Зачем нужна математика
Происхождение и значение понятия математика. Ее роль в современной науке, применение в разных областях научного знания. Интернациональный язык чисел. Изобретение электронно-вычислительных машин. Известные высказывания о математике гениальных людей.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 11.04.2013 |
Размер файла | 16,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
МИНОБНАУКИ России
ФГБОУ ВПО СамГТУ
Инженерно-экономический факультет
Кафедра Высшей математики и прикладной информатики
Реферат
“Зачем нужна математика”
Выполнила:
Михайлова Маргарита Васильевна
Приняла:
Бенгина Татьяна Алексеевна
Самара 2012
Введение
математика наука число электронный
Как любой нормальный ребенок, ещё в школьные годы, меня волновал вопрос: Зачем же нужна математика? Тогда, я быстро нашла на него ответ, научившись правильно подсчитывать сдачу, считать, сколько мне осталось накопить до нужных бус и браслетов, под каким углом кидать камень по воде, чтобы получилась «лягушка».
Сейчас, будучи студентом университета, я попытаюсь ещё раз задать себе вопрос о значение математики в нашей жизни и разобраться в нём глубже.
Честно говоря, я думала, что математика не играет уж такую великую роль в жизни людей, но когда начала писать реферат и задумываться на эту тему, оказалось, что я была не права. О таком большом значении и важности математики в жизни людей я и не догадывалась.
Тяжело представить, но когда-то люди совсем не умели считать! Факты убедительно свидетельствуют о том, что счет возник раньше, чем названия чисел. Человек пользовался окружавшими его однотипными предметами: пальцы, камешки, узелки, нарисованные на стене черточки, зарубки на палках и на деревьях, кучки камней и т.п. При возникновении языка слова связываются только с теми понятиями, которые уже существуют, т. е. распознаются. Слова "один", "два" и, возможно, "три" появляются независимо от счета. Счисление (нумерация) - совокупность приёмов наименования и обозначения чисел. Когда счет становится распространенным и привычным делом, для наиболее часто встречающихся (т. е. небольших) групп стандартных предметов возникают и словесные обозначения. С усложнением хозяйственной деятельности людей понадобилось вести счет в более обширных пределах, что потребовало создания более сложных счётных устройств. Это различные счёты (абак, соробан, суан-пан и т.п.) и позднее в средние века появляются механические счётные.
Во многом благодаря математике цивилизация стала такой, какая она есть сейчас: развитой, высокотехнологичной, образованной и обеспеченной. Математическая наука позволила развиться цивилизации во всех ее аспектах.
1. Значение понятия математика
Название "математика" происходит от греческого слова "матейн" (mathein) - учиться, познавать. Древние греки вообще считали, что понятия "математика" (mathematike) и "наука", "познание" (mathema) - синонимы. Им было свойственно такое понимание универсализма этой отрасли знания, которое два тысячелетия спустя выразил Рене Декарт, писавший: "К области математики относят науки, в которых рассматриваются либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звезды, звуки или что-нибудь другое...; таким образом, должна существовать некая общая наука, объясняющая все, относящееся к порядку и мере, не входя в исследование никаких частных предметов..." Другое объяснение происхождения слова "математика" связано с греческим словом "матема" (mathema), что означает урожай, сбор урожая. Разметка земельных участков (геометрия), определение сроков полевых работ (на основе астрономических наблюдений и вычислений), подготовка необходимого количества посевных материалов и подсчет собранного урожая требовали серьезных математических знаний.
2. Роль математики в науке
Роль математики в современной науке постоянно возрастает. Это связано с тем, что, во-первых, без математического описания целого ряда явлений действительности трудно надеяться на их более глубокое понимание и освоение, а, во-вторых, развитие физики, лингвистики, технических и некоторых других наук предполагает широкое использование математического аппарата. Более того, без разработки и использования последнего было бы, например, невозможно ни освоение космоса, ни создание электронно-вычислительных машин, нашедших применение в самых различных областях человеческой деятельности.
Благодаря математическим знаниям и навыкам мы решаем не только арифметические задачи. Это наука позволяет развивать гибкость ума, что нужно для принятия объективного решения любой задачи. Эта не только задачи математического характера, но и различные жизненные ситуации, требующие рассмотрения «под разными углами». Чтобы понять, познать сущность проблемы, нужно рассмотреть ее со всех сторон, что возможно благодаря воображению.
Математика - наука точная, которая не терпит ошибок. Именно благодаря этой ее черте математические законы легли в основу всех изобретений, начиная примитивными в виде рычагов и маятников и заканчивая суперкомпьютерами.
3. Математический язык
Выводимые в математике законы и закономерности являются объективными и применимыми во всех остальных областях человеческого знания. На ее законы опирается физика, химия, география, геология и многие другие области научного знания, в которых просто невозможно обойтись без математики.
Применяемый в математике формульный язык является ясным для всех посвященных в него ученых независимо от национальности, вероисповедания и языка. Благодаря нему новые открытия и доказательства в мире математики становятся известными в кратчайшие сроки.
Математика как наука основывается на разнообразие математических моделей, главной задачей которых является отображение реальных событий и явлений. Отсюда следует и главная цель математики с практической ее стороны - разработка таких моделей, которые смогли бы в достаточной мере объяснить исследуемое явление или объект.
Одной из основ математического знания является применение языка чисел ко всем моделируемым объектам. Число в математике подобно букве в алфавите, без него никуда. Язык чисел является интернациональным, понятным каждому образованному человеку.
Математическое знание позволяет человеку быстрее и правильнее выявлять взаимосвязи в происходящих вокруг событиях, поступать грамотнее и, что главное, логичнее, а также обладать конструктивным подходом в решении различных вопросов. Человека, который хорошо знает математику, можно назвать образованным и логичным.
Сейчас мы привыкли, что все мгновенно устаревает, для компьютера год - уже приговор. А Вы представьте, что все то, что была заложена еще две тысячи лет назад по математике до сих пор актуально, что все те математические законы и теоремы, которые были сформулированы знаменитыми математиками тех времен, до сих пор верны. Почти ни что не изменилось с того времени.
4. Математика - страна без границ
Не раз приходилось слышать фразу о том, что математика - страна без границ. Несмотря на свою банальность, фраза о математике имеет под собой очень веские основания. Математика в жизни человека занимает особое место. Мы настолько срослись с ней, что попросту не замечаем её.
А ведь с математики начинается всё. Ребёнок только родился, а первые цифры в его жизни уже звучат: рост, вес.
Малыш растет, не может выговорить слова "математика", а уже занимается ею, решает небольшие задачи по подсчету игрушек, кубиков. Да и родители о математике и задачах не забывают. Готовя ребенку пищу, взвешивая его, им приходится использовать математику. Ведь нужно решить элементарные задачи: сколько еды нужно приготовить для малыша, учитывая его вес.
Строители делают планировку квартир, оптимальную планировку квартир, длину и ширину коридора, размеры комнат помогают найти из простых функции. У Вас есть площадь, основные параметры дома (длина и ширина), примерный размер коридора, на основании этого составляется система элементарных функций, в которых неизвестными остаются только параметры комнат, того, что Вас интересует. Затем данная система сводиться в одно уравнение, дифференцируется, исследуется на монотонность, и находятся ее точки экстремума. Именно точки экстремума и являются оптимальными, тема, которые выгоднее всего использовать. Значения неизвестных, полученные в точках экстремума, и используются строителями.
В школе математических задач приходится много и сложность их с каждым годом растет. Математические задачи развивают мышление, логику, комплекс умений: умение группировать предметы, раскрывать закономерности, определять связи между явлениями, принимать решения. Очень часто решения таких задач являются просто математическим расчётом.
Занятия математикой, решение математических задач развивает личность, делает её целеустремленнее, активнее, самостоятельнее. Вспомните хотя бы своего одноклассника, хорошо знавшего математику, быстро умевшего решать задачи. Его часто называли умником, математиком, "задачником". Он мог решить задачи, аргументировал свой выбор, мог критически оценить себя и своих одноклассников. Да и успеваемость по остальным предметам, кроме математики, оказывалась на порядок выше. Именно математическое мышление помогало ему в этом.
Казалось бы, что после школы математика нигде не пригодится. Увы! Тут приходится использовать математику ещё чаще. Во время учёбы в вузе, на работе и дома нужно постоянно решать задачи, и не только математические. Какова вероятность успешной сдачи экзамена по математике? Сколько денег нужно заработать, чтобы купить квартиру? Сколько можно получить, занимаясь математикой и решением математических задач? И тут на помощь придёт математика. Она следует за человеком везде, помогает ему решать задачи, делает его жизнь намного удобнее.
5. Математика в древности
Древние Египтяне никогда бы не построили свои Великие пирамиды без простых законов математики. Кажется, что может быть проще, чем провести прямую линию?! А ведь чтобы сделать сторону пирамиды, необходима прямая линия длиною в несколько километров! Египтянам удалось додуматься, как решить задачу и навеки войти в историю.
Многие правила из школьных учебников арифметики и геометрии были известны древним грекам две с лишним тысячи лет назад. Другие древние народы -- египтяне, вавилоняне, китайцы, народы Индии -- в третьем тысячелетии до нашего летосчисления имели сведения по геометрии и арифметике, которых не хватает некоторым ученикам пятого или шестого класса. Ведь всюду, где надо что-то считать, измерять, сравнивать, без математики не обойтись. А чем дальше, тем больше и точнее нужно было считать. С каждым десятилетием математика становилась всё нужнее людям. Теперь расчётами и вычислениями приходиться заниматься не только самим математикам: и инженеры, и моряки, и строители на каждом шагу сталкивались с вычислениями.
6. Кому еще помогает математика
Также математика помогает астрономам, в определении путей далеких звезд. Инженерам в расчете реактивных самолетов, кораблей. Физику открывает законы атомного ядра. Моряку указывает путь корабля в океане.
В наше время появляется всё больше и больше вычислительных машин, сложных станков, различных автоматов, поэтому математика нужна не только инженерам и физикам, но и обычным мастерам и рабочим на заводе.
Однако ещё несколько десятков лет назад встречалось немало таких задач, решить которые было практически невозможно, хотя математики и знали, как их нужно решать. Бывало, что для решения одной единственной задачи десятки людей работали несколько лет. Вычисления шли медленно. Главные «инструменты» математика были те же, что во времена древних греков -- собственная голова и чистый лист бумаги с карандашом.
И вот у математики появился новый могучий помощник, который называется электронно-вычислительной машиной.
С изобретением электронно-вычислительных машин началась новая эпоха в математике и многих других науках.
Нам нужно сложить тысячу больших чисел. Если складывать числа на бумаге столбиком, то это, вероятно, займет часа четыре. Опытный бухгалтер на счётах сложит тысячу чисел примерно за час. А электронно-вычислительной машине понадобится для этой работы доля секунды. К тому же для проверки она проделает вычисление несколько раз. Существующие быстродействующие компьютеры работают в сотни тысяч раз быстрее человека.
Для предсказания завтрашней погоды требовалось проделать тысячи арифметических действий. При ручном счёте два специалиста потратили бы на эти вычисления пять лет, а машина выполнила работу за час.
Например, во многих больших аэропортах компьютер вместо человека-диспетчера управляет взлётом и посадкой самолётов. Машина оказывается гораздо лучшим диспетчером, чем человек: она быстрее «думает», никогда не волнуется, не устаёт и почти никогда не ошибается. Выходит, что «с помощью» электронно-вычислительной машины математика может управлять самолётами!
Вычислительные машины управляют поездами, метро, искусственными спутниками Земли, заводами и даже переводят книги с одного языка на другой. Каждая такая машина работает по законам математики.
7. Известные высказывания о математике
Недаром гениальный учёный Карл Фридрих Гаусс говорил, что математика - царица наук!
«Математику только зачем учить надо, что она ум в порядок приводит» - это слова нашего знаменитого и гениального М. Ломоносов.
"Математика - гимнастика ума" - говорил великий полководец Суворов.
"Наука только тогда достигает совершенства, когда она начинает пользоваться математикой" - утверждал всемирно известный политик и философ Маркс.
“Великая книга природы написана математическими символами” - говорил Г. Галилей.
«Человек, не знающий математики, не способен ни к каким другим наукам» - говорил Р. Бэкон
Никогда ещё математика не была настолько всеобъемлющей и такой нужной людям наукой, как сегодня. О том, какой будет математика завтра, говорить трудно. Она развивается сейчас так стремительно, так часто делаются в ней новые открытия, что гадать о том, что будет, пожалуй, бесполезно. Одно можно сказать наверняка: завтра математика станет ещё могущественнее, ещё важнее и нужнее людям, чем сегодня.
Список литературы
1. Лопатников Л.И. Экономико-математический словарь: Словарь современной экономической науки.
2. И.Я. Депман. История арифметики.
3. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики.
4. Высшая математика для экономистов. Под редакцией Кремера Н.Ш.
5. Замков О.О., Толстопятенко А.В., Череленых Ю.Н. Математические методы в экономике.
Размещено на Allbest.ru
...Подобные документы
Значение понятия математика. Ее роль в науке. Математика как наука основанная на разнообразие математических моделей, задачей которых является отображение реальных событий и явлений. Особенности математического языка. Известные высказывания о математике.
реферат [21,7 K], добавлен 07.05.2013Как высшая математика разрешает философские парадоксы. Математика в апориях Зенона. Точная математическая формулировка интуитивного физического или метафизического понятия непрерывного движения. Попытки избавления от допущений в математических выкладках.
реферат [320,7 K], добавлен 05.01.2013Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат [20,3 K], добавлен 24.11.2009Математика как одна из самых древних и консервативных наук. Понятие числа, построение их множеств, особенности натуральных чисел, представление иррациональных чисел. Смысл категории "пространство", последствия применения некорректных методов познания.
статья [32,3 K], добавлен 28.07.2010Понятие и история формирования категории "последовательность", ее значение в современной математике. Свойства и аналитическое задание последовательности, роль в развитии других областей знания. Решение задач на вычисление пределов последовательностей.
презентация [665,0 K], добавлен 17.03.2017Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.
монография [575,3 K], добавлен 28.03.2012Математика как язык науки. Математический язык описания вечности и пространства. Математика является языком науки в целом, но каждая конкретная наука должна "разговаривать" на собственном (специфическом) диалекте этого языка.
реферат [21,8 K], добавлен 09.06.2006Основные понятия аксиоматической теории. Аксиоматический метод – фундаментальнейший метод организации и умножения научного знания в самых разных его областях. Этапы развития аксиоматического метода в науке. Евклидова система обоснования геометрии.
курсовая работа [28,9 K], добавлен 12.05.2009Вавилонская система счисления, таблицы обратных чисел и математика для исследования движений планет. Египетский календарь и введение символа для обозначения нуля у майя. Греческая математика, Индия и арабы. Современная математика и математический анализ.
реферат [49,7 K], добавлен 27.04.2009Учебное пособие по математике для младших классов. Таблицы умножения и деления. Решение задач на сравнение. Работа с большими числами. Разбор чисел по разрядным слагаемым. Умножение и деление в столбик. Справочник величин. Нахождение доли от числа.
учебное пособие [400,5 K], добавлен 20.02.2010Система счисления, применяемая в современной математике, используемые в ЭВМ. Запись чисел с помощью римских цифр. Перевод десятичных чисел в другие системы счисления. Перевод дробных и смешанных двоичных чисел. Арифметика в позиционных системах счисления.
реферат [75,2 K], добавлен 09.07.2009Конспект лекций по дискретной математике
курс лекций [73,1 K], добавлен 07.08.2007Математика Древнего и Средневекового Китая. Правило двух ложных положений. Системы линейных уравнений со многими неизвестными. Начальные этапы развития тригонометрии. Создание позиционной десятичной нумерации. Арифметика натуральных чисел и дробей.
дипломная работа [593,1 K], добавлен 22.12.2012Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.
реферат [25,8 K], добавлен 29.05.2010Эвристика и особенности применения эвристики в математике. Понятие доказательства в математике. Эвристика как метод научного познания. Эвристический подход к построению математических доказательств в рамках логического подхода, при доказательстве теорем.
курсовая работа [177,2 K], добавлен 30.01.2009Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.
презентация [124,5 K], добавлен 17.05.2012Развитие математики в древнем Китае со II в. до н.э. по VII в.н.э. Древнее математическое "Десятикнижье". Зарождение группового десятичного счёта и мультипликативного принципа фиксирования чисел в эпоху Инь. Классическая "Математика в девяти книгах".
реферат [22,5 K], добавлен 09.11.2010Содержание математики как системы математических моделей и инструментов для их создания. Возникновение "теории идей". Натуральные числа, множество целых чисел, рациональное число, вещественное или действительное число. Существующая теория чисел.
реферат [81,7 K], добавлен 13.01.2011Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат [32,6 K], добавлен 06.09.2006Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.
реферат [18,3 K], добавлен 24.05.2012