Н.И. Лобачевский и открытие неевклидовой геометрии. Философское значение открытия неевклидовой геометрии

Краткая биографическая справка из жизни Н.И. Лобачевского. История появления геометрии. Модель Пуанкаре, Клейна и интерпретация Бельтрами. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника и круга, длина окружности.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 15.04.2013
Размер файла 367,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Геометрия - это одна из древнейших наук. Исследовать различные пространственные формы издавна побуждало людей их практическая деятельность. Древнегреческий ученый Эдем Родосский в IV веке до нашей эры писал: «Геометрия была открыта египтянами, и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития реки Нил, постоянно смывавшей границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребности человека».

Многие первоначальные геометрические сведения получили также шумеро-вавилонские, китайские и другие ученые древнейших времен. Устанавливались они сначала только опытным путем, без логических доказательств.

Как наука, геометрия впервые сформировалась в Древней Греции, когда геометрические закономерности и зависимости, найденные ранее опытным путем, были приведены в надлежащую систему и доказаны.

В III веке до нашей эры греческий ученый Евклид привел в систему известные ему геометрические сведения в большом сочинении «Начала». Эта книга более двух тысяч лет служила учебником геометрии во всем мире.

В своём реферате я хочу показать, что кроме геометрии, которую изучают в школе (Геометрии Евклида или употребительной геометрии), существует еще одна геометрия, геометрия Лобачевского. Эта геометрия существенно отличается от евклидовой, например, в ней утверждается, что через данную точку можно провести бесконечно много прямых, параллельных данной прямой, что сумма углов треугольника меньше 180?? В геометрии Лобачевского не существует прямоугольников, подобных треугольников и так далее.

Я выбрал данную тему по нескольким причинам: теория геометрии Лобачевского помогает взглянуть по-другому на окружающий нас мир, это интересный, необычный и прогрессивный раздел современной геометрии, она дает материал для размышлений - в ней не все просто, не все ясно с первого взгляда, чтобы ее понять, нужно обладать фантазией и пространственным воображением. Ситуация с геометрией Лобачевского и геометрией Евклида во многом похожа на ситуацию с Теорией относительности Эйнштейна и классической физикой. Геометрия Лобачевского и ОТП Эйнштейна это прогрессивные взаимосвязанные теории, выполняющиеся на огромных величинах и расстояниях, и остающимися верными на приближениях к нулю. В пространственной модели ОТП используется не обычная евклидовая плоскость, а искривленное пространство, на котором верна теория Лобачевского.

Неевклидова геометрия появилась вследствие долгих попыток доказать V постулат Евклида, аксиому параллельности. Эта геометрия во многом удивительна, необычна и во многом не соответствует нашим привычным представлениям о реальном мире. Но в логическом отношении данная геометрия не уступает геометрии Евклида.

Биография Н.И. Лобачевского

лобачевский геометрия теорема пифагор

Николай Иванович Лобачевский родился 1 декабря (20 ноября) 1792 года в Нижнем Новгороде в бедной семье мелкого чиновника.

Девятилетним мальчиком он был привезен матерью в Казань и ее стараниями устроен вместе с двумя братьями в гимназию на казенное содержание, С этого времени его жизнь и работа протекают в Казани.

В гимназии, как мы знаем по "Воспоминаниям" С.Т.Аксакова, увлекательно преподавал математику талантливый учитель Г.И. Карташевский, воспитанник Московского университета. Он поставил изучение математики на значительную высоту. И когда юный 14-летний Лобачевский становится в феврале 1807 года студентом университета (тоже казеннокоштным), он уже вскоре проявляет особенную склонность к изучению физико-математических наук, обнаруживая выдающиеся способности. В этот, несомненно, сказались результаты педагогической деятельности Г.И. Карташевского.

Однако в университете Лобачевскому уже не удалось слушать лекции Карташевского, так как последний в декабре 1806 г. был отстранен от должности директором И.Ф. Яковкиным, как "проявивший дух неповиновения и несогласия. Математические курсы в университете стал вести М.Ф. Бартельс, прибывший в Казань в 1808 году.

Успехи студента Н.И. Лобачевского, соревнующегося в своих занятиях с И.П. Симоновым, впоследствии известным астрономом и участником кругосветного плавания, неизменно вызывали одобрение М.Ф. Бартельса и других профессоров.

3 августа 1811 г. Лобачевский утверждается магистром. Его руководитель профессор М.Ф. Бартельс был квалифицированным математиком и опытным преподавателем, но не вел творческой работы. Лобачевский изучил под его руководством классические труды по математики и механике: "Теорию чисел" (Disquisitiones Arithmeticae) Гаусса и первые томы "Небесной механики" Лапласа. Представив два научных исследования по механике и по алгебре ("Теория эллиптического движения небесных тел" (1812 г.) и "О разрешимости алгебраического уравнения xn - 1 = 0" (1813 г.), он был ранее срока в 1814 г. произведен в адъюнкт-профессоры (доценты).

Со следующего года он ведет самостоятельное преподавание, постепенно расширяя круг читаемых им курсов и уже задумываясь над перестройкой начал математики. Еще через год он получает звание экстраординардого профессора.

Но вскоре в университете создается очень тяжелая обстановка для работы. В целях борьбы с революционными настроениями и "вольнодумством" правительство Александра I, проводя все более реакционную политику, ищет идеологической опоры в религии, в мистико-христианских учениях. Университеты в первую очередь подвергаются проверке.

Для обследования Казанского университета был назначен и прибыл в марте 1819 г. член Главного правления училищ М.Л. Магницкий, который использовал свое назначение в карьеристских целях. В своем отчете он приходит к выводу, что университет "причиняет общественный вред полуученностью образуемых им воспитанников...", а поэтому "подлежит уничтожению в виде публичного его разрушения" ради назидательного примера для других правительств.

Однако университет не был уничтожен. Александр I решил его исправить. Попечителем Казанского учебного округа был назначен Магницкий, который и приступил к энергичному обновлению университета. Он начал свою деятельность увольнением девяти профессоров. Была установлена тщательная слежка за содержанием лекций и студенческих записок и введен суровый казарменный режим для студентов.

Семь лет этой церковно-полицейской системы принесли Лобачевскому тяжелые испытания, но не сломили его непокорный дух. Выдержать этот гнет ему помогла только его обширная и многообразная педагогическая, административная и исследовательская деятельность. Он преподает математику на всех курсах вместо уехавшего в Дерпт (Тарту) Бартельса; замещает профессора К. Броннера, не вернувшегося после отпуска в Казань; читает физические курсы и заведует физическим кабинетом; замещает отправившегося в кругосветное плавание астронома И.П. Симонова; читает астрономию и геодезию, приняв в свое ведение обсерваторию. Ряд лет он работает деканом физико-математического отделения. Коллосальный труд вкладывает он в упорядочивание библиотеки и в расширение ее физико-математической части. Он является вместе с тем одним из активнейших членов, а затем и председателем строительного комитета, занятого постройкой главного университетского корпуса. Наконец, несмотря на тысячи текущих дел и обязанностей, Лобачевский не прекращает напряженной творческой деятельности. Он пишет два учебника для гимназий: "Геометрию" (1823 г.) и "Алгебру" (1825 г.). "Геометрия" получает отрицательный отзыв у академика Н. И.Фусса, не оценившего тех изменений, который Лобачевский внес в традиционное изложение, и осудившего введение метрической системы мер, поскольку она создана в революционной Франции. "Алгебра" из-за внутренних проволочек в университете тоже не была напечатана.

Вскоре начинаются столкновения с попечителем. Лобачевский, по словам Магницкого, проявляет дерзость, нарушение инструкций. Магницкий решает установить особенный надзор за его поступками.

Однако и в этих унижающих достоинство человека условиях мысль Лобачевского работает неустанно над строгим построением начал геометрии. Первые следы этой работы мы находим в студенческих записках его лекций по геометрии за 1817 г. Об ней же свидетельствует рукопись учебника "Геометрия" и его "Обозрения преподавания чистой математики" за 1822 - 1823 и 1824 - 1825 гг. Наконец, его искания завершаются гениальным открытием. Разрывая оковы тысячелетних традиций, Лобачевский приходит к созданию новой геометрии. 23 (11) февраля 1826 г. он делает на факультете доклад о новой "Воображаемой геометрии. Этот доклад "Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных" был передан на отзыв профессорам И.М.Симонову, А.Я. Купферу и адъюнкту Н.Д. Брашману. Лобачевский хотел знать мнение своих сотрудников об открытии, величие которого он сознавал, и просил принять сочинение в предполагаемое издание "Ученых Записок" отделения.

Но отзыва не последовало. Рукопись доклада до нас не дошла. Материал этого доклада был включен Лобачевским в его первое сочинение "О началах геометрии", вышедшее в 1829 - 1830 гг. в "Казанском вестнике».

Открытие Лобачевского было сделано им на путях принципиального критического пересмотра самых первых, начальных, геометрических понятий, принятых в геометрии еще со времен Евклида (3 век до н.э.). Это требование безусловной строгости и ясности в началах, это пристальное внимание к вопросам основ науки и углубленный анализ первоначальных понятий характерны вообще для творчества Лобачевского. Избранное им направление исследований способствовало тому, что он не только в геометрии, но и в ряде других областей математики превосходит достигнутый в то время уровень науки: так, им дано уточнение понятия функции, приписанное впоследствии Дирихле; он четко разграничивает непрерывность функции и ее дифференцируемость; им проведены глубокие исследования по тригонометрическим рядам, опередившие его эпоху на много десятилетий; им разработан метод численного решения уравнений, несправедливо получивший впоследствии название метода Греффе, тогда как Лобачевский и независимо от него бельгийский математик Данделен разработали этот метод значительно раньше.

Доклад Н.И. Лобачевского совпал по времени с падением Магницкого. Специальная ревизия выявила ряд злоупотреблений, и мракобес попечитель был смещен и выслан.

Новый попечитель Казанского учебного округа М.Н. Мусин-Пушкин сумел оценить кипучую деятельную натуру Н.И. Лобачевского. Великого геометра избирают вскоре, в 1827 г., ректором и 19 лет он самоотверженно трудится на этом посту, добиваясь расцвета Казанского университета.

Лобачевский стремился претворить в жизнь свою широкую передовую программу университетского образования, представление о которой дает его речь "О важнейших предметах воспитания", произнесенная им через год после назначения ректором.

Лобачевский добивается существенного повышения уровня научно-учебной работы на всех факультетах. Он проводит строительство целого комплекса университетских вспомогательных зданий: библиотеки, астрономической и магнитной обсерватории, анатомического театра, физического кабинета и химической лаборатории. Он пытается создать при университете "Общество наук", но не получает на это разрешения. Журнал смешанного содержания "Казанский вестник" он заменяет организованным им строгим научным журналом "Учеными записками Казанского университета", первая книжка которого выходит в 1834 г. и открывается предисловием Лобачевского, освещающим цели научного издания. В течение 8 лет он продолжает одновременно с ректорством управлять библиотекой. Он сам читает ряд специальных курсов для студентов. Он пишет наставление учителям математики и заботится о постановке преподавания также в училищах и гимназиях. Он принимает участие в поездке в Пензу в 1842 г. для наблюдения солнечного затмения. Умело оберегает он сотрудников и студентов университета во время эпидемии холеры в 1830 г., изолировав университетскую территорию и проводя тщательную дезинфекцию. Он организовал спасение астрономических инструментов и выноску книг из загоревшейся библиотеки во время громадного пожара Казани в 1842 г., причем ему удается отстоять от огня почти все университетские здания. Наконец, он организует чтение научно-популярных лекций для населения и открывает свободный доступ в библиотеку и музеи университета.

И вместе с тем он находит время для непрерывных и обширных научных исследований, посвященных, главным образом, развитию новой геометрии. Его идеи были настолько непривычны, губоки и новы, он настолько обогнал свою эпоху, что современники не смогли понять его и правильно оценить. Его первая работа "О началах геометрии" (1829 - 1830 гг.) была представлена Советом университета в 1832 г. в Академию наук. Но даже академик М.В.Остроградский не понял ее значения и дал на нее отрицательный отзыв:...Книга г-на ректора Лобачевского опорочена ошибкой..., она небрежно изложена и..., следовательно, она не заслуживает внимания Академии&quot. А в 1834 г. в реакционном журнале Ф. Булгарина "Сын отечества" появился издевательский анонимный отзыв об этой работе. "Как можно подумать, чтобы г. Лобачевский, ординарный профессор математики написал с какой-нибудь серьезной целью книгу, которая немного бы принесла чести и последнему школьному учителю! Если не ученость, то по крайней мере здравый смысл должен иметь каждый учитель, а в новой геометрии нередко недостает и сего последнего", - писал неизвестный рецензент, укрывшийся за двумя буквами С.С.

Встретив непонимание и даже издевательство, Лобачевский не прекратил своих исследований. После работы 1829 - 1830 гг. "О начала геометрии" Лобачевский печатает в "Ученых записках": в 1835 г. "Воображаемую геометрию" в 1836 г. "Применение воображаемой геометрии к некоторым интегралам.

С 1835 по 1838 гг. он публикует свою наиболее обширную работу "Новые начала геометрии с полной теорией параллельных. Наконец, в 1840 г. выходят на немецком языке "Геометрические исследования по теории параллельных", где содержится предельно ясное и лаконичное изложение его основных идей.

Эта мужественная борьба за научную истину резко отличает Лобачевского от других современников, приближавшихся тоже к открытию неевклидовой геометрии.

Замечательный венгерский математик Янош Больяи опубликовал на 3 года позже Лобачевского исследование "Аппендикс" - добавление к книге его отца. В этой работе он несколько с иной стороны подошел к тем же результатам, что и Лобачевский. Но, не встретив одобрения и поддержки, он прекратил борьбу. Выдающийся немецкий математик Гаусс, как выяснилось из опубликованных посмертно его переписки, получил некоторые начальные соотношения новой геометрии, но, оберегая свой покой, а также, быть может, не будучи уверен в правильности и объективной значимости этих результатов, запретил своим корреспондентам какие-либо высказывания об его взглядах. Восхищаясь в частной переписке с друзьями геометрическими работами Лобачевского он ни одним словом не высказался о них публично.

Ни одного положительного отклика не получает Лобачевский, кроме единственного высказывания профессора механики Казанского университета П.И. Котельникова, который в актовой речи в 1842 г. отметил, что изумительный труд Лобачевского, построение новой геометрии на предположении, что сумма углов треугольника меньше двух прямых, рано или поздно найдет своих ценителей.

Многолетние плодотворные труды Лобачевского не могли получить положительной оценки у правительства Николая I. В 1846 г. Лобачевский оказался фактически отстраненным от работы в университете. Внешне он получил повышение - был назначен помощником попечителя (однако жалованья ему за эту работу не назначили), но при этом он лишился кафедры и ректорства.

Следует отметить, что менее чем за год до этого он был утвержден в шестой раз ректором университета на очередное четырехлетие. Вместе с тем более года он управлял Казанским учебным округом, заменив М.Н. Мусина-Пушкина, переведенного в Петербург. Указывая на эти свои служебные обязанности, Лобачевский незадолго до неожиданного предписания Министерства рекомендовал вместо себя на кафедру математики учителя Казанской гимназии А.Ф.Попова, защитившего докторскую диссертацию. Он считал необходимым поощрить молодого способного ученого и находил несправедливым занимать при таких обстоятельствах кафедру. Но, лишившись кафедры и ректорства и оказавшись в должности помощника попечителя, Лобачевский потерял возможность не только руководить университетом, но и вообще действенно участвовать в жизни университета.

Насильственное отстранение от деятельности, которой он посвятил свою жизнь, ухудшение материального положения, а затем и семейное несчастье (в 1852 г. у него умер старший сын) разрушающе отразилось на его здоровье; он сильно одряхлел и стал слепнуть. Но и лишенный зрения, Лобачевский не переставал приходить на экзамены, на торжественные собрания, присутствовал на ученых диспутах и не прекращал научных трудов.

Непонимание значения его новой геометрии, жестокая неблагодарность современников, материальные невзгоды, семейное несчастье и, наконец, слепота не сломили его мужественного духа. За год до смерти он закончил свой последний труд "Пангеометрия", диктуя его своим ученикам.

24 (12) февраля 1856 г. кончилась жизнь великого ученого, целиком отданная русской науке и Казанскому университету.

Происхождение Неевклидовой геометрии

Среди аксиом Евклида была аксиома о параллельности прямых, а точнее, пятый постулат о параллельных линиях: если две прямые образуют с третьей по одну ее сторону внутренние углы, сумма которых меньше развернутого угла, то такие прямые пересекаются при достаточном продолжении с одной стороны.

В современной формулировке она говорит о существовании не более одной прямой, проходящей через данную точку вне данной прямой и параллельной этой данной прямой.

Сложность формулировки пятого постулата породила мысль о возможной зависимости его от других постулатов, и потому возникали попытки вывести его из остальных предпосылок геометрии. Все попытки заканчивались неудачей. Были попытки доказательства от противного: прийти к противоречию, предполагая верным отрицание постулата. Однако и этот путь был безуспешным.

Оказалось то, что пятый постулат не зависит от предыдущих, а значит, его можно заменить на ему эквивалентный. И в начале XIX века, почти одновременно сразу у нескольких математиков: у К. Гаусса в Германии, у Я. Больяи в Венгрии и у Н. Лобачевского в России, возникла мысль о существовании геометрии, в которой верна аксиома, заменяющая пятый постулат: на плоскости через точку, не лежащую на данной прямой, проходят, по крайней мере, две прямые, не пересекающие данную.

В силу приоритета Н. Лобачевского, который первым выступил с этой идеей в 1826, и его вклада в развитие новой, отличной от евклидовой геометрии последняя была названа в его честь «геометрией Лобачевского».

Аксиоматика планиметрии Лобачевского отличается от аксиоматики планиметрии Евклида лишь одной аксиомой: аксиома параллельности заменяется на ее отрицание - аксиому параллельности Лобачевского:

Найдутся такая прямая и такая не лежащая на ней точка A, что через A проходят по крайней мере две прямые, не пересекающие.

Непротиворечивость системы аксиом доказывается представлением модели, в которой реализуются данные аксиомы.

Три модели геометрии Лобачевского

Выделяют три различные модели геометрии Лобачевского:

1) Модель Пуанкаре

2) Модель Клейна

3) Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)

1) Модель Пуанкаре.

В модели Пуанкаре на евклидовой плоскости E фиксируется горизонтальная прямая x. Она носит название «абсолюта». Точками плоскости Лобачевского считаются точки плоскости E, лежащие выше абсолюта x. Таким образом, в модели Пуанкаре плоскость Лобачевского - это полуплоскость L, лежащая выше абсолюта.

Прямыми плоскости L считаются полуокружности с центрами на абсолюте или лучи с вершинами на абсолюте и перпендикулярные ему.

Рис. 1

Фигура на плоскости Лобачевского - это фигура полуплоскости L. Принадлежность точки фигуре понимается так же, как и на евклидовой плоскости E. При этом отрезком плоскости L считается дуга окружности с центром на абсолюте или отрезок прямой, перпендикулярной абсолюту (рис. 1). Точка K лежит между точками C и D, значит, что K принадлежит дуге CD. В условиях нашей модели это эквивалентно тому, что K' лежит между C' и D', где C', K' и D' - проекции точек C, K и D соответственно на абсолют. Чтобы ввести понятие равенства неевклидовых отрезков в модели Пуанкаре, определяют неевклидовы движения в этой модели. Неевклидовым движением называется преобразование L, которое является композицией конечного числа инверсий с центрами на абсолюте и осевых симметрий плоскости E, оси которых перпендикулярны абсолюту. Инверсии с центром на абсолюте и осевые симметрии

Рисунок 1 плоскости E, оси которых перпендикулярны абсолюту, называют неевклидовыми симметриями. Два неевклидовых отрезка называют равными, если один из них неевклидовым движением можно перевести во второй.

2) Модель Клейна.

За плоскость принимается какой-либо круг (рис. 2.1), за точки - точки принадлежащие этому кругу, за прямые - хорды - конечно, с исключением концов, поскольку рассматривается только внутренность круга. За перемещения принимаются преобразования круга, переводящие его в себя и хорды - в хорды. Соответственно, "конгруэнтными" называются фигуры, переводимые друг в друга такими преобразованиями.

Рис. 2

Очевидно, что в пределах определенной части плоскости (круга), как бы эта часть не была велика, можно провести через данную точку С множество прямых, не пересекающих данной прямой. Внутри круга любого конечного радиуса существует множество прямых (т.е. хорд), проходящих через т. С и не встречающих прямой АВ (рис. 2). Всякая теорема планиметрии Лобачевского является в этой модели теоремой геометрии Евклида и, обратно, всякая теорема геометрии Евклида, говорящая о фигурах внутри данного круга, является теоремой геометрии Лобачевского. Это общее утверждение доказывается проверкой справедливости в модели аксиом геометрии Лобачевского. Поэтому, если в геометрии Лобачевского имеется противоречие, то это же противоречие имеется и в геометрии Евклида.

Далее, всякая теорема геометрии Лобачевского описывает в модели Клейна некоторые факты, имеющие место внутри круга. Именно факты, если мы берем не абстрактный круг, а реальный круг и реальные хорды и интерпритируем теоремы как утверждения об этих реальных вещах, взятые, конечно, с той точностью, которая доступна для наших построений. Таким образом, геометрия Лобачевского в модели Клейна имеет вполне реальный смысл с той точностью, с какой вообще имеет смысл геометрия в применении к реальным телам.

3) Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)

Эудженио Бельтрами (1835-1900) нашел модель для неевклидовой геометрии, показав в своей работе «Опыт интерпретации неевклидовой геометрии» (1868г.), что наряду с плоскостями, на которых осуществляется евклидова геометрия, и сферическими поверхностями, на которые действуют формулы сферической геометрии, существуют и такие реальные поверхности, названные им псевдосферами (рис.4), на которых частично осуществляется планиметрия Лобачевского.

Рис. 3

Рис. 4

Известно, что сферу можно получить вращением полуокружности вокруг своего диаметра. Подобно тому, псевдосфера образуется вращением линии FCE, называемой трактрисой, вокруг ее оси АВ (рис.3). Итак, псевдосфера - это поверхность в обыкновенном реальном пространстве, на котором выполняются многие аксиомы и теоремы неевклидовой планиметрии Лобачевского. Например, если начертить на псевдосфере треугольник, то легко усмотреть, что сумма его внутренних углов меньше 2р. Сторона треугольника - это дуги псевдосферы, дающие кратчайшее расстояние между двумя ее точками и выполняющие ту же роль, которую выполняют прямые на плоскости. Эти линии, называемые геодезическими, можно получить, зажав туго натянутую и политую краской или мелом нить, в вершинах треугольника. Таким образом, для планиметрии Лобачевского была найдена реальная модель - псевдосфера. Формулы новой геометрии Лобачевского нашли конкретное истолкование. Ими можно было пользоваться, например, для решения псевдосферических треугольников. Псевдосферу, которую мы назвали «моделью», Бельтрами назвал интерпретацией (истолкованием) неевклидовой геометрии на плоскости.

Впоследствии, с развитием и введением в математику аксиоматического метода, под интерпретацией (или моделью) некоторой системы аксиом стали понимать любое множество объектов, в которых данная система аксиом находит свое реальное воплощение, то есть, любая совокупность объектов, отношение между которыми полностью совпадают с теми, которые описываются в данной системе аксиом. При этом полагают, что если для некоторой системы аксиом существует или можно построить интерпретацию (модель), то эта система аксиом непротиворечива, то есть, не только сами аксиомы, но и любые теоремы, на них логически основывающиеся никогда не могут противоречить одна другой.

Свойства и понятия

Рассмотрим некоторые свойства, понятия и факты выполняющиеся в геометрии Лобачевского. В данном случае я рассматривал свойства основываясь на модели Клейна. Большинство из них будут выполнятся и на других моделях неевклидовой геометрии.

1) Если прямые CN и CL не встречают прямой АВ, то любая прямая СМ, проходящая через т. C внутри вертикальных углов NCL и N'CL' также не встретит прямой АВ (рис.5). Отсюда первое следствие аксиомы Лобачевского: через т. С вне прямой АВ плоскости АВС, проходит бесчисленное множество прямых, не пересекающихся с прямой АВ.

Рис. 5

2) Если соединить (рис. 5) какую-либо точку прямой DB с т. С, получим прямую, допустим, СК, проходящую через т. С и встречающую АВ. Итак, все прямые, проходящие через т. С внутри прямого угла NCD, разбиваются на две категории, на два класса: встречающие прямую АВ (названные Лобачевским «сходящимися» с АВ) и не встречающие прямую АВ (их Лобачевский называет «расходящимися» с АВ). Любая прямая первой категории образует с перпендикуляром CD угол, меньший угла, образованного перпендикуляром CD с любой прямой второй категории. Вращаясь непрерывно около т. С в направлении против часовой стрелки, прямая СК на известном этапе, допустим в положении CL, перестанет пересекать АВ и из сходящейся перейдет в категорию расходящихся с АВ прямых. Эта предельная прямая CL, служащая переходной прямой, граничной, отделяющей сходящиеся от расходящихся прямых, и названной Лобачевским параллельной к прямой АВ из т. С. Итак, параллельная CL - это не просто расходящаяся прямая, а первая, граничная расходящаяся, т.е. такая, что любая прямая, проходящая через т. С внутри угла, образованного параллельной CL и перпендикуляром CD, является сходящейся прямой, а всякая прямая, проходящая внутри угла LCN будет расходящаяся с прямой АВ. Угол DCL, образованный параллельной CL с перпендикуляром CD, называют углом параллельности.

В силу симметрии относительно перпендикуляра CD внутри прямого угла N'CD получим картину, аналогично той, которую мы имеем в угле NCD, т.е. построив угол DCF равный углу DCL, получим прямую CF, также параллельную прямой АВ слева от перпендикуляра CD. Итак, через т. С, лежащую вне прямой АВ, проходят в плоскости АВС две прямые, параллельные прямой АВ, в одну и другую сторону этой прямой. Все прямые, проходящие внутри вертикальных углов, образованных параллельными прямыми LL' и GG' (в том числе и евклидова «параллельная» NN'), расходятся с АВ; все остальные прямые, проходящие через т. С сходятся с прямой АВ.

Следовательно: а) 2 прямые как АВ и NN', имеющие общий перпендикуляр CD, расходятся; б) если вращать прямую NN' около т. С, допустим, по часовой стрелке, а прямую АВ около т.D в том же направлении так, чтобы углы, образованные этими прямыми с пересекающей их прямой CD, оставались равными, то прямые АВ и NN' остаются расходящимися, т.е. две прямые, образующие при пересечении с третьей прямой равные соответственные углы, расходятся.

3) Из предыдущего положения вытекает, что на параллели Лобачевского различается направление параллельности. Прямая CE параллельна прямой АВ в направлении или в сторону от A к B, прямая CF параллельна той же прямой AB в направлении или в сторону ВА (от В к А) (рис. 5).

Рис. 6

Несмотря на коренные отличия, понятия параллельности у Лобачевского от одновременного понятия в геометрии Евклида, можно доказать, что «параллельность» в смысле Лобачевского тоже обладает свойствами взаимности или симметрии (если прямая а параллельна прямой в, то в параллельна а). И транзитивности (если а и в параллельны с, то а и в параллельны между собой).

Приведем некоторые другие понятия и факты геометрии Лобачевского:

1) Функция Лобачевского.

Как уже говорилось выше, через т. С в плоскости САВ проходят 2 направленные параллели к прямой АВ (СЕ и CF), симметрично расположенные относительно перпендикуляра CD (рис.6). Угол параллельности, образованный каждой из этих параллелей с CD, является острым, его величина не постоянна и зависит от расстояния CD(в геометрии Евклида угол параллельности всегда прямой). То, что угол параллельности острый, вытекает непосредственно из аксиомы Лобачевского. В изменении этого угла с изменением расстояния CD можно убедиться путем следующих рассуждений (рис.7).

Рис. 7

Пусть C'D>CD, CE || AB, в т. С угол параллельности - W. Пусть далее прямая C'E `|| AB в т. С' угол параллельности - W'. В силу свойства транзитивности CE||C'E'. Ясно, что W?W'. Действительно, если допустить, что W= W', то следует также допустить, что C'E' и CE - расходящиеся прямые, как было показано выше, а это неверно. Если обозначить расстояние т. С от прямой АВ, т.е. длину перпендикуляра CD через х, то можно сказать, что угол параллельности есть функция от х, названная «функцией Лобачевского» и обозначаемая П (х). Это монотонно убывающая функция. При изменении аргумента х от 0 до функция П (х),

При х 0, иными словами, если оставаться в пределах сравнительно небольших расстояний, то угол параллельности мало отличается от 2 то есть от этого значения, которое он имеет в евклидовой геометрии, это означает, что геометрия Лобачевского не противоречит, не исключает геометрии Евклида; последнего можно рассматривать как частный случай большой общей геометрии - геометрии Лобачевского. Реальный смысл предельного перехода от геометрии Лобачевского к геометрии Евклида состоит в том, что физика изучает, в конечном счете, только ограниченную, сравнительно небольшую часть пространства. Вот почему в окружающей нас среде (даже в пределах нашей планеты) свойства физического пространства приблизительно таковы, какими мы их знаем из Евклидовой геометрии, но для всего пространства, для мира звезд, для вселенной в целом, они иные, неевклидовы.

2) Сумма углов треугольника меньше 2р.

Рис. 8

Это предположение эквивалентно аксиоме Лобачевского, то есть из него вытекает эта аксиома и наоборот. Для примера докажем первое. Пусть (рис. 8) в прямоугольном треугольнике CDK сумма углов, то есть <р.Это значит, что внутри угла NCK можно построить.

Прямая CL не может пересечь прямой АВ в какой- либо точке М, так как если бы это случилось, то угол DKC, внешний по отношению к треугольнику KCM, равнялся бы внутреннему, не смежному с ним углу треугольника KCM, что противоречит абсолютной геометрии о внешнем угле треугольника. Итак, через т. С, кроме CN, проходит еще одна прямая - CL, не встречающая прямой АВ; следовательно, верна аксиома Лобачевского. Разность (2р-S), то есть между 180є и суммой углов данного треугольника, называется угловым дефектом этого треугольника.

3) Предложение «сумма углов четырехугольника меньше 4р» вытекает из предыдущего. Отсюда следует, что в геометрии Лобачевского нет ни прямоугольников, ни квадратов. Вообще сумма углов n - угольника меньше 2р(n-2).

4) Если три угла одного треугольника соответственно равны трем углам другого треугольника, то эти треугольники равны между собой. Это четвертый признак равенства треугольников в геометрии Лобачевского.

Таким образом, в плоскости Лобачевского треугольник вполне определяется своими углами. Стороны и углы зависят друг от друга. Отсюда ясно, что в геометрии Лобачевского нет подобных фигур. Действительно, ведь из существования подобных фигур вытекает, евклидова аксиома параллельности.

5) Площади. Уже известно, что, чем меньше размеры фигур, которые мы изучаем, тем ближе к геометрии Евклида, в которой угловой дефект треугольника равен 0.

Доказывается следующая теорема: площадь треугольника прямо пропорциональна его угловому дефекту.

Чем меньше размеры фигуры, тем меньше ее дефект, тем меньше площадь. Однако угловой дефект по определениям не может превзойти 2р, следовательно, и площадь треугольника в геометрии Лобачевского не может стать больше некоторой, определенной, конечной величины.

Практическое применение геометрии Лобачевского

1) Теорема Пифагора.

Теорема. Для всякого прямоугольного треугольника плоскости Лобачевского выполняется равенство ch c = ch a ·ch b, где a, b - длины катетов, c - длина гипотенузы этого треугольника, а

ch x=(гиперболический косинус).

Доказательство. Воспользуемся моделью Пуанкаре плоскости Лобачевского на евклидовой полуплоскости. Будем считать (см. рисунок ниже), что вершинам A, B, C данного прямоугольного треугольника соответствуют комплексные числа где так как этого всегда можно добиться с помощью некоторого неевклидова движения.

Рис. 9

Используя формулу

для вычисления неевклидова расстояния между точками z и w в H2, получаем, что

Почленное перемножение двух первых соотношений и приводит, как показывает третье соотношение, к завершению доказательства теоремы.

2) Замечание к теореме Пифагора

Н.И. Лобачевским было замечено, что созданная им неевклидова геометрия в бесконечно малом, то есть в первом приближении, совпадает с геометрией евклидовой плоскости. Проиллюстрируем это на примере теоремы Пифагора. Используя разложение гиперболического косинуса в ряд

получим для теоремы Пифагора соотношение

Исключая теперь члены низшего порядка, приходим к теореме Пифагора евклидовой геометрии:

3) Площадь треугольника

Подробный вывод формулы площади треугольника на плоскости Лобачевского я приводить не буду ввиду его сложности (в нем используется формулы, доказываемые лишь в курсе дифференциальной геометрии).

Рис. 10

Если ABC - треугольник в модели Пуанкаре, меры углов A, B и C - б, в и г соответственно, - мера угла B в треугольнике ABD, а и мера углов B и C в треугольнике BCD. Тогда

Вследствие этого можно сформулировать теорему

Теорема. Для площади треугольника ABC с угламисправедлива формула

Следствие 1. Площадь треугольника плоскости Лобачевского ограничена.

Следствие 2. Если дан выпуклый многоугольник с внутренними углами то

4) Длина окружности и площадь круга.

Теорема. Площадь круга с радиусом r равна

а длина окружности, ограничивающей этот круг, равна , где

Длина неевклидовой окружности не пропорциональна радиусу, как в случае евклидовой геометрии, а растет быстрее. Также площадь неевклидова круга больше площади круга евклидовой плоскости, имеющего тот же радиус.

Философское значение открытия неевклидовой геометрии

Открытие неевклидовой геометрии Лобачевским (1826) внесло коренные изменения в представления о природе пространства. Важными событиями отмечено развитие геометрии на рубеже XIX- XX веков. Начиная с шестидесятых годов прошлого столетия, открытия в области геометрии становятся общематематическим достоянием. Это хорошо видно из известной "эрлангенской" программы, предложенной Феликсом Клейном (1849-1925) в 1872 г., согласно которой разделы геометрии (метрической, проективной) иерархично соподчинены по степени обобщения. Не имея возможности подробно останавливаться и даже частично осветить множество важнейших проблем развития математики и геометрии этого периода трансформации, отметим все же некоторые моменты философского плана. Созерцание было элиминировано из новых геометрических теорий: аксиомы перестали быть "очевидными истинами". Их заменили простые и чистые "начала", конвенционально выбранные как исходные моменты. Если аксиомы считаются верными, будут истинны и теоремы, корректно выведенные из них, что гарантирует истинность системы в целом.

Возникает вопрос: если аксиомы суть чистые постулаты в качестве исходных моментов рассуждения, то что и как страхует систему в целом? Дедуцируя теоремы одну из другой, можем ли мы быть уверены в том, что, споткнувшись об одно противоречие, система не опрокинется вместе со всем, что в ней построено? Вопрос далеко не праздный, ведь неевклидова геометрия основывается на тезисе, что истинность теории - в ее непротиворечивости. Это исходное положение "формалистической" программы Давида Гильберта (1862-1943), потерпевшей, как известно, крушение. Неудача постигла и теорию множеств Кантора из-за внутренних антиномий.

С открытием неевклидовых геометрий идея несомненных и самоочевидных истин (аксиом) была отвергнута. В зависимости от начальных принципов доказательств и их характера, проведено разделение геометрии на математическую и физическую. Первая исходит из предпосылки, что отношениями с объектами внешнего мира можно пренебречь. Вторая становится разделом физики и пытается особым образом рационализировать пространственный опыт. Так проблема истинности геометрических положений срастается с проблемой математической истины, которая сводится к набору логических следствий из аксиом, понятых как "конвенции", соглашения.

Концепция аксиом-конвенций, вытекающая из неевклидовой геометрии, повлекла за собой массу проблем. Пока под аксиомами подразумевали принципы объективной истины, когерентность системы была гарантирована. Корректная дедукция из истинных посылок порождает только истинные следствия, а две истинные пропозиции не могут противоречить друг другу. Но когда снят вопрос об истинности и ложности исходных положений, как можно исключить (даже при максимально корректной дедукции) появление противоречий?

Другая проблема, проблема полноты, состоит из двух подпроблем. Есть полнота синтаксическая и полнота семантическая. Можно ли поручиться, что выбранные для определенного метода исчисления аксиомы обладают доказательной силой для всех пропозиций? Это подпроблема синтаксической полноты. Что касается семантической полноты, то если группу аксиом мы используем для формализации определенной теории (например, Ньютоновой механики), где гарантии того, что не существует вполне истинных положений, которые недоказуемы в рамках данной группы аксиом?

Помимо упомянутых проблем когерентности и полноты есть еще проблема независимости аксиом. Откуда известно, что некая аксиома дедуктивно не получена из комплекса других аксиом той же или иной системы? Эти три проблемы когерентности, полноты и независимости были затушеваны в классической геометрии. Однако с открытиями Лобачевского и Римана они встали со всей остротой. Особенно острой стала проблема когерентности (согласованности), ибо в формальной системе разрыв связи означает крах системы (из нее можно выводить все что угодно, включая отрицание аксиом). Кроме того, доказательства полноты и независимости невозможны без доказательств когерентности. В XX веке ученые (например, Давид Гильберт) попытаются решить эти проблемы. Но Курт Гёдель похоронит позднее не одну надежду на скорое разрешение этих проблем.

Выводы

Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает - изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.

Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.

Список источников

1. Математика XIX века, «Наука», М., 1981.

2. “Квант” №11, №12 Академик АН СССР А.Д. Александров, Интернет-издания.

3. Юшкевич А.П. История математики в России, «Наука», М., 1968.

4. Ефимов Н.В. Высшая геометрия, «Наука», М.,1971.

5. Неевклидовы пространства и новые проблемы физики, «Белка», М., 1993.

6. Клайн М. Математика. Утрата определенности, «Мир», М., 1984.

7. Г.И. Глейзер. История математики в школе IX - X классы. Пособие для учителей. Москва, «Просвещение» 1983 г.

8. Даан Дальмедино А., Пейффер И. Пути и лабиринты. Очерки по истории математики. Перевод с французского. М: Мир, 1986 г.

9. Б.Л. Лаптев, Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. «Просвещение», 1970 г.

10. И.М. Яглам Принцип относительности Галилея и неевклидова геометрия. Серия «Библиотека математического кружка» М.: 1963 г.

11. Васильев А.В. Николай Иванович Лобачевский. - М., 1992. - 229 с.

12. Норден А.П. 125 лет неевклидовой геометрии. - Успехи математических наук, 1951. - 6, вып. 3 (48). - С. 3-9.

13. Норден А.П. Об изложении основных теорем геометрии Лобачевского. - В сб.: Сто двадцать пять лет неевклидовой геометрии Лобачевского. - М.-Л.: Гостехиздат. 1952. - С. 117-128.

14. Норден А.П. Элементарное введение в геометрию Лобачевского. - М.: Гостехиздат, 1953. - 248 с.

15. Норден А.П. Гаусс и Лобачевский. - Историко-математические исследования, 1956, вып. 9. - С.145 - 168.

16. Лаптев Б.Л. Николай Иванович Лобачевский. 1792 - 1856. - В сб.: Люди русской науки. Матем., мех., М., 1961. - С. 76-93.

17. Лаптев Б.Л. Великий русский математик (к 175-летию со дня рождения Н.И. Лобачевского). - Вестник высшей школы, 1967, 12. - С. 62-70.

18. Лаптев Б.Л. Николай Иванович Лобачевский. - Казань, 1976. - 136 с.

19. Лаптев Б.Л. Коперник геометрии. - Наука и жизнь, 1976, N5. - С. 38-42.

20. Лаптев Б.Л. Геометрия Лобачевского, е история и значение. - М.: Знание (В серии "Новое в жизни, науке и технике", N9). 1976. - 36 с.

21. Лаптев Б.Л., Н.И. Лобачевский и его геометрия. - М.: Просвещение, 1976. - 112 с.

22. Норден А.П. Великое открытие Лобачевского. "Квант&quot. 1976. N2.

23. Лаптев Б.Л. Что читал Лобачевский? - Казань. Изд-во Казан. ун-та, 1979. - 126 с.

24. Широков П.А. Краткий очерк основ геометрии Лобачевского. - 2-е изд. - М. Главная редакция физико-математической литературы, 1983. - 80 с.

25. Лаптев Б.Л. Николай Иванович Лобачевский. - В кн.: Рассказы о казанских ученых. - Казань: Таткнигоиздат, 1983. - С. 5-19.

Размещено на Allbest.ru

...

Подобные документы

  • Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).

    реферат [319,1 K], добавлен 06.03.2009

  • Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.

    дипломная работа [1,8 M], добавлен 21.08.2011

  • Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.

    дипломная работа [1,3 M], добавлен 10.09.2009

  • Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.

    дипломная работа [4,4 M], добавлен 05.03.2011

  • Биография Н.И. Лобачевского. Деятельность Лобачевского по организации печатного университетского органа и его попытки основать при университете Научное общество. История признания геометрии Н.И. Лобачевского в России. Появление неевклидовой геометрии.

    дипломная работа [1,2 M], добавлен 14.09.2011

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа [4,1 M], добавлен 15.03.2011

  • Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.

    курсовая работа [629,3 K], добавлен 29.06.2013

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.

    дипломная работа [245,5 K], добавлен 13.02.2010

  • Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.

    презентация [872,8 K], добавлен 24.02.2011

  • Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.

    презентация [1,9 M], добавлен 06.05.2010

  • Биография русского ученого Н.И. Лобачевского. Система аксиом Гильберта. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому. Понятие о сферической геометрии. Доказательство теорем на различных моделях.

    реферат [564,5 K], добавлен 12.11.2010

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация [257,4 K], добавлен 05.12.2010

  • Основы геометрии чисел. Решетки, подрешетки и их базисы. Основные теоремы геометрии чисел. Связь квадратичных форм с решетками. Методы геометрии чисел для решения диофантовых уравнений. Теорема Минковского о выпуклом теле. Квадратичная форма решетки.

    дипломная работа [884,6 K], добавлен 24.06.2015

  • Геометрия Евклида — теория, основанная на системе аксиом, изложенной в "Началах". Гиперболическая геометрия Лобачевского, ее применение в математике и физике. Реализация геометрии Римана на поверхностях с постоянной положительной гауссовской кривизной.

    презентация [685,4 K], добавлен 12.09.2013

  • Научно-методические достоинства учебного пособия по геометрии Погорелова. Анализ недостатков учебника "Геометрия 7-9". Структура основных взаимосвязей в системе определений и теорем в курсе геометрии. Подготовка учителя к доказательству теорем на уроке.

    дипломная работа [321,5 K], добавлен 11.01.2011

  • Меры площади, использовавшиеся в Древней Руси, их эволюция и современное состояние. Площадь многоугольника и прямоугольника. Определение и доказательство площади квадрата. Формула площади параллелограмма и треугольника, трапеции. Теорема Пифагора.

    реферат [389,2 K], добавлен 05.02.2011

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.

    реферат [29,4 K], добавлен 21.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.