Развитие понятия функции в математике и в школьном курсе математики

Подходы к определению понятия "функция", графики функции. Изучение основных элементарных функций в школьном курсе математики: линейной, квадратичной, кубической, обратной пропорциональности, степенной, показательной, логарифмической и тригонометрической.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 01.03.2013
Размер файла 352,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФФЕСИОНАЛЬНОГО ОБРАЗОВАНИЯ

ЧЕЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

Курсовая работа

По Теории и методике обучения математики

На тему: "Развитие понятия функции в математике и в школьном курсе математики"

Студентки V курса группы -281 ФЗО

Темирсултановой Л.М.

Преподаватель-Исаева З.И.

Грозный-2013г.

Оглавление

Введение

Глава I. Определение понятия функция

1.1 История развития понятия функции

1.2 Различные подходы к определению понятия "функция", графики функции

1.3 График функции

Глава II. Изучение основных элементарных функций в школьном курсе математики

2.1 Линейная функция

2.2 Квадратичная функция

2.3 Кубическая функция

2.4 Обратная пропорциональность

2.5 Степенная функция

2.6 Показательная функция

2.7 Логарифмическая функция

2.8 Тригонометрические функции

Заключение

Список литературы

Введение

Данная работа посвящена изучению функций в курсе математики VII-VIII классов. В ней даётся исторический экскурс определения понятия функции, рассматриваются различные подходы к введению понятия функции в школе.

Основная часть курсовой работы направлена на рассмотрение вопросов методики изучения в VII-VIII классах школьного курса математики функций, образующих классы, которые обладают общностью аналитического способа задания функций, сходными особенностями графиков, областей применения.

Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции. Особое внимание уделено методике изучения линейной, квадратичной и кубической функций и их графиков.

Глава I. Определение понятия функция

1.1 История развития понятия функции

Начиная с XVII в. одним из важнейших понятий является понятие функции.

Функция - одно из основных математических и общенаучных понятий. Оно сыграло и играет большую роль в познании реального мира.

Идея функциональной зависимости восходит к древности, она содержится уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами, в первых формулах для нахождения площади и объема тех или иных фигур.

Явное и вполне сознательное применение понятия функции и систематическое изучение функциональной зависимости берут свое начало в XVII в. в связи с проникновением в математику идеи переменных.

Путь к появлению понятия функции заложили французские ученые Франсуа Виет (1540-1603) и Рене Декарт (1596-1650); они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание. Введено было единое обозначение: неизвестных - последними буквами латинского алфавита - x, y, z, известных - начальными буквами того же алфавита - a, b, c, ... и т.д. Под каждой буквой стало возможным понимать не только конкретные данные, но и многие другие; в математику пришла идея изменения. Тем самым появилась возможность записывать общие формулы.

Кроме того, у Декарта и Ферма (1601-1665) в геометрических работах появляется отчетливое представление переменной величины и прямоугольной системы координат. В 1637 году Декарт в своей "Геометрии" дает понятие функции, как изменение ординаты точки в зависимости от изменения ее абсциссы; он систематически рассматривал лишь те кривые, которые можно точно представить с помощью уравнений, притом преимущественно алгебраических. Постепенно понятие функции стало отождествляться, таким образом, с понятием аналитического выражения - формулы. В 1671 году Ньютон (1643-1727) под функцией стал понимать переменную величину, которая изменяется с течением времени.

В "Геометрии" Декарта и работах Ферма, Ньютона и Лейбница (1646-1716) понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функция от абсцисс (x); путь и скорость - функция от времени (t) и т.п.

Слово "функция" (от латинского functio - совершение, выполнение) впервые было употреблено в 1673г. немецким математиком Лейбницем.

Начиная с 1698 года, Лейбниц ввел также термины "переменная" и "константа".

Явное определение функции было впервые дано в 1718 г. одним из учеников и сотрудников Лейбница, выдающимся швейцарским математиком Иоганном Бернулли:

"Функцией переменной величины называют количество, образованное каким угодно способом из этой переменной величины и постоянных".

Леонард Эйлер во "Введении в анализ бесконечных" (1748) примыкает к определению своего учителя И. Бернулли, несколько уточняя его.

Определение Л. Эйлера гласит:

"Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств".

Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки.

В "Дифференциальном исчислении", вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции:

"Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых".

Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.

Прослеживая исторический путь развития понятия функции невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий.

Математика - незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.

1.2 Различные подходы к определению понятия "функция", графики функции

Понятие функции часто встречается в школьном курсе математики и хорошо знакомо учащимся. Тем не менее на приемных экзаменах в вузах поступающие допускают много ошибок при использовании этого понятия. Объясняется это различными причинами, но в первую очередь тем, что слово "функция" используется в математике в нескольких смыслах, а в школьных учебниках это обстоятельство не разъяснено. Поэтому мы прежде всего обратимся к определению функции и другим относящимся сюда понятиям и подробно остановимся на тех различных пониманиях слова "функция", которые встречаются в школьном курсе математики.

Самым общим и основным является в математике следующее определение понятия функции. Говорят, что определена некоторая функция, если, во-первых, задано некоторое множество, называемое областью определения функции, во-вторых, задано некоторое множество, называемое областью значений функции, и, в-третьих, указано определенное правило, с помощью которого каждому элементу, взятому из области определения, ставится в соответствие некоторый элемент из области значений.

Приведем несколько примеров:

Пример 1. Обозначим через N множество всех натуральных чисел, а через О--множество всех действительных чисел. Далее, выберем два действительных числа a1 и r и каждому натуральному числу п поставим в соответствие действительное число, равное п-му члену арифметической прогрессии с первым членом а, и разностью r (т. е. натуральному числу п поставим в соответствие действительное число a1+(n-1)r ). Мы получаем функцию с областью определения N и областью значений D.

Пример 2. Теперь мы примем и в качестве области определения, и в качестве области значений множество D всех действительных чисел. Далее, выберем два действительных числа a1 и r и каждому действительному числу х поставим в соответствие число а1+(х-1)r. Мы получаем функцию с областью определения D и областью значений D.

Заметим, что в примерах 1 и 2 одинакова область значений D и одинаково правило соответствия: формулы a1+(n-1)r и а1+(х-1)r показывают, что в обоих случаях надо над выбранным числом (n или х) проделать одни и те же действия, чтобы узнать, какое число поставлено ему в соответствие. Однако области определения этих двух функций различны, и потому мы имеем в примерах 1 и 2 разные функции. Таким образом, для задания функции мало указать правило соответствия, а надо еще обязательно указать область определения и область значений.

Для обозначения функций обычно пользуются буквами. Одна буква (чаще всего х) используется для обозначения произвольного элемента, взятого из области определения функции. Эта буква называется аргументом. Таким образом, если сказано, что х - аргумент некоторой функции, то вместо х мы можем подставить любой элемент, принадлежащий области определения этой функции. Далее, другая буква (чаще всего у) используется для обозначения произвольного элемента, взятого из области значений. Эта буква называется функцией (и это второе значение слова "функция"). Наконец, третья буква (чаще всего f) используется для обозначения правила соответствия. Это значит, что если а - произвольное значение аргумента (т. е. произвольный элемент, взятый из области определения функции), то элемент, поставленный ему в соответствие, обозначается через f(а). Элемент y = f(а) называется значением рассматриваемой функции при х=а.

Все три буквы х, у, f объединяются одной записью:

y=f(x)

Следует подчеркнуть, что область значений функции представляет собой множество элементов (или чисел), среди которых обязательно содержатся все значения рассматриваемой функции. Однако в области значений могут содержаться и "лишние" элементы, не являющиеся значениями функции. Иными словами, множество значений функции обязательно содержится в области значений, но не обязательно совпадает с ней.

1.3 График функции

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х, а на оси ординат - значения функции у=f(х). Графиком функции у=f(х) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции y=f(x).

Другими словами, график функции у=f(х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y=f(x).

С помощью графика можно находить значение функции в точке. Именно, если точка х=а принадлежит области определения функции y=f(x), то для нахождения числа f(а) (т. е. значения функции в точке х=а) следует поступить так. Нужно через точку с абсциссой x=а провести прямую, параллельную оси ординат; эта прямая пересечет график функции у=f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а)

Для построения графика функции f(х) нужно найти все точки плоскости, координаты х, у которых удовлетворяют уравнению у=f(х). В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, x1, х2, ..., хk - и составляют таблицу, в которую входят выбранные значения функции. Таблица выглядит следующим образом:

функция график математика линейный

x

x1

x2

xk

y

f(x1)

f(x2)

f(xk)

Глава II. Изучение основных элементарных функций в школьном курсе математики

В результате изучения курса математики учащиеся должны:

§ Понимать, что функция - это математическая модель, позволяющая описывать и изучать разнообразные зависимости между реальными величинами, что конкретные типы функций (прямая и обратная пропорциональности, линейная, квадратичная функции) описывают большое разнообразие реальных зависимостей;

§ Правильно употреблять функциональную терминологию (значение функции, аргумент, график функции, область определения, возрастание и др.), понимать ее в тексте, в речи учителя, в формулировке задач;

§ Находить значения функции, заданных формулой, таблицей, графиком; решать обратную задачу;

§ Находить по графику функции промежутки возрастания и убывания функции, промежутки знакопостоянства, наибольшее и наименьшее значения;

§ Строить графики линейной функции, прямой и обратной пропорциональности, квадратичной функции;

§ Интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.

Школьный курс изучения функции строится по аналогии с развитием в истории понятия функции.

2.1 Линейная функция

Линейной функцией называется функция, которую можно задать формулой вида y=kx+b, где х - независимая переменная, k и b - некоторые числа. Большинство изучаемых в школьной математике функций образует классы, обладающие общностью аналитического способа задания функции из него, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции непосредственно, без выделения промежуточных звеньев.

Однако длительность периода независимого рассмотрения каждой функции незначительна; в курсе алгебры вслед за введением понятия о функции сразу рассматривается первый класс - линейные функции. Для функций, входящих в класс, изучение происходит по более сложной схеме, поскольку в нём выделяются новые аспекты: изучение данной функции как члена класса и изучение свойств всего класса на примере "типичной" функции этого класса.

Типичный и одновременно важнейший для математики класс функций -- линейные функции, которые мы рассмотрим с точки зрения изучения характерных для этого класса свойств и представлений, формируемых в курсе алгебры.

Первоначальное представление о линейной функции выделяется из рассмотрения задачи, обычно связанной с равномерным прямолинейным движением, а также при построении графика некоторой линейной функции.

Рассмотрим второй из этих источников. Основная мысль, которую мы попытаемся обосновать, состоит в том, что рассмотрение графика отдельно взятой линейной функции не может привести к формированию представлений об основных свойствах графиков всех линейных функций.

Для этого рассмотрим два наиболее широко распространенных в начале изучения темы приема построения графиков линейной функции.

Использование "загущения" точек на графике.

Предполагается следующая последовательность действий по этому приему:

а) нанесение нескольких точек;

б) наблюдение -- все построенные точки расположены на одной прямой;

в) проверка: берем произвольное значение аргумента и вычисляем по нему значение функции; наносим точку на координатную плоскость -- она принадлежит построенной прямой. Отсюда делается вывод о графике данной линейной функции.

Этот способ безусловно может привести к пониманию того, что график и любой линейной функции -- прямая, т. е. к выделению некоторого общего свойства класса линейных функций. Однако последовательное проведение приема требует большого времени и не может быть проделано более нескольких раз. Поэтому общее свойство будет при этом формироваться на основе изолированных примеров.

Функция

Y = kx + b

называется линейной функцией. Ее график получается путем параллельного переноса графика функции y = kx на b вверх, если b > 0, и на |b| вниз, если b < 0. Кроме того, если k ? 0, то

Значит, график функции y = kx + b получится из графика y = kx сдвигом на. Графики всех линейных функций, имеющих один и тот же угловой коэффициент, параллельны друг другу. Графики функций, коэффициенты k1 и k2 которых связаны соотношением k1k2 = -1, перпендикулярны друг другу.

2.2 Квадратичная функция

Квадратичная функция вводится и изучается в тесной связи с квадратными уравнениями и неравенствами.

График 1.3.1.1 График функции y = x2 + 1 на D = [-2; 2]. По числовым осям заштрихованы область определения и область значений функции.

Первой из этого класса функций, в значительной степени еще вне изучения собственного класса, рассматривается функция у=х2. Свойства этой функции во многом отличаются от рассмотренного ранее случая линейных функций. Прежде всего, эта функция немонотонна; только на этом этапе у учащихся появляется пример функции, отличной от линейных, которые монотонны. Другое отличие состоит в том, что характер изменения значений функции у=х2 неравномерный: на одних участках она растет быстрее, на других -- медленнее. Эта особенность выявляется при построении графика на всей области определения.

2.3 Кубическая функция

К изучению класса кубических функций привлекается прием, аналогичный изучению квадратичных функций, основанный на использовании геометрических преобразований для построения графика произвольной кубической функции из кубической параболы стандартного положения -- графика функции у=ах3, а?0.

2.4 Обратная пропорциональность

Введение понятий прямой и обратной пропорциональной зависимости является важным шагом на пути к введению понятия функциональной зависимости и в дальнейшем к изучению линейной и обратной функций.

Используя на практике индуктивный подход и знания о пропорции, полученные учениками, преподаватель на нескольких примерах может подвести учеников к пониманию понятий прямой и обратной пропорциональной зависимости.

Например:

"Члены пропорции обладают свойством, которое называют основным свойством пропорции. Во всякой пропорции произведение крайних членов равно произведению средних членов, то есть если a/b=c/d, то a d = b c .

Это свойство применяется при нахождении неизвестного члена пропорции.

Пусть a/x = c/d, то x = a d/c.

В окружающем нас мире большое множество пропорций или отношений. Они делятся на две большие группы: прямо пропорциональные и обратно пропорциональные.

Прямо пропорциональные:

1. Длина пути, пройденная равномерно движущимся телом, и время, затраченное на этот путь.

2. Длина окружности и ее радиус.

3. Длина сторон прямоугольника и его периметр (площадь).

Обратно пропорциональные :

1. Радиус колеса и число совершаемых им оборотов на определенном отрезке пути.

2. Скорость движения и время в пути.

Пропорциональность - такая зависимость между величинами, при которой увеличение одной из них влечет за собой изменение во столько же раз другой величины.

Прямая и обратная пропорциональные зависимости выражаются формулами:

y = a x и y = a/x , (x отличен от нуля), где x и y - переменные величины, а - коэффициент пропорциональности, который и показывает, во сколько раз происходят изменения, а - действительное число отличное от нуля.

Эти зависимости можно изобразить графически"

2.5 Степенная функция

В учебниках Алимова со степенной функцией ученики встречаются в 9 классе.

С функциями у=х и у=х2 учащиеся познакомились, и им объясняется что эти функции - частный случай степенной функции у=хr, где r -заданное число (причем как целое, так и дробное). После чего формулируются свойства данной функции в зависимости r, которое может быть как положительным, так и отрицательным.

В учебниках Макарычева с функцией у=хr учащиеся сталкиваются тоже только в 9 классе, В §22 рассматривается только натуральный показатель. При формулировке свойств, берется два случая, когда показатель степени четный и когда нечетный.

С дробным показателем рассматривается единственная функция в 8 классе у=. Вводится она на примере площади, что для каждого значения площади квадрата S можно указать соответствующее ему единственное значение стороны. Зависимость стороны квадрата от его площади выражается формулой а=. Далее строится график данной функции, с помощью таблицы. И в конце параграфа формулируются некоторые свойства функции.

В учебниках Мордковича функция у= вводится в 8 классе, на основе функции затем даются свойства квадратных корней. То есть, то, что в 8 классе учащихся знакомят с данной функцией обосновано методически.

Знакомство же со степенной функцией происходит лишь в 11 классе. Первой функцией, с которой знакомятся учащиеся, становится . Ей посвящен §40. Дело в том, что в предыдущем параграфе введен п-ый корень из действительного числа, следовательно, необходимо подумать о графике и свойствах функции . Параграф начинается с рассмотрения уже известной функции когда п=2. На основе сравнения графика данной функции с графиком функции у=х2 вводится понятие симметричной функции. Формулируется теорема:

Точки М(а;ь) и Р(ь;а) симметричны относительно прямой у=х.

После чего идет доказательство теоремы..

Формулируются свойства функции . В учебниках Мордковича помимо тех свойств, которые изучаются у Алимова и Макарычева, рассматривается выпуклость и вогнутость графика функции.

И наконец, §44 посвящен уже степенной функции вида у=хr, где r - любое действительное число. Основная цель этого параграфа - добиться того, чтобы учащиеся четко представляли себе эскиз графика степенной функции у=хr для любого рационального показателя r и знали свойства степенной функции.

При формулировке свойств рассматривается три случая: степень больше единицы, степень больше нуля, но меньше единицы и отрицательная степень.

В этом же параграфе идет речь о дифференцировании и интегрировании степенной функции. Повторяется материал 10 класса: составление уравнения касательной, исследование функций на монотонность и экстремумы, построение графиков функций, отыскание наибольшего и наименьшего значений функции на промежутке с помощью производной, вычисление площади плоских фигур.

2.6 Показательная функция

В 10 классе в учебнике Алимова рассматривается показательная функция. Основная цель -познакомить с многообразием свойств и графиков показательной функции в зависимости от значений оснований и показателей степени.

Первое с чем знакомятся ученики на уроках математики - это свойства показательной функции и ее графиком. На ее изучение отводится один параграф, который начинается с повторения свойств степеней. После чего вводится определение показательной функции. Далее рассматриваются основные свойства показательной функции. Свойства монотонности обосновываются аналитически и иллюстрируются на графике. В дальнейшем основное внимание уделяется иллюстрации свойств функции по графику (чтение графика). Приводятся примеры применения показательной функции для описания различных физических процессов. В учебнике приводится в пример формула радиоактивного распада , где m(t) и mo - масса радиоактивного вещества соответственно в момент времени t и в начальный момент времени t=0, T - период полураспада (промежуток времени, за который первоначальное количество вещества уменьшится вдвое). Так же рассказывается, что с помощью показательной функции выражается давление воздуха в зависимости от высоты подъема, ток самоиндукции в катушке после включения постоянного напряжения.

В учебниках Колмогорова показательная функция изучается в 11 классе. Прежде чем ввести понятие показательной функции f(x)=ax, где х принимает любые значения из множества действительных чисел, проводится подготовительная работа. Начинается со знакомства учащихся с функцией f(x)=ax, область определения которой - множество рациональных чисел. Для каждого положительного числа а можно найти значение выражения ( - любое рациональное число). Таким образом, любому числу х из множества Q соответствует действительное число ax. На странице 179-180 учебника после определения показательной функции помещен материал, адресованный учащимся, проявляющим повышенный интерес к занятиям математикой. В нем описана схема доказательства существования значения показательной функции для любого иррационального х (следовательно, и самой функции).

В учебнике Мордковича учащиеся впервые сталкиваются с понятием показательной функции уже в 9 классе, на примере формулы п-го члена геометрической прогрессии. Следующая встреча с данной функцией у учащихся происходит только в 11 классе. В §45 сначала рассматривается функция у=2х, хQ. При рассмотрении свойств у=2х отмечается, что это возрастающая функция, неограниченная сверху и ограниченная снизу, не имеющая ни наименьшего, ни наибольшего значения.

Кроме того, рассматривается функция у=2х при х=. Доказывается, что при вычислении получается конкретное число. То есть в учебнике Мордковича рассматриваются функции не только с рациональным показателем, но и действительным.

При формулировке общих свойств графика функции, рассматриваются два случая, когда основание целое число и дробное число большее нуля, но меньшее единицы. И только после этого вводится определение показательной функции.

Кроме того, в учебнике Мордковича изучается горизонтальная асимптота графика функции, и способ ее отыскания.

В учебнике обращается внимание на то, что учащиеся иногда путают понятия показательной функции и стенной. Предлагается сравнить данные функции. Далее автор не забывает упомянуть функцию . Говорится, что данная функция не считается ни показательной, ни степенной, но ее иногда называют показательно- степенной.

Во втором замечании автор говорит, что не рассматривается показательная функция с основанием а=1.

2.7 Логарифмическая функция

В учебнике Алимова с логарифмической функцией учащиеся впервые сталкиваются в 10 классе.

Основная цель - познакомить учащихся с логарифмической функцией, ее свойствами и графиком.

До введения понятия логарифмической функции формируется понятие логарифма числа, изучаются свойства логарифмов.

§6 начинается с определения логарифмической функции. После чего формулируются свойства данной функции. Аналитическое обоснование свойств функции от всех учащихся не требуется.

В конце параграфа дается теорема:

если logax1=logax2, где a>0, a1, x1>0, x2>0 то x1=x2.

В учебнике Колмогорова логарифмическая функция вводится 11 классе. Логарифмическая функция, как и показательная, не может впервые вводится с помощью формулы (как это делается в учебнике Алимова). Причина этого в том, что в курсе алгебры еще не введено понятие логарифма числа. Поэтому функция вводит, как обратную к показательной функции f(x)=ax , хR. Основные свойства логарифмической функции вытекают из свойств показательной функции и теоремы об обратной функции. (Причем у Алимова понятие обратной функции вводится после введения логарифмической функции.) В отличии от учебника Алимова у Колмогорова не сформулировано свойство о положительных и отрицательных значениях х.

В учебнике Мордковича понятие логарифма в §48 вводится при помощи графических соображений. Предлагается одновременно рассмотреть две функции и . Делается наблюдение, что данные графики симметричны относительно прямой у=х. После чего дается определение логарифмической кривой.

При формулировке свойств рассматривается два случая, когда основание больше 1 и когда основание больше нуля, но меньше единицы. Кроме тех свойств, которые перечислены в учебниках Алимова и Мордковича здесь рассматриваются свойства выпуклости, непрерывности, ограниченности, четности, наибольшего или наименьшего значения.

2.8 Тригонометрические функции

В 11 классе в учебнике Алимова изучаются свойства и графики функций y=cosx, y=sinx, y=tgx. Обратные тригонометрические функции.

Основная цель - изучить свойства тригонометрических функций, научить учащихся строить их графики.

Первой тригонометрической функцией, с которой знакомятся учащиеся, становится функция y=cosx, в §19.

Изучение данных функций начинается с повторения определения синуса, косинуса и тангенса произвольного угла которые были введены в 9 классе.

Так как функция y=cosx периодична с периодом 2, то достаточно построить ее график на каком-нибудь промежутке длиной 2. Кроме того достаточно построить ее график на отрезке 0х, а затем симметрично отразить относительно оси Оу. Прежде чем перейти к построению графика, доказывается, что функция y=cosx убывает на отрезке 0х. Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на этом отрезке и распространении его на всю числовую прямую.

После построения формулируются основные свойства функции y=cosx.

Построение графика функции тангенс, как и косинус, начинается с исследования. Сначала график строится на промежутке , а затем распространяется на всю числовую прямую. Для этого доказывается, что функция y=tgx возрастает на промежутке . Доказанное здесь свойство позволяет сделать вывод о возможности построения графика функции на всю числовую прямую.

После чего формулируются свойства функции y=tgx.

В учебнике Колмогорова все тригонометрические функции вводятся в одном параграфе, который начинается с основных тригонометрических определений. Данные определения не являются новыми для учеников - это повторение материала 9 класса. После этого происходит построение графика функции y=sinx по точкам с использованием свойств периодичности и единичной окружности.

По графику демонстрируются свойства данной функции: ее область определения, область значения, наибольшее и наименьшее значения, нули функции, промежутки постоянных знаков функции. Аналогично рассматриваются свойства функции y=cosx и y=tgx и на графиках этих функций демонстрируются их свойства.

В 9 классе в учебнике Мордковича предлагаются элементы теории тригонометрических функций. Эта глава рассматривается, как дополнительный материал. Весь этот материал повторен и расширен в курсе алгебры и начала анализа в 10-11 классе.

В начале 10 класса учащиеся подробно изучают данный материал.

Изучение самих функций начинается только с 9 параграфа. Перед этим вводятся определения синуса, косинуса , тангенса и котангенса. Первой функцией предлагается y=sinx. Параграф начинается с формулирования свойств функции. После чего предлагается построить график данной функции на отрезке [0; . Затем добавляют к построенному графику симметричную ему относительно начала координат линию. Получили график на отрезке [; . Далее предлагается построить график функции на отрезке [; 3. В результате получили то же самое, что и на отрезке [; .

Заключение

Рассмотренные выше подходы к изучению функций в школе не охватывают все многообразие способов и методов изучения этого понятия. Они лишь являются основными, наиболее разработанными подходами к вопросу об изучении функций в школе, ориентируясь на которые можно разрабатывать новые, специфические методы обучения, которые были бы лишены недостатков вышеперечисленных подходов и были бы следующим шагом в деле обучения математике в школе.

Список литературы

1. Алгебра: учебник для 7 класса общеобразовательных учреждений.\ под ред. С.А. Теляковского - 5-е издание - М.Просвещение,1997.

2. Алгебра: учебник для 8 класса общеобразовательных учреждений.\ под ред. С.А. Теляковского - 2-е издание - М.Просвещение,1991.

3. Виленкин Н.Я. и др. Современные основы школьного курса математики. - М.Просвещение,1980.

4. В. С. Крамор, Повторяем и систематизируем школьный курс алгебры и начал анализа, Москва, Просвещение, 1990.

5. Гурский И.П. Функции и построение графиков. Пособие для учителей. - М.: Просвещение, 1968.

6.Вилейтнер Г. История математики от Декарта до середины XIX столетия. - Москва. 1969.

7.К. А. Рыбников, Возникновение и развитие математической науки, Москва, Просвещение, 1987.

Размещено на Allbest.ru

...

Подобные документы

  • Анализ основных понятий, утверждений, связанных с показательной и логарифмической функциями в курсе математики. Изучение методик решения типовых задач. Подбор и систематизация задач на нахождение и использование показательной и логарифмической функций.

    курсовая работа [1,5 M], добавлен 20.07.2015

  • Различные трактовки понятия функции в школьном курсе математики. Функция и задание ее аналитическим выражением. Область определения функции и область значений функции. Тесты по теме "Числовые функции. Четные и нечетные функции. Периодические функции".

    дипломная работа [213,1 K], добавлен 07.09.2009

  • Классификация основных элементарных функций: степенные, показательные, логарифмические, тригонометрические и обратные тригонометрические. Определение и простейшие свойства линейной и квадратичной функции. Понятие обратной пропорциональной зависимости.

    презентация [1,0 M], добавлен 29.10.2015

  • Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.

    лабораторная работа [253,6 K], добавлен 05.01.2015

  • Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.

    презентация [332,2 K], добавлен 21.09.2013

  • Области определения и значений функции. Заданная, монотонная, ограниченная и неограниченная, непрерывная и разрывная, четная и нечетная функции. Определение асимптоты. Степенная функция с вещественным показателем. Квадратичная и логарифмическая функции.

    реферат [417,9 K], добавлен 26.03.2013

  • Особенности изучения векторного метода в школьном курсе геометрии. История возникновения и становления аналитических методов. Различные подходы к определению понятия вектора в математике. Логико-дидактический анализ "Векторы в пространстве" в 10 классе.

    дипломная работа [894,3 K], добавлен 08.12.2013

  • Виды и методы решения функциональных уравнений, изучаемых в школьном курсе математики, с применением теории матриц, элементов математического анализа и сведения функционального уравнения к известному выражению с помощью замены переменной и функции.

    курсовая работа [472,1 K], добавлен 07.02.2016

  • Решения задач дискретной математики: диаграммы Эйлера-Венна; высказывание в виде формулы логики высказываний и формулы логики предикатов; СДНФ и СКНФ булевой функции. При помощи алгоритма Вонга и метода резолюции выяснить является ли клауза теоремой.

    контрольная работа [133,5 K], добавлен 08.06.2010

  • Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.

    курсовая работа [232,5 K], добавлен 21.10.2011

  • Понятие функции как важнейшее понятие математики, ее общие свойства. Особенности обратной функции, ее экстремумы. Наибольшее и наименьшее значение функции, ее периодичность, четность и нечетность. Нуль функции, промежутки знакопостоянства, монотонность.

    презентация [86,8 K], добавлен 18.12.2014

  • Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.

    курсовая работа [235,2 K], добавлен 01.02.2015

  • Свойства действительных чисел, их роль в развитии математики. Анализ построения множества действительных чисел в историческом аспекте. Подходы к построению теории действительных чисел по Кантору, Вейерштрассу, Дедекинду. Их изучение в школьном курсе.

    презентация [2,2 M], добавлен 09.10.2011

  • Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.

    дипломная работа [906,7 K], добавлен 24.02.2010

  • Новые информационно-коммуникационные технологии в современном школьном образовании. Применение программных обеспечений при срезе и контроля знаний по теме "Показательная функция". Роль использования компьютерных технологий в преподавании математики.

    курсовая работа [23,0 K], добавлен 05.03.2008

  • Рассмотрение и анализ основных свойств показательной функции: решение задач, способы построения графиков. Понятие и примеры применения гиперболических функций, их роль в различных приложениях математики. Способы нахождения области определения функции.

    контрольная работа [902,6 K], добавлен 01.11.2012

  • Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа [1,9 M], добавлен 06.05.2010

  • История развития тригонометрии, характеристика ее основных понятий и формул. Общие вопросы, цели изучения и способы определения тригонометрических функций числового аргумента в школьном курсе. Рекомендации и методы решения тригонометрических уравнений.

    курсовая работа [257,7 K], добавлен 19.10.2011

  • Алгоритм введения понятия ряда Фурье, опирающийся на моделирование физических задач в теоретическом курсе высшей математики для студентов физико-математических и инженерно-технических специальностей вузов. Функции и свойства рядов, их физический смысл.

    курсовая работа [1,8 M], добавлен 20.05.2015

  • Определение минимальной и максимальной точек для функции, имеющей на отрезке [a; b] конечное число критических точек. Ознакомление с примерами нахождения наибольшего и наименьшего значений квадратической, кубической, логарифмической и иных функций.

    презентация [355,9 K], добавлен 20.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.