Элементы комбинаторики

Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 22.01.2013
Размер файла 35,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

на тему: «Комбинаторика»

Содержание

1. Из истории комбинаторики

2. Правило суммы

3. Правило произведения

4. Пересекающиеся множества

5. Круги Эйлера

6. Размещения без повторений

7. Перестановки без повторений

8. Сочетания без повторений

9. Размещения и сочетания с повторениями

Список используемой литературы

1. Из истории комбинаторики

комбинаторика сумма произведение эйлер

Комбинаторика занимается различного вида соединениями, которые можно образовать из элементов конечного множества. Некоторые элементы комбинаторики были известны в Индии еще во II в. до н. э. Нидийцы умели вычислять числа, которые сейчас называют "сочетания". В XII в. Бхаскара вычислял некоторые виды сочетаний и перестановок. Предполагают, что индийские ученые изучали соединения в связи с применением их в поэтике, науке о структуре стиха и поэтических произведениях. Например, в связи с подсчетом возможных сочетаний ударных (долгих) и безударных (кратких) слогов стопы из n слогов. Как научная дисциплина, комбинаторика сформировалась в XVII в.

В книге "Теория и практика арифметики" (1656 г.) французский автор А. Также посвящает сочетаниям и перестановкам целую главу. Б. Паскаль в "Трактате об арифметическом треугольнике" и в "Трактате о числовых порядках" (1665 г.) изложил учение о биномиальных коэффициентах. П. Ферма знал о связях математических квадратов и фигурных чисел с теорией соединений. Термин "комбинаторика" стал употребляться после опубликования Лейбницем в 1665 г. работы "Рассуждение о комбинаторном искусстве", в которой впервые дано научное обоснование теории сочетаний и перестановок. Изучением размещений впервые занимался Я. Бернулли во второй части своей книги "Ars conjectandi" (искусство предугадывания) в 1713 г. Современная символика сочетаний была предложена разными авторами учебных руководств только в XIX в.

Все разнообразие комбинаторных формул может быть выведено из двух основных утверждений, касающихся конечных множеств - правило суммы и правило произведения.

2. Правило суммы

Если конечные множества не пересекаются, то число элементов X U Y {или} равно сумме числа элементов множества X и числа элементов множества Y.

То есть, если на первой полке стоит X книг, а на второй Y, то выбрать книгу из первой или второй полки, можно X+Y способами.

Примеры задач:

Ученик должен выполнить практическую работу по математике. Ему предложили на выбор 17 тем по алгебре и 13 тем по геометрии. Сколькими способами он может выбрать одну тему для практической работы?

Решение:

X=17, Y=13

По правилу суммы X U Y=17+13=30 тем.

Имеется 5 билетов денежно-вещевой лотереи, 6 билетов спортлото и 10 билетов автомотолотереи. Сколькими способами можно выбрать один билет из спортлото или автомотолотереи?

Решение:

Так как денежно-вещевая лотерея в выборе не участвует, то всего 6+10=16 вариантов.

3. Правило произведения

Если элемент X можно выбрать k способами, а элемент Y-m способами то пару (X,Y) можно выбрать k*m способами.

То есть, если на первой полке стоит 5 книг, а на второй 10, то выбрать одну книгу с первой полки и одну со второй можно 5*10=50 способами.

Примеры задач:

Переплетчик должен переплести 12 различных книг в красный, зеленый и коричневые переплеты. Сколькими способами он может это сделать?

Решение:

Имеется 12 книг и 3 цвета, значит по правилу произведения возможно 12*3=36 вариантов переплета.

Сколько существует пятизначных чисел, которые одинаково читаются слева направо и справа налево?

Решение:

В таких числах последняя цифра будет такая же, как и первая, а предпоследняя - как и вторая. Третья цифра будет любой. Это можно представить в виде XYZYX, где Y и Z -любые цифры, а X - не ноль. Значит по правилу произведения количество цифр одинаково читающихся как слева направо, так и справа налево равно 9*10*10=900 вариантов.

4. Пересекающиеся множества

Но бывает, что множества X и Y пересекаются, тогда пользуются формулой, где X и Y - множества, а - область пересечения. Если множеств больше, например 5 языков, то также складывается количество человек знающих английский, немецкий, французский и т.д., отнимается количество человек, знающих 2 языка одновременно, прибавляется по 3, отнимаются по 4 и т.д.

Примеры задач:

20 человек знают английский и 10 - немецкий, из них 5 знают и английский, и немецкий. Сколько Человек всего?

Ответ: 10+20-5=25 человек.

5. Круги Эйлера

Также часто для наглядного решения задачи применяются круги Эйлера. Например: Из 100 туристов, отправляющихся в заграничное путешествие, немецким языком владеют 30 человек, английским - 28, французским - 42. Английским и немецким одновременно владеют 8 человек, английским и французским - 10, немецким и французским - 5, всеми тремя языками - 3. Сколько туристов не владеют ни одним языком?

Решение:

Выразим условие этой задачи графически. Обозначим кругом тех, кто знает английский, другим кругом - тех, кто знает французский, и третьим кругом - тех, кто знают немецкий.

Всеми тремя языками владеют три туриста, значит, в общей части кругов вписываем число 3. Английским и французским языком владеют 10 человек, а 3 из них владеют еще и немецким. Следовательно, только английским и французским владеют 10-3=7 человек.

Аналогично получаем, что только английским и немецким владеют 8-3=5 человек, а немецким и французским 5-3=2 туриста. Вносим эти данные в соответствующие части.

Определим теперь, сколько человек владеют только одним из перечисленных языков. Немецкий знают 30 человек, но 5+3+2=10 из них владеют и другими языками, следовательно, только немецкий знают 20 человек. Аналогично получаем, что одним английским владеют 13 человек, а одним французским - 30 человек.

По условию задачи всего 100 туристов. 20+13+30+5+7+2+3=80 туристов знают хотя бы один язык, следовательно, 20 человек не владеют ни одним из данных языков.

6. Размещения без повторений

Сколько можно составить телефонных номеров из 6 цифр каждый, так чтобы все цифры были различны?

Это пример задачи на размещение без повторений. Размещаются здесь 10 цифр по 6. А варианты, при которых одинаковые цифры стоят в разном порядке считаются разными.

Если X-множество, состоящие из n элементов, m?n, то размещением без повторений из n элементов множества X по m называется упорядоченное множество X, содержащее m элементов называется упорядоченное множество X, содержащее m элементов.

Количество всех размещений из n элементов по m обозначают

n! - n-факториал (factorial анг. сомножитель) произведение чисел натурального ряда от 1 до какого либо числа n

n!=1*2*3*...*n 0!=1

Значит, ответ на вышепоставленную задачу будет

Задача

Сколькими способами 4 юноши могут пригласить четырех из шести девушек на танец?

Решение:

два юноши не могут одновременно пригласить одну и ту же девушку. И варианты, при которых одни и те же девушки танцуют с разными юношами и считаются, разными, поэтому:

Возможно 360 вариантов.

7. Перестановки без повторений

В случае n=m (см. размещения без повторений) из n элементов по m называется перестановкой множества x.

Количество всех перестановок из n элементов обозначают Pn.

Pn=n!

Действительно при n=m:

Примеры задач

Сколько различных шестизначных чисел можно составить из цифр 0, 1, 2, 3, 4,5, если цифры в числе не повторяются?

Решение:

Найдем количество всех перестановок из этих цифр: P6=6!=720

0 не может стоять впереди числа, поэтому от этого числа необходимо отнять количество перестановок, при котором 0 стоит впереди. А это P5=5!=120.

P6-P5=720-120=600

Квартет

Проказница Мартышка

Осел,

Козел,

Да косолапый Мишка

Затеяли играть квартет

Стой, братцы стой! -

Кричит Мартышка, - погодите!

Как музыке идти?

Ведь вы не так сидите…

И так, и этак пересаживались - опять музыка на лад не идет.

Тут пуще прежнего пошли у них раздоры

И споры,

Кому и как сидеть…

Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько?

Здесь идет перестановка из четырех, значит, возможно P4=4!=24 варианта перестановок.

8. Сочетания без повторений

Сочетанием без повторений называется такое размещение, при котором порядок следования элементов не имеет значения.

Всякое подмножество X состоящее из m элементов, называется сочетанием из n элементов по m.

Таким образом, количество вариантов при сочетании будет меньше количества размещений.

Число сочетаний из n элементов по m обозначается .

.

Примеры задач

Сколько трехкнопочных комбинаций существует на кодовом замке (все три кнопки нажимаются одновременно), если на нем всего 10 цифр.

Решение:

Так как кнопки нажимаются одновременно, то выбор этих трех кнопок - сочетание. Отсюда возможно вариантов.

У одного человека 7 книг по математике, а у второго - 9. Сколькими способами они могут обменять друг у друга две книги на две книги.

Решение:

Так как надо порядок следования книг не имеет значения, то выбор 2ух книг - сочетание. Первый человек может выбрать 2 книги способами. Второй человек может выбрать 2 книги .

Значит всего по правилу произведения возможно 21*36=756 вариантов.

При игре в домино 4 игрока делят поровну 28 костей. Сколькими способами они могут это сделать?

Первый игрок делает выбор из 28 костей. Второй из 28-7=21 костей, третий 14, а четвертый игрок забирает оставшиеся кости. Следовательно, возможно .

9. Размещения и сочетания с повторениями

Часто в задачах по комбинаторике встречаются множества, в которых какие-либо компоненты повторяются.

Например: в задачах на числа - цифры.

Для таких задач при размещениях используется формула , а для сочетаний

.

Примеры задач:

Сколько трехзначных чисел можно составить из цифр 1, 2, 3, 4, 5?

Решение. Так как порядок цифр в числе существенен, цифры могут повторяться, то это будут размещения с повторениями из пяти элементов по три, а их число равно .

В кондитерском магазине продавались 4 сорта пироженных: эклеры, песочные, наполеоны и слоеные. Сколькими способами можно купить 7 пироженных.

Решение: Покупка не зависит от того, в каком порядке укладывают купленные пироженные в коробку.

Покупки будут различными, если они отличаются количеством купленных пирожных хотя бы одного сорта. Следовательно, количество различных покупок равно числу сочетаний четырех видов пироженных по семь -

.

Обезьяну посадили за пишущую машинку с 45 клавишами, определить число попыток, необходимых для того, чтобы она наверняка напечатала первую строку романа Л.Н. Толстого «Анна Каренина», если строка содержит 52 знака и повторений не будет?

Решение: порядок букв имеет значение. Буквы могут повторяться. Значит, всего есть вариантов.

Перестановки с повторениями

,

где n-количество всех элементов, n1,n2,…,nr-количество одинаковых элементов.

Примеры задач

Сколькими способами можно переставить буквы слова «ананас»?

Решение: всего букв 6. Из них одинаковы n1«а»=3, n2«н»=2, n3«с»=1. Следовательно, число различных перестановок равно .

Список используемой литературы

1. Савина Л.Н., Попырев А.В. «Комбинаторика» издательство Елабужский государственный педагогический институт 1999г

2. Халамайзер А. Я. «Математика? - Забавно!» издание автора 1989 г.

3. Интернет: http:\www.mathclub.zala.ru/0921.html

Размещено на Allbest.ru

...

Подобные документы

  • Решение задач по факультативному курсу комбинаторики, подготовка сообщений и докладов. Комбинаторика как ветвь математики, изучающая комбинации и перестановки предметов. Основные правила суммы и правило произведения. Поиск числа сочетаний с повторениями.

    дипломная работа [508,5 K], добавлен 26.01.2011

  • Сущность понятия "комбинаторика". Историческая справка из истории развития науки. Правило суммы и произведения, размещения и перестановки. Общий вид формулы для вычисления числа сочетаний с повторениями. Пример решения задач по теории вероятностей.

    контрольная работа [293,2 K], добавлен 30.01.2014

  • Рассмотрение различных примеров комбинаторных задач в математике. Описание способов перебора возможных вариантов. Использование комбинаторного правила умножения. Составление дерева вариантов. Перестановки, сочетания, размещения как простейшие комбинации.

    презентация [291,3 K], добавлен 17.10.2015

  • Возникновение комбинаторики как раздела математики. Исследование на практических примерах особенностей чисел размещений с повторениями и без них. Анализ задач, решение которых опирается на правила комбинаторики и относящиеся к ней вычислительные формулы.

    курсовая работа [175,3 K], добавлен 05.01.2018

  • Содержание правил суммы и произведения; их применение с целью решения комбинаторных задач. Виды комбинаторных соединений. Обозначение и свойства факториала. Формулы расчета всех возможных перестановок и размещений. Понятие и разновидности сочетаний.

    реферат [22,1 K], добавлен 08.09.2014

  • Знакомство с основными понятиями и формулами комбинаторики как науки. Методы решения комбинаторных задач. Размещение и сочетание элементов, правила их перестановки. Характеристики теории вероятности, ее классическое определение, свойства и теоремы.

    презентация [1,3 M], добавлен 21.01.2014

  • Сущность комбинаторики как области математики, исследующей количество и разновидности комбинаций заданных объектов в определенных условиях. Особенности и понятие комбинаторной задачи. Примеры составления комбинаторных задач и способы их решения.

    презентация [15,3 M], добавлен 19.02.2012

  • Основные принципы и формулы классической комбинаторики. Использование методов комбинаторики в теории вероятностей. Формулы числа перестановок, сочетаний, размещений. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Решение комбинаторных задач.

    учебное пособие [659,6 K], добавлен 07.05.2012

  • Классическая задача комбинаторики, ее решение "правилом произведения". Реализация реальных связей между объектами в математических терминах на абстрактных множествах. Решение задач на доказательство тождества, особенности решения системы уравнений.

    контрольная работа [58,6 K], добавлен 30.09.2010

  • Определение понятий множества и факториала. Условия равности двух кортежей. Содержание основных разделов комбинаторики - перечислительного, экстремального и вероятностного. Сущность теории Рамсея. Сведения о размещении, перестановке и сочетании элементов.

    реферат [509,5 K], добавлен 21.02.2012

  • Операция объединения множеств. Перестановки без повторений, правило произведения. Вероятности извлечения предмета из урны. Вероятность наивероятнейшего числа попаданий в десятку. Математическое ожидание, дисперсия и среднее квадратичное отклонение.

    контрольная работа [165,5 K], добавлен 23.09.2011

  • Применение леммы Бернсайда к решению комбинаторных задач. Орбиты группы перестановок. Длина орбиты группы перестановок. Лемма Бернсайда. Комбинаторные задачи. "Метод просеивания". Формула включения и исключения.

    дипломная работа [163,6 K], добавлен 14.06.2007

  • Изучение наиболее типичных алгоритмов решения задач, имеющих вероятностный характер. Ознакомление с элементами комбинаторики, теорией урн, формулой Байеса, способами нахождения дискретных, непрерывных случайных величин. Рассмотрение основ алгебры событий.

    методичка [543,1 K], добавлен 06.05.2010

  • Методы решения комбинаторных задач детьми на уроках математики. Определение уровня логического и алгоритмического мышления учащихся. Ознакомление школьников с методом организованного перебора, с помощью графа, таблицы и дерева возможных вариантов.

    курсовая работа [1,3 M], добавлен 24.11.2014

  • Аналитическая геометрия. Декартова система координат, линии на плоскости и кривые второго порядка. Поверхности в трехмерном пространстве. Система n линейных уравнений с n неизвестными. Элементы математического анализа. Основные правила комбинаторики.

    отчет по практике [1,1 M], добавлен 15.11.2014

  • Значение и применение комбинаторики. Решение и геометрическое представление комбинаторной задачи "очередь в кассу". Применение метода подсчёта ломаных, определение свойства числа сочетаний. Блуждания по бесконечной плоскости в четырёх направлениях.

    курсовая работа [262,5 K], добавлен 05.12.2012

  • Методы решения задач с экономическим содержанием повышенного уровня сложности. Выявление структуры экономических задач на проценты. Вывод формул для решения задач на равные размеры выплат. Решение задач на сокращение остатка на одну долю от целого.

    курсовая работа [488,3 K], добавлен 22.05.2022

  • Изобретение Леонардом Эйлером геометрической схемы, с помощью которой можно изобразить отношения между подмножествами. Изучение частного случая кругов Эйлера — диаграммы Эйлера—Венна, изображающей все 2^n комбинаций n свойств (конечную булеву алгебру).

    презентация [595,0 K], добавлен 16.02.2015

  • Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.

    курсовая работа [111,1 K], добавлен 13.11.2011

  • Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.

    практическая работа [1,5 M], добавлен 15.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.