Леонардо Пизанский (Фибоначчи и его вход в историю математики)

Математические достижения Леонардо Фибоначчи, их влияние на экономику, финансы и некоторые области архитектуры. Краткие биографические данные известного математика. Основные идеи "Книги абака", Числовая последовательность Фибоначчи и золотое сечение.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 03.02.2013
Размер файла 34,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственное общеобразовательное учреждение

среднее профессиональное образование

Армавирский юридический техникум

Краснодарский край

Исследовательская работа

По дисциплине: математика

Тема: «Леонардо Пизанский (Фибоначчи и его вход в историю математики)»

Выполнил

Студент 29 группы

Отделения ЗИО

Кобзев Роман

Научный руководитель

Макуха И.А.

Армавир 2012г.

Содержание

Введение

1. Биография

2. Научная Деятельность

3. Последовательность Фибоначчи, числа Фибоначчи

4. Обобщенное золотое сечение

Заключение

Литература

Введение

Эта тема вызвала у меня интерес, так как она связана с моей будущей профессией. Ведь математические достижения Леонардо Фибоначчи применяются в экономике, финансах и некоторых областях архитектуры.

Цель работы: Определение значимости трудов Фибоначчи в развитии математики.

Задачи:

Изучить Биографию Леонардо

Научную деятельность

Изучить историю открытия ряда чисел Фибоначчи.

Применение трудов Фибоначчи в различных областях науки (экономике, математике, ботанике, зоологии, философии, искусстве, медицине).

Золотое сечение

Гипотеза: Математические открытия Фибоначчи имели большое значение для развития математики и получили широкое применение в различных областях науки.

Актуальность исследования:

Мы считаем необходимым проведение этого исследования, так как

Мы интересуемся историей математики и хотели бы быть более просвещёнными в этой области.

Это исследование помогло бы привлечь внимание окружающих к истории математики.

1. Биография

Леонардо Пизанский (лат. Leonardo Pisano, около 1170 года, Пиза -- около 1250 года, там же) -- первый крупный математик средневековой Европы. Наиболее известен под прозвищем Фибоначчи (Fibonacci); о происхождении этого псевдонима имеются разные версии. По одной из них, его отец Гильермо имел прозвище Боначчи («Благонамеренный»), а сам Леонардо прозывался filius Bonacci («сын Благонамеренного»). По другой, Fibonacci происходит от фразы Figlio Buono Nato Ci, что в переводе с итальянского означает «хороший сын родился».

Леонардо Фибоначчи родился в городе Пиза, в семье купца и знатного вельможи, что дало ему свободу заниматься вещами интересными, хоть и не приносящими особых денег.

Леонардо Фибоначчи часто бывал в странах мусульманской веры, с отцом, сопровождая его в торговых экспедициях. В тех краях Фибоначчи впервые познакомился с книгами арабских математиков.

Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.

В век Фибоначчи возрoждение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих II, император(с 1220 года) Священной Римской империи. Воспитанный в традициях южной Италии Фридрих II был внутренне глубоко далек от европейского христианского рыцарства.

Cтоль любимые его дедом рыцарские турниры Фридрих II совсем не признавал. Вместо этого он культивировал гораздно менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.

На таких турнирах и заблистал талант Леонардо Фибоначчи.

Фибоначчи создал несколько книг посвященных математическому искусству. Так как его отец был купцом, Леонардо много путешествовал.На востоке он познакомился с Арабской системой цифр,и в последствии он проанализировал и описал её европейскому обществу. В 1202 и 1208 выходит знаменитая книга «Liber Abaci» (Книга Счета)

Заканчивается биография Фибоначчи предположительно в 1228 году, когда он участвовал в крестовом походе под управлением императора Фридриха Гогенштауфена.

Как указано в документах 1240 года, восхищенные граждане Пизы говорили, что он был "рассудительный и эрудированный человек", а не так давно Жозеф Гиз (Joseph Gies), главный редактор Британской Энциклопедии заявил, что будущие ученые во все времена "будут отдавать свой долг Леонардо Пизанскому, как одному из величайших интеллектуальных первопроходцев мира". Его работы после долгих лет только сейчас переводятся с латинского языка на английский. Для тех, кто интересуется - книга, названная Ленардо Пизанский и новая математика Средних веков Жозефа и Франца Гиз (Joseph and Frances Gies) является прекрасным трактатом по веку Фибоначчи и его работам.

Хотя он и был величайшим математиком средних веков, единственные памятники Фибоначчи - это статуя напротив Пизанской башни через реку Арно и две улицы, которые носят его имя, одна - в Пизе, а другая - во Флоренции. Кажется странным, что так мало посетителей к 179-ти футовой Падающей башне когда-либо слышали о Фибоначчи или видели его статую. Фибоначчи был современником Бонанна (Bonanna), архитектора Пизанской башни, строительство которой тот начал в 1174 году. Оба они сделали вклад в мировую историю, но один, чей вклад намного превосходит другого, почти неизвестен.

2. Научная деятельность

Значительную часть усвоенных им знаний он изложил в своей выдающейся «Книге абака» (Liber abaci, 1202 год; до наших дней сохранилась только дополненная рукопись 1228 года). Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. Первые пять глав книги посвящены арифметике целых чисел на основе десятичной нумерации. В VI и VII главе Леонардо излагает действия над обыкновенными дробями. В VIII--X главах изложены приёмы решения задач коммерческой арифметики, основанные на пропорциях. В XI главе рассмотрены задачи на смешение. В XII главе приводятся задачи на суммирование рядов -- арифметической и геометрической прогрессий, ряда квадратов и, впервые в истории математики, возвратного ряда, приводящего к последовательности так называемых чисел Фибоначчи. В XIII главе излагается правило двух ложных положений и ряд других задач, приводимых к линейным уравнениям. В XIV главе Леонардо на числовых примерах разъясняет способы приближённого извлечения квадратного и кубического корней. Наконец, в XV главе собран ряд задач на применение теоремы Пифагора и большое число примеров на квадратные уравнения. Леонардо впервые в Европе использовал отрицательные числа, которые рассматривал как долг.

«Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII--XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения. По первой книге многие поколения европейских математиков изучали индийскую позиционную систему счисления

Другая книга Фибоначчии, «Практика геометрии» (Practica geometriae, 1220 год , содержит разнообразные теоремы, относящиеся к измерительным методам. Наряду с классическими результатами Фибоначчи приводит свои собственные -- например, первое доказательство того, что три медианы треугольника пересекаются в одной точке (Архимеду этот факт был известен, но если его доказательство и существовало, до нас оно не дошло).

В трактате «Цветок» (Flos, 1225 год) Фибоначчи исследовал кубическое уравнение , предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книгеНачал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40, не указывая, однако, способа своего решения.

«Книга квадратов» (Liber quadratorum, 1225 год), содержит ряд задач на решение неопределённых квадратных уравнений. В одной из задач, также предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа.

С представлением "средневековье" в нашем сознании ассоциируется разгул инквизиции, костры, на каковых сжигали ведьм и еретиков, крестовые походы за "телом господним". Наука в те поры явно не была приоритетом. В этих условиях появление книги по математике "Liber abaci" ("Книга об абаке"), написанной в 1202 году итальянским математиком Леонардо Пизано Фибоначчи, стало важным событием в научной жизни общества.

Кто же такой Фибоначчи? И почему его математические труды так важны для западно-европейской математики? Чтобы ответить на эти вопросы, нам необходимо воссоздать историческую эпоху, в которую жил и творил Фибоначчи.

Надо заметить, что пора с 11-го по 12-й века была временем блестящего расцвета арабской культуры, но вкупе с тем и началом ее упадка. В конце 11-го столетия, то есть к началу Крестовых походов, арабы были, бесспорно, наиболее просвещенным народом в мире, превосходя в этом отношении своих христианских противников. Еще до Крестовых походов арабское воздействие проникло на Запад. Тем не менее наибольшее проникновение арабской культуры на Запад началось после Крестовых походов, которые обессилили арабский народ, но с другой стороны усилили арабское воздействие на христианский Запад. Не только хлопок и сахар Палестины, перец и черное дерево Египта, самоцветные камни и пряности Индии ищет и ценит христианский Запад в арабском мире. Он начинает разбираться в том культурном наследстве "великого античного Востока", хранителем которого стала арабская культура. Открывшийся мир не мог не ослеплять своими красками и научными достижениями - и все обширнее становится в западном обществе спрос на арабские географические карты, учебники алгебры и астрономии, арабское зодчество.

Одной из ниболее интересных личностей эпохи крестовых походов, вестницы эпохи Возрождения, был император Фридрих Гогенштауфен, ученик сицилийских арабов и обожатель арабской культуры. При его дворе в Пизе жил и работал величайший из европейских математиков средних веков Леонардо Пизано (по прозвищу Фибоначчи, что значит "сын Боначчи").

О бытие Фибоначчи известно немного. Неизвестна даже точная дата его рождения. Предполагается, что Фибоначчи родился предположительно в 1170 г. Его отец был купцом и государственным вельможей, представителем нового класса бизнесменов, порожденных "Коммерческой Революцией". Тогда Пиза была одним из крупнейших коммерческих средоточий, активно сотрудничавших с исламским Востоком, и отец Фибоначчи энергично торговал в одной из факторий, основанных итальянцами на северном побережье Африки. Благодаря этому ему удалось "устроить" своего сына, будущего великого математика Фибоначчи, в одну из арабских школ, где он и смог получить превосходное для того времени математическое образование. Леонардо изучал труды математиков стран ислама (таких как ал-Хорезми и Абу Камил); по арабским переводам он ознакомился также с достижениями античных и индийских математиков.

Один из авторитетных историков математики Морис Кантор назвал Фибоначчи "блестящим метеором, промелькнувшим на темном фоне западно-европейского средневековья". Он предполагает, что, возможно, Фибоначчи пал во время одного из Крестовых походов в 1228 г., сопровождая императора Фридриха Гогенштауфена.

Фибоначчи написал несколько математических трудов: "Liber abaci", "Liber quadratorum", "Practica geometriae". Наиболее известным из них является "Liber abaci". Этот труд вышел при жизни Фибоначчи в двух изданиях в 1202 г. и 1228 г. Эта книга содержит почти все арифметические и алгебраические сведения того времени, изложенные с исключительной полнотой и глубиной. Первые пять глав книги посвящены арифметике целых чисел на основе десятичной нумерации. В VI и VII главе Леонардо излагает действия над обыкновенными дробями. В VIII-X книгах изложены приёмы решения задач коммерческой арифметики, основанные на пропорциях. В XI главе рассмотрены задачи на смешение. В XII главе приводятся задачи на суммирование рядов -- арифметической и геометрической прогрессий, ряда квадратов и, впервые в истории математики, возвратного ряда. В XIII главе излагается правило двух ложных положений и ряд других задач, приводимых к линейным уравнениям. В XIV главе Леонардо на числовых примерах разъясняет способы приближённого извлечения квадратного и кубического корней. Наконец, в XV главе собран ряд задач на применение теоремы Пифагора и большое число примеров на квадратные уравнения. «Книга абака» резко возвышается над европейской арифметико-алгебраической литературой XII-XIV вв. разнообразием и силой методов, богатством задач, доказательностью изложения. Последующие математики широко черпали из неё как задачи, так и приёмы их решения.

Отметим, что Фибоначчи задумывал свое сочинение как пособие для купцов, тем не менее по своему значению оно ушло далеко за пределы торговой практики и по сути зарекомендовало себя как своеобразную математическую энциклопедию поры средневековья. С этой точки зрения особый интерес представляет 12-й раздел, где Фибоначчи сформулировал и решил ряд математических задач, представляющих интерес для общих перспектив развития математики. Этот раздел занимает почти треть сочинения и, по всей вероятности, ему Фибоначчи придавал наибольшее значение и в нем проявил наибольшую оригинальность.

Наиболее известной из сформулированных Фибоначчи задач является "задача о размножении кроликов", которая привела к открытию числовой последовательности 1, 1, 2, 3, 5, 8, 13, ..., именованой впоследствии "рядом Фибоначчи".

Вторая задача, рассмотренная Фибоначчи, называется "задачей о поиске наилучшей системы гирь для взвешивания на рычажных весах" или просто "задачей о гирях". В русской историко-математической литературе "задача о гирях" известна под названием "задачи Баше-Менделеева", названной так в честь французского математика 17 в. Баше де Мезириака, который разместил эту задачу в своем "Сборнике приятных и занимательных задач" (1612 г.) и блестящего русского химика Дмитрия Ивановича Менделеева, который интересовался этой задачей будучи директором Главной Палаты мер и весов России.

Сущность "задачи Баше-Менделеева" состоит в следующем: при какой системе гирь, имея их по одной, можно взвесить всевозможные грузы Q от 0 до максимального груза Qmax, чтобы значение максимального груза Qmax было бы наибольшим среди всех возможных вариаций? Известно два варианта решения этой задачи: (1) когда гири позволено класть на свободную чашу весов; (2) когда гири позволяется класть на обе чаши весов. В первом случае "оптимальная система гирь" сводится к двоичной системе гирь: 1, 2, 4, 8, 16, ..., а появляющийся при этом "оптимальный" алгоритм или способ измерения рождает двоичную систему счисления, лежащую в основе современных компьютеров. Во втором случае наилучшей является троичная система гирь: 1, 3, 9, 27, 81, ..., а возникающий при этом способ измерения рождает троичную симметричную систему счисления, которая была применена в троичном компьютере Сетунь, построенном в 50-е годы в МГУ.

Методологическое значение "задачи о гирях" заключается прежде всего в том, что она является одной из первых оптимизационных задач в истории математики. Во-вторых, она касается "проблемы измерения", то есть одной из основополагающих проблем математики. Так же, она связана с проблемой систем счисления, одной из основополагающих проблем современной информатики. Именно развитие этой задачи с указанных точек зрения привело в последние годы к разработке так называемой "алгоритмической теории измерения".

Другая задача интересна в исторической связи и носит имя "задачи о семи старухах". Старухи направляются в Рим, каждая имеет 7 мулов, каждый мул тащи 7 мешков, в каждом мешке находится 7 хлебов, у каждого хлеба лежит 7 ножей, каждый нож нарежет 7 кусков хлеба. Чему равно общее число всего перечисленного? В историческом отношении эта задача интересна тем, что она тождественна с задачей, которая встречалась в папирусе Ринда (Египет), то есть через три тысячи лет после египетских школьников задачу предлагалось разрешить итальянским школьникам.

«Практика геометрии» (Practica geometriae, 1220) содержит разнообразные теоремы, относящиеся к измерительным методам. Наряду с классическими результатами Фибоначчи приводит свои собственные -- например, первое доказательство того, что три медианы треугольника пересекаются в одной точке (Архимеду этот факт был известен, но если его доказательство и существовало, до нас оно не дошло).

В трактате «Цветок» (Flos, 1225) Фибоначчи исследовал кубическое уравнение x3 + 2x2 + 10x = 20, предложенное ему Иоанном Палермским на математическом состязании при дворе императора Фридриха II. Сам Иоанн Палермский почти наверняка заимствовал это уравнение из трактата Омара Хайяма «О доказательствах задач алгебры», где оно приводится как пример одного из видов в классификации кубических уравнений. Леонардо Пизанский исследовал это уравнение, показав, что его корень не может быть рациональным или же иметь вид одной из квадратичных иррациональностей, встречающихся в X книге Начал Евклида, а затем нашёл приближённое значение корня в шестидесятеричных дробях, равное 1;22,07,42,33,04,40, не указывая, однако, способа своего решения.

«Книга квадратов» (Liber quadratorum, 1225), содержит ряд задач на решение неопределённых квадратных уравнений. В одной из задач, также предложенной Иоанном Палермским, требовалось найти рациональное квадратное число, которое, будучи увеличено или уменьшено на 5, вновь даёт рациональные квадратные числа.

Фибоначчи был одним из наиболее ярких математических умов в истории западно-европейской математики, однако его вклад в математику незаслуженно занижен. Наиболее ясно значимость математического творчества Фибоначчи для математики выделено математиком проф. А.В. Васильевым в его книге "Целое число" (1919 г.):

"Сочинения ученого пизанского купца были настолько выше уровня математических знаний даже ученых того времени, что их влияние на математическую литературу становится заметным только через два столетия после его смерти в конце 15-го века, когда многие из его теорем и задач вводятся другом Леонардо да Винчи, профессором многих итальянских университетов Лукою Пачиоли в его сочинениях и в начале 16-го века, когда группа талантливых итальянских математиков: Сципион дель Ферро, Иероним Кардано, Тарталия, Феррари решением кубического и биквадратного уравнения положили начало высшей алгебре".

Из этого высказывания следует, что Фибоначчи почти на два столетия опередил западно-европейских математиков, своих современников. Как и Пифагор, который получил свое "научное образование" у египетских и вавилонских жрецов и затем содействовал передаче полученных знаний в греческую науку, Фибоначчи приобрел свое математическое образование в арабских школах и многие из полученных там знаний, в частности, арабо-индусскую десятичную систему счисления, он попробовал ввести в западно-европейскую науку. И сходно Пифагору историческая роль Фибоначчи для западного мира состояла в том, что он своими математическими трудами содействовал передаче математических знаний арабов в западно-европейскую науку и тем самым заложил начала для дальнейшего формирования западно-европейской математики.

3. Последовательность Фибоначчи, числа Фибоначчи

Наибольший интерес представляет для нас сочинение "Kнига абака" ("Liber Abaci"). Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течении нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими (арабскими) цифрами.

В "Liber Abaci" Фибоначчи приводит свою последовательность чисел как решение математической задачи - нахождение формулы размножения кроликов. Числовая последовательность такова: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 (далее до бесконечности).

На стр. 123- 124 данной рукописи, Фибоначчи поместил следующую задачу:"Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течении года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения."

Последовательность Фибоначчи имеет весьма любопытные особенности, не последняя из которых - почти постоянная взаимосвязь между числами.

Сумма любых двух соседних чисел равна следующему числу в последовательности. Например: 3 + 5 = 8; 5 + 8 = 13 и т.д.

Отношение любого числа последовательности к следующему приближается к 0,618 (после первых четырех чисел). Например: 1: 1 = 1; 1: 2 = 0,5; 2: 3 = 0,67; 3: 5 = 0,6; 5: 8 = 0,625; 8: 13 = 0,615; 13: 21 = 0,619 и т.д. Обратите внимание, как значение соотношений колеблется вокруг величины 0,618, причем размах флуктуаций постепенно сужается; а также на величины: 1,00; 0,5; 0,67.

Отношение любого числа к предыдущему приблизительно равно 1,618 (величина обратная 0,618). Например: 13: 8 = 1,625; 21: 13 = 1,615; 34: 21 = 1,619. Чем выше числа, тем более они приближаются к величине 0,618 и 1,618.

Отношение любого числа к следующему за ним через одно приближается к 0,382, а к предшествующему через одно - 2,618. Например: 13: 34 = 0,382; 34: 13 = 2,615.

Последовательность Фибоначчи содержит и другие любопытные соотношения, или коэффициент, но те, которые мы только что привели - самые важные и известные. Как мы уже подчеркивали выше, на самом деле Фибоначчи не является первооткрывателем своей последовательности. Дело в том, что коэффициент 1,618 или 0,618 был известен еще древнегреческим и древнеегипетским математикам, которые называли его "золотым коэффициентом" или "золотым сечением". Его следы мы находим в музыке, изобразительном искусстве, архитектуре и биологии. Греки использовали принцип "золотого сечения" при строительстве Парфенона, египтяне - Великой пирамиды в Гизе. Свойства "золотого коэффициента" были хорошо известны Пифагору, Платону и Леонардо да Винчи.

Пропорции чисел Фибоначчи дают ориентиры не только возможных уровней отката, но и указывают возможную величину хода в случае продолжения тенденции. Если после хода рынок откатывается, а затем продолжает ход в том же направлении, то в типичном случае величина продолженного хода может составить 1.618.

фибоначчи числовой последовательность

4. Обобщенное золотое сечение

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.

Ученые продолжали активно развивать теорию чисел Фибоначчи и золотого сечения. Ю. Матиясевич с использованием чисел Фибоначчи решает 10-ю проблему Гильберта. Возникают изящные методы решения ряда кибернетических задач (теории поиска, игр, программирования) с использованием чисел Фибоначчи и золотого сечения. В США создается даже Математическая Фибоначчи-ассоциация, которая с 1963 года выпускает специальный журнал.

Одним из достижений в этой области является открытие обобщенных чисел Фибоначчи и обобщенных золотых сечений.

Ряд Фибоначчи (1, 1, 2, 3, 5, 8) и открытый им же «двоичный» ряд гирь 1, 2, 4, 8, 16... на первый взгляд совершенно разные. Но алгоритмы их построения весьма похожи друг на друга: в первом случае каждое число есть сумма предыдущего числа с самим собой 2 = 1 + 1; 4 = 2 + 2..., во втором - это сумма двух предыдущх чисел 2 = 1 + 1, 3 = 2 + 1, 5 = 3 + 2.... Нельзя ли отыскать общую математическую формулу, из которой получаются и «двоичный» ряд, и ряд Фибоначчи? А может быть, эта формула даст нам новые числовые множества, обладающие какими-то новыми уникальными свойствами?

Действительно, зададимся числовым параметром S, который может принимать любые значения: 0, 1, 2, 3, 4, 5... Рассмотрим числовой ряд, S + 1 первых членов которого - единицы, а каждый из последующих равен сумме двух членов предыдущего и отстоящего от предыдущего на S шагов. Если n-й член этого ряда мы обозначим через цS (n), то получим общую формулу цS (n) = цS (n - 1) + цS (n - S - 1).

Очевидно, что при S = 0 из этой формулы мы получим «двоичный» ряд, при S = 1 - ряд Фибоначчи, при S = 2, 3, 4. новые ряды чисел, которые получили название S-чисел Фибоначчи.

В общем виде золотая S-пропорция есть положительный корень уравнения золотого S-сечения xS+1 - xS - 1 = 0.

Нетрудно показать, что при S = 0 получается деление отрезка пополам, а при S = 1 -знакомое классическое золотое сечение.

Отношения соседних S-чисел Фибоначчи с абсолютной математической точностью совпадают в пределе с золотыми S-пропорциями! Математики в таких случаях говорят, что золотые S-сечения являются числовыми инвариантами S-чисел Фибоначчи.

Факты, подтверждающие существование золотых S-сечений в природе, приводит белорусский ученый Э.М. Сороко в книге «Структурная гармония систем» (Минск, «Наука и техника», 1984). Оказывается, например, что хорошо изученные двойные сплавы обладают особыми, ярко выраженными функциональными свойствами (устойчивы в термическом отношении, тверды, износостойки, устойчивы к окислению и т. п) только в том случае, если удельные веса исходных компонентов связаны друг с другом одной из золотых S-пропорций. Это позволило автору выдвинуть гипотезe о том, что золотые S-сечения есть числовые инварианты самоорганизующихся систем. Будучи подтвержденной экспериментально, эта гипотеза может иметь фундаментальное значение для развития синергетики - новой области науки, изучающей процессы в самоорганизующихся системах. С помощью кодов золотой S-пропорции можно выразить любое действительное число в виде суммы степеней золотых S-пропорций с целыми коэффициентами.

Принципиальное отличие такого способа кодирования чисел заключается в том, что основания новых кодов, представляющие собой золотые S-пропорции, при S > 0 оказываются иррациональными числами. Таким образом, новые системы счисления с иррациональными основаниями как бы ставят «с головы на ноги» исторически сложившуюся иерархию отношений между числами рациональными и иррациональными. Дело в том, что сначала были «открыты» числа натуральные; затем их отношения - числа рациональные. И лишь позже - после открытия пифагорийцами несоизмеримых отрезков - на свет появились иррациональные числа. Скажем, в десятичной, пятеричной, двоичной и других классических позиционных системах счисления в качестве своеобразной первоосновы были выбраны натуральные числа - 10, 5, 2, - из которых уже по определенным правилам конструировались все другие натуральные, а также рациональные и иррациональные числа. Своего рода альтернативой существующим способам счисления выступает новая, иррациональная система, в качестве первоосновы, начала счисления которой выбрано иррациональное число (являющееся, напомним, корнем уравнения золотого сечения); через него уже выражаются другие действительные числа. В такой системе счисления любое натуральное число всегда представимо в виде конечной - а не бесконечной, как думали ранее! - суммы степеней любой из золотых S-пропорций. Это одна из причин, почему «иррациональная» арифметика, обладая удивительной математической простотой и изяществом, как бы вобрала в себя лучшие качества классической двоичной и «Фибоначчиевой» арифметик.

Заключение

Леонардо Фиббоначи сделал неоценимый вклад в развитие математики,но несмотря на все его достижения в этой области он остается малоизвестным.

В своей работе я указал то,как и чем Леонардо прославился в области математики.

Проанализировав литературу, рассмотрел несколько сайтов, сделал вывод, о том, что

Числа Фиббоначи,ряд Фиббоначи и золотое сечение окружают нас всюду.

Литература

1. Азевич А.И. «От золотой пропорции к ее производным» // - «Квант», 1995. - № 3.

2. Азевич А. «Двадцать уроков гармонии» // -М., «Школа-Пресс», 1998.

3. Васютинский Н.А. «Золотая пропорция» // - М., «Молодая гвардия», 1990.

4. Бендукидзе А.Д. «Золотое сечение» // «Квант», 1973. - № 8.

5. «Энциклопедический словарь юного математика» // -М.,1989.

6. Воробьев Н.Н. «Числа Фибоначчи» // - М., «Наука», 1992.

7. Гарднер М. «Математические головоломки и развлечения» // - М., «Мир», 1971.

8. «Еще раз о золотом сечении» // - «Квант», 1989. - № 8.

9. Ковалев Ф.В. «Золотое сечение в живописи» // - К., «Выща школа», 1989.

10. Кеплер И. «О шестиугольных снежинках» // - М., 1982.

11. Кокстер Г.С.М. «Введение в геометрию» // - М., «Наука», 1966.

12. Стахов А. «Коды золотой пропорции»

13. Пидоу Д. «Геометрия и искусство» // - М., «Мир», 1979.

14. Прохоров А.И. «Золотая спираль» // - «Квант», 1984 - № 9.

15. Смирнова И.М. «В мире многогранников» // - М., «Просвещение», 1995.

16. Журнал «Математика в школе» // - 1994,- № 2; № 3.

17. Шевелев И.Ш., Марутаев М.А., Шмелев И.П. «Золотое сечение» // - М., Стройиздат», 1990.

18. «Математика. Я познаю мир»// - М. «Аванта +», 1998

19. Цеков-Карандаш Ц. «О втором золотом сечении» // - София, 1983.

20. Информация из интернета.

Размещено на Allbest.ru

...

Подобные документы

  • Жизнь и деятельность известного итальянского математика позднего Средневековья Леонардо из Пизы, известного как Фибоначчи. Последовательность цифр, именуемая рядом Фибоначчи, ее свойства. Коэффициент пропорциональности, называемый золотым сечением.

    презентация [159,5 K], добавлен 29.11.2011

  • Фибоначчи Леонардо Пизанский — первый крупный математик средневековой Европы. Ряд чисел Фибоначчи - элементы числовой последовательности, в которой каждое последующее число равно сумме двух предыдущих чисел. Примеры ряда Фибоначчи в повседневной жизни.

    доклад [25,5 K], добавлен 24.03.2012

  • Спиральная последовательность квадратов чисел. Последовательность чисел Фибоначчи и "золотое сечение" Леонардо да Винчи. Живые и неживые числа. Общая корзина "Гармонии Мироздания". Показательная спираль живой органики или спираль "Китовраса".

    статья [4,1 M], добавлен 18.04.2012

  • Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.

    презентация [421,5 K], добавлен 15.06.2017

  • Классическая последовательность чисел Фибоначчи, определение основных понятий, схематическое изображение этой последовательности, ее свойства. Упорядочивание, вычисление элементов последовательности. Некоторые зависимости между мнимыми тройками.

    реферат [82,2 K], добавлен 07.09.2009

  • Рассмотрение некоторых числовых последовательностей, заданных рекуррентно, их свойств и задач с ними связанных. Теория возвратных последовательностей. Свойства последовательности Фибоначчи и ее золотое сечение. Исследование последовательности Каталана.

    реферат [812,1 K], добавлен 03.05.2015

  • Математическое описание последовательности чисел Фибоначчи. Представление фрагмента корзины "Гармония Мироздания" как образца формирования числовых рядов. Особенности построения живой спирали "Китовраса", ее практическое применение в древнем мире.

    доклад [6,4 M], добавлен 16.01.2011

  • Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.

    реферат [2,2 M], добавлен 09.04.2012

  • Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.

    курсовая работа [416,0 K], добавлен 09.08.2015

  • Эстетический потенциал математического объекта. Использование золотого прямоугольника в живописи. Пропорциональный циркуль Дюрера. Золотое сечение и гармония в искусстве. Золотой ряд Фибоначчи. Использование орнаментальной и зеркальной симметрий.

    курсовая работа [615,2 K], добавлен 11.09.2012

  • Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".

    презентация [840,6 K], добавлен 16.01.2011

  • Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".

    реферат [20,3 K], добавлен 24.11.2009

  • Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.

    презентация [1,9 M], добавлен 27.02.2012

  • Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.

    курсовая работа [361,5 K], добавлен 10.06.2014

  • Достижения древнегреческих математиков, живших в период между VI веком до н.э. и V веком н.э. Особенности начального периода развития математики. Роль пифагорейской школы в развитии математики: Платон, Евдокс, Зенон, Демокрит, Евклид, Архимед, Аполлоний.

    контрольная работа [22,2 K], добавлен 17.09.2010

  • Краткие биографические данные от Джоне Непере - шотландском математике, изобретателе логарифмов и замечательного вычислительного инструмента - таблицы логарифмов. Математические заслуги Брадиса; его Таблицы. Изобретение первой логарифмической линейки.

    презентация [5,3 M], добавлен 30.10.2013

  • Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.

    реферат [25,8 K], добавлен 29.05.2010

  • Математика как наука о числах, скалярных величинах и простых геометрических фигурах. Математические модели, отражающие объективные свойства и связи. Основные понятия математики, ее язык. Аксиоматический метод, математические структуры, функции и графики.

    реферат [58,1 K], добавлен 26.07.2010

  • Основатели учения о золотом сечении. Самый "правильный" многогранник. Математическое пропорциональное содержание пентаграммы. Золотое сечение в архитектуре, в живописи и в живых организмах. Пропорции Покровского Собора на Красной площади в Москве.

    презентация [580,5 K], добавлен 16.10.2013

  • Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.

    презентация [1,5 M], добавлен 14.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.