Основы комбинаторики
Расчет количеств вариантов выбора старосты, заместителя старосты и профорга из группы студентов. Способы распределения работы двумя почтальонами. Различные варианты жеребьевки участников конкурса. Варианты распределения призов по призовым номинациям.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.03.2013 |
Размер файла | 19,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. Задача 1
В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует способов это сделать?
Решение
Старостой может быть выбран любой из 30 студентов, заместителем - любой из оставшихся 29, а профоргом - любой из оставшихся 28 студентов, т.е. n1=30, n2=29, n3=28. По правилу умножения общее число N способов выбора старосты, его заместителя и профорга равно N=n1n2n3=302928=24360.
2. Задача 2
Два почтальона должны разнести 10 писем по 10 адресам. Сколькими способами они могут распределить работу?
Решение
Первое письмо имеет n1=2 альтернативы-либо его относит к адресату первый почтальон, либо второй. Для второго письма также есть n2=2 альтернативы и т.д., т.е. n1=n2=…=n10=2. Следовательно, в силу правила умножения общее число способов распределений писем между двумя почтальонами равно
.
3. Задача 3
В ящике 100 деталей, из них 30 - деталей 1-го сорта, 50 - 2-го, остальные - 3-го. Сколько существует способов извлечения из ящика одной детали 1-го или 2-го сорта?
Решение
Деталь 1-го сорта может быть извлечена n1=30 способами, 2-го сорта - n2=50 способами. По правилу суммы существует N=n1+n2=30+50=80 способов извлечения одной детали 1-го или 2-го сорта.
5. Задача 5
Порядок выступления 7 участников конкурса определяется жребием. Сколько различных вариантов жеребьевки при этом возможно?
Решение
Каждый вариант жеребьевки отличается только порядком участников конкурса, т.е. является перестановкой из 7 элементов. Их число равно
6. Задача 6
вариант жеребьевка конкурс приз
В конкурсе по 5 номинациям участвуют 10 кинофильмов. Сколько существует вариантов распределения призов, если по всем номинациям установлены различные премии?
Решение
Каждый из вариантов распределения призов представляет собой комбинацию 5 фильмов из 10, отличающуюся от других комбинаций, как составом, так и их порядком. Так как каждый фильм может получить призы как по одной, так и по нескольким номинациям, то одни и те же фильмы могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 10 элементов по 5:
7. Задача 7
В шахматном турнире участвуют 16 человек. Сколько партий должно быть сыграно в турнире, если между любыми двумя участниками должна быть сыграна одна партия?
Решение
Каждая партия играется двумя участниками из 16 и отличается от других только составом пар участников, т.е. представляет собой сочетания из 16 элементов по 2. Их число равно
8. Задача 8
В условиях задачи 6 определить, сколько существует вариантов распределения призов, если по всем номинациям установлены одинаковые призы?
Решение
Если по каждой номинации установлены одинаковые призы, то порядок фильмов в комбинации 5 призов значения не имеет, и число вариантов представляет собой число сочетаний с повторениями из 10 элементов по 5, определяемое по формуле
9. Задача 9
Садовник должен в течении трех дней посадить 6 деревьев. Сколькими способами он может распределить по дням работу, если будет сажать не менее одного дерева в день?
Решение
Предположим, что садовник сажает деревья в ряд, и может принимать различные решения относительно того, после какого по счету дерева остановиться в первый день и после какого - во второй. Таким образом, можно представить себе, что деревья разделены двумя перегородками, каждая из которых может стоять на одном из 5 мест (между деревьями). Перегородки должны стоять там по одной, поскольку иначе в какой-то день не будет посажено ни одного дерева. Таким образом, надо выбрать 2 элемента из 5 (без повторений). Следовательно, число способов .
10. Задача 10
Сколько существует четырехзначных чисел (возможно, начинающихся с нуля), сумма цифр которых равна 5?
Решение
Представим число 5 в виде суммы последовательных единиц, разделенных на группы перегородками (каждая группа в сумме образует очередную цифру числа). Понятно, что таких перегородок понадобится 3. Мест для перегородок имеется 6 (до всех единиц, между ними и после). Каждое место может занимать одна или несколько перегородок (в последнем случае между ними нет единиц, и соответствующая сумма равна нулю). Рассмотрим эти места в качестве элементов множества. Таким образом, надо выбрать 3 элемента из 6 (с повторениями). Следовательно, искомое количество чисел
11. Задача 11
Сколькими способами можно разбить группу из 25 студентов на три подгруппы А, В и С по 6, 9 и 10 человек соответственно?
Решение
Здесь n=25, k=3, n1=6, n2=9, n3=10. Согласно формуле, число таких разбиений равно
12. Задача 12
Сколько существует семизначных чисел, состоящих из цифр 4, 5 и 6, в которых цифра 4 повторяется 3 раза, а цифры 5 и 6 - по 2 раза?
Решение
Каждое семизначное число отличается от другого порядком следования цифр, при этом фактически все семь мест в этом числе делятся на три группы: на одни места ставится цифра «4», на другие места - цифра «5», а на третьи места - цифра «6». Таким образом, множество состоит из 7 элементов (n=7), причем n1=3, n2=2, n3=2, и, следовательно, количество таких чисел равно
Размещено на Allbest.ru
...Подобные документы
Возможные варианты расчета вероятности событий. Выборочное пространство и события, их взаимосвязь. Общее правило сложения вероятностей. Законы распределения дискретных случайных величин, их математическое ожидание. Свойства биномиального распределения.
презентация [1,4 M], добавлен 19.07.2015Понятие и виды статистических рядов распределения, основные формы их представления. Расчет и анализ показателей, характеризующих центральную тенденцию, вариацию, структуру и форму ряда распределения. Проведение сглаживания эмпирического распределения.
курсовая работа [698,3 K], добавлен 07.06.2011Проверка гипотезы о законе распределения. Определение значения вероятности по классам распределения случайных величин нефтеносных залежей. Расчет распределения эффективных мощностей месторождения, которое подчиняется нормальному закону распределения.
презентация [187,0 K], добавлен 15.04.2019Расчет параметров экспериментального распределения. Вычисление среднего арифметического значения и среднего квадратического отклонения. Определение вида закона распределения случайной величины. Оценка различий эмпирического и теоретического распределений.
курсовая работа [147,0 K], добавлен 10.04.2011Определение вероятность срабатывания устройств при аварии. Расчет математического ожидания, дисперсии и функции распределения по заданному ряду распределения. Построение интервального статистического ряда распределения значений статистических данных.
контрольная работа [148,8 K], добавлен 12.02.2012Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
контрольная работа [36,5 K], добавлен 14.11.2010Построение полигона относительных частот, эмпирической функции распределения, кумулянты и гистограммы. Расчет точечных оценок неизвестных числовых характеристик. Проверка гипотезы о виде распределения для простого и сгруппированного ряда распределения.
курсовая работа [216,2 K], добавлен 28.09.2011Вероятность совместного появления двух белых шаров. Расчет числа исходов, благоприятствующих интересующему событию. Функция распределения случайной величины. Построение полигона частот, расчет относительных частот и эмпирической функции распределения.
задача [38,9 K], добавлен 14.11.2010Определение математического ожидания и дисперсии параметров распределения Гаусса. Расчет функции распределения случайной величины Х, замена переменной. Значения функций Лапласа и Пуассона, их графики. Правило трех сигм, пример решения данной задачи.
презентация [131,8 K], добавлен 01.11.2013Вычисление накопленных частостей и построение эмпирических функций вероятности отказов, безотказной работы пресса для силикатного кирпича и гистограмму плотности распределения. Статистическая оценка параметров теоретического распределения ресурса.
контрольная работа [137,8 K], добавлен 11.01.2012Определение точечной оценки средней наработки до отказа, вероятности безотказной работы. Построение функции распределения, верхней и нижней доверительной границы. Показатели надежности при известном и неизвестном виде закона распределения наработки.
контрольная работа [79,9 K], добавлен 01.05.2015Пространства элементарных событий. Совместные и несовместные события. Функция распределения системы случайных величин. Функции распределения и плотности распределения отдельных составляющих системы случайных величин. Условные плотности распределения.
задача [45,4 K], добавлен 15.06.2012Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.
лабораторная работа [52,3 K], добавлен 19.08.2002Вероятность появления события в серии из независимых испытаний. Закон распределения дискретной случайной, интегральной, дифференциальной, имперической функции распределения, математическое ожидание, дисперсия, и среднее квадратическое отклонение.
контрольная работа [397,9 K], добавлен 15.11.2010Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.
реферат [325,3 K], добавлен 23.01.2011Оценки параметров распределения, наиболее важные распределения, применяемые в математической статистике: нормальное распределение, распределения Пирсона, Стьюдента, Фишера. Факторное пространство, формулирование цели эксперимента и выбор откликов.
реферат [105,5 K], добавлен 01.01.2011Составление характеристики непрерывного признака. Методы составления приближенного распределения признака, имеющего непрерывное распределения. Относительные частоты и их плотности. Статистическое распределение частот интервального вариационного ряда.
творческая работа [17,8 K], добавлен 10.11.2008Вариация признаков в совокупности. Типы рядов распределения: атрибутивные и вариационные. Классификация по характеру вариации. Основные характеристики и графическое изображение вариационного ряда. Показатели центра распределения и колеблемости признака.
курсовая работа [110,0 K], добавлен 23.07.2009Вероятность совместного выполнения двух неравенств в системе двух случайных величин. Свойства функции распределения. Определение плотности вероятности системы через производную от соответствующей функции распределения. Условия закона распределения.
презентация [57,9 K], добавлен 01.11.2013Особенности функции распределения как самой универсальной характеристики случайной величины. Описание ее свойств, их представление с помощью геометрической интерпретации. Закономерности вычисления вероятности распределения дискретной случайной величины.
презентация [69,1 K], добавлен 01.11.2013