:

Таким образом, в точке также имеет место разрыв второго рода.

Функция может иметь разрывы только в точках и . В окрестности точки функция имеет разрыв второго рода. При получаем, что , а при получаем, что .

Найдем пределы при и при . Вновь используем правило Лопиталя. Пусть сначала .

При вычисления аналогичны:

Следовательно, у функции в точке имеется устранимый разрыв.

8. Общая схема исследования функций

уравнение геометрия производная предел дифференцирование

8.1 Задача

Исследовать функцию

с помощью производных первого и второго порядка и построить её график.

Решение. Исследование функции производится по следующей схеме.

1. Общие особенности функции: область определения, непрерывность и точки разрыва, вертикальные асимптоты, четность - нечетность, периодичность.

В нашем случае область определения функции

;

прямая - вертикальная асимптота, функция общего вида.

2. Нули функции и интервалы знакопостоянства.

Применим метод интервалов для исследования знаков функции.

+ +

7 10 20

3. Возрастание - убывание функции, точки экстремума. Этот пункт связан с исследованием знаков первой производной функции. Имеем:

Корни квадратного многочлена равны

Знаки определим, используя метод интервалов.

+ +

8 6 20 31 4

max min

Точки и являются точками локального максимума и минимума соответственно.

4. Выпуклость - вогнутость функции, точки перегиба. Данный пункт связан с исследованием второй производной функции. Если , то функция выпукла вверх (как функция ), а если , то функция выпукла вниз (как функция ).

+

20

5. Наклонные асимптоты функции.

Наклонная асимптота функции (если она существует) есть такая прямая на плоскости , к которой “прижимается” график функции при , то есть . Коэффициенты и определяются из соотношений

, .

В нашем случае

Следовательно, прямая является наклонной асимптотой функции.

Литература

1. Щипачев В.С. Высшая математика. Учебник для вузов. М., Высшая школа, 2001.

2. Кремер Н.Ш. Высшая математика для экономистов. Учебник. 2 издание. Юнити Дана, 2002.

3. Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. М., Наука, 1984.

4. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. М., Наука, 1988.

5. Бугров Я.С., Никольский С.М. Дифференциальные уравнения. Кратные интегралы. Ряды. ТФКП. М., Наука, 1985.

6. Клетеник Д.В. Сборник задач по аналитической геометрии. М., Наука, 1984.

Размещено на Allbest.ru

...

Подобные документы

  • Вычисление и построение матрицы алгебраических дополнений. Решение системы линейных уравнений по формулам Крамера, с помощью обратной матрицы и методом Гаусса. Определение главной и проверка обратной матрицы. Аналитическая геометрия на плоскости.

    контрольная работа [126,9 K], добавлен 20.04.2016

  • Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.

    контрольная работа [138,7 K], добавлен 05.07.2015

  • Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.

    контрольная работа [1,0 M], добавлен 09.10.2011

  • Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.

    шпаргалка [1,1 M], добавлен 12.01.2009

  • Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.

    контрольная работа [567,1 K], добавлен 21.05.2013

  • Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.

    контрольная работа [63,2 K], добавлен 24.10.2010

  • Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.

    контрольная работа [797,4 K], добавлен 18.11.2013

  • Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.

    контрольная работа [95,0 K], добавлен 23.02.2012

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

  • Вектор в декартовой системе координат как упорядоченная пара точек (начало вектора и его конец). Линейные операции с векторами. Базис на плоскости и в пространстве. Свойства скалярного произведения. Кривые второго порядка. Каноническое уравнение параболы.

    учебное пособие [312,2 K], добавлен 09.03.2009

  • Изучение формул Крамера и Гаусса для решения систем уравнений. Использование метода обратной матрицы. Составление уравнения медианы и высоты треугольника. Нахождение пределов выражений и производных заданных функций. Определение экстремумов функции.

    контрольная работа [59,1 K], добавлен 15.01.2014

  • Линейные операции над матрицами. Умножение и вычисление произведения матриц. Приведение матрицы к ступенчатому виду и вычисление ранга матрицы. Вычисление обратной матрицы и определителя матрицы, а также решение систем линейных уравнений методом Гаусса.

    учебное пособие [658,4 K], добавлен 26.01.2009

  • Решение системы уравнений по методу Крамера, Гаусса и с помощью обратной матрицы. Общее число возможных элементарных исходов для заданных испытаний. Расчет математического ожидания, дисперсии и среднего квадратического отклонения, график функции.

    контрольная работа [210,4 K], добавлен 23.04.2013

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.

    учебное пособие [1,5 M], добавлен 06.11.2011

  • Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.

    контрольная работа [97,3 K], добавлен 24.05.2009

  • Определение разности и произведения матриц. Решение системы линейных уравнений методом Крамера. Уравнение прямой проходящей через точки A (xa, ya) и C (xc, yc). Порядок определения типа кривой второго порядка и ее основных геометрических характеристик.

    контрольная работа [272,0 K], добавлен 11.12.2012

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике [1,1 M], добавлен 15.11.2014

  • Нахождение проекции точки на прямую, проходящую через заданные точки. Изучение формул Крамера для решения систем линейных уравнений. Определение точки пересечения перпендикуляра и исходной прямой. Исследование и решение матричной системы методом Гаусса.

    контрольная работа [98,6 K], добавлен 19.04.2015

  • Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.

    реферат [66,4 K], добавлен 14.08.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.