Изучение процента
Обзор процентных вычислений в задачах и в разных сферах жизни человека. Анализ исторических версий возникновения процентов. Примеры сотой части величины или числа, именуемых процентом. Характеристика задач нахождения процентов и правила работы с ними.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.04.2013 |
Размер файла | 16,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат по математике
на тему: Проценты
Выполнил:
Артемов Дмитрий
куратор проекта
Проссяник Л.А.
Брянск, 2013.
Введение
Цель проекта: Расширение знаний о применении процентных вычислений в задачах и из разных сфер жизни человека.
Проектная идея: Если я овладею знаниями по теме «Проценты», то смогу выполнять процентные вычисления и расчеты, необходимые каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни.
Причина выбора темы: умение работать с процентами пригодится мне в будущем.
Продукт проекта: реферат на тему «Проценты».
Полезность продукта проекта: продукт будет полезен прежде всего мне, а также всем остальным учащимся, а также пригодится в работе учителям математики.
1. Из истории происхождения процентов
Слово «процент» происходит от латинского pro centum, что буквально означает «за сотню» или «со ста». Процентами очень удобно пользоваться на практике, так как они выражают целые части чисел в одних и тех же сотых долях. Знак «%» происходит, как полагают, от итальянского слова cento(сто), которое в процентных расчетах часто писалось сокращенно cto.
Существует и другая версия возникновения этого знака. Предполагается, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 году в Париже была опубликована книга - руководство по коммерческой арифметике, где по ошибке наборщик вместо cto ввел %.
Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян. Были известны проценты и в Индии. Индийские математики вычисляли проценты, применяя так называемое тройное правило, т. е. пользуясь пропорцией. Они умели производить и более сложные вычисления с применением процентов. Денежные расчеты с процентами были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. Даже римский сенат вынужден был установить максимально допустимый процент, взимаемый с должника, так как некоторые заимодавцы усердствовали в получении процентных денег. От римлян проценты перешли к другим народам.
В средние века в Европе в связи с широким развитием торговли особенно много внимания обращали на умение вычислять проценты. В то время приходилось рассчитывать не только проценты, но и проценты с процентов, т. е. сложные проценты, как называют их в наше время.
Отдельные конторы и предприятия для облегчения труда при вычислениях процентов разрабатывали свои особые таблицы, которые составляли коммерческий секрет фирмы.
Впервые опубликовал таблицы для расчета процентов в 1584г. Симон Стевин - инженер из города Брюгге (Нидерланды). Затем область применения процентов расширилась. Ныне процент - это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).
Изобретение математических знаков и символов значительно облегчило изучение математики и способствовало дальнейшему ее развитию.
Проценты применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике.
Ныне процент - это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).
2. Проценты в нашей жизни
Процент - это сотая часть единицы. Запись 1% означает 0,01. Сотую часть рубля называют копейкой, сотую часть метра - сантиметром, сотую часть гектара - или соткой. Принято называть сотую часть величины или числа процентом. Значит одна копейка - один процент от одного рубля, а один сантиметр - один процент от одного метра, один ар - один процент гектара, две сотых - один процент от числа два.
Сами проценты не дают экономического развития, но их знание помогает в развитии практических способностей, а также умение решать экономические задачи. Обдуманное изучение процентов может способствовать развитию таких навыков как экономичность, расчетливость.
Проценты - одно из математических понятий, которое часто встречаются в повседневной жизни. Можно прочитать или услышать, например, что:
- в выборах приняли участие 57% избирателей,
- рейтинг победителя хит-парада равен 75%,
- успеваемость в классе 85%,
- банк начисляет 17% годовых,
- молоко содержит 1,5% жира,
- материал содержит 100% хлопка и т.д.
Учащиеся должны понять, что проценты не просто пустое слово, а что это универсальная величина измерения, которая появилась из практической необходимости измерения различных величин и не только денежных.
3. Рассмотрим задачи на проценты
Основные задачи можно разделить на три группы:
1. Нахождение процентов от числа:
Чтобы найти проценты от числа нужно, проценты превратить в десятичную дробь и умножить на это число.
Пример. Вклад в банке имеет годовой прирост 6%. Начальная сумма вклада равнялась 10000 руб. На сколько возрастёт сумма вклада в конце года?
Решение: 10000 · 6 : 100 = 600 руб.
2.Нахождение числа по его процентам:
Чтобы найти число по его процентам нужно, проценты превратить в десятичную дробь и число разделить на эту дробь.
Пример. Зарплата в январе равнялась 1500 руб., что составило 7.5% от годовой зарплаты. Какова была годовая зарплата?
Решение: 1500 : 7.5 · 100 = 20000 руб.
3.Нахождение процентного отношения чисел:
Чтобы найти процентное отношение чисел, надо отношение этих чисел умножить на 100.
Пример. Завод произвёл за год 40000 автомобилей, а в следующем году - только 36000 автомобилей. Сколько процентов это составило по отношению к выпуску предыдущего года.
Решение: 36000 : 40000 · 100 = 90%.
Задачи с процентами можно решить разными способами: уравнением, составлением таблицы, применяя пропорцию, по действиям, используя правила.
Интересно было составить свои задачи на проценты.
Вот какие задачи я составил:
1. На оптовой базе цена 1 кг арбуза равна 8 рублей. В магазине делают наценку в 3%. По какой цене за килограмм мы купим арбуз в магазине?
2. У меня есть друг, который учится в Шиловской СОШ №1. Он сказал, что в их школе всего 900 учащихся и всех учащихся посещают различные кружки и секции. Мне стало интересно, а сколько это в процентах?
3. В газете я прочитал, что магазин «Элекс» проводит распродажу компьютерной техники со скидкой 12%. Я прошу родителей купить мне ноутбук, который стоит 20900 рублей. Сколько придется заплатить за этот ноутбук с учетом скидки?
4. Доход нашей семьи за месяц составляет 15600 рублей. На питание расходуется 5000 рублей в месяц, коммунальные услуги обходятся в 900 руб., электроэнергия - 220 руб.
Какой процент от всего бюджета составляют расходы на питание, коммунальные услуги и электроэнергию.
5. Моя мама работает в клубе билетером. Билет на дискотеку стоит 200 рублей. Но директор сказал, что с 1-го января билет подорожает на 5%. Сколько будет стоить билет на дискотеку с 1-го января?
Изучение процента продиктовано самой жизнью. Они нас окружают почти везде.
Люди многих профессий работают с процентами. Например, экономисты, бухгалтера, банкиры и даже продавцы. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни.
Проценты дают возможность легко сравнивать между собой части целого, упрощают расчёты и поэтому очень распространены.
В процессе выполнения работы я узнал много нового, думаю, что проделал очень полезную работу для себя и это пригодится в учебе.
4. Самоанализ проектной деятельности
Таким образом, разработав учебный проект, я расширил свои знания о применении процентных вычислений в задачах, усвоил основные правила работы с процентами. вычисление число процент
Теперь я самостоятельно смогу:
- находить процент от числа;
- находить процентное отношение двух чисел;
- находить число по его процентам;
- производить процентные вычисления, необходимые для применения в практической деятельности;
- решать основные задачи на проценты;
Проектирование поспособствовало:
- развитию моей познавательной активности;
- развитию коммуникативных способностей и самостоятельности.
В результате реализации проекта обучающиеся получат возможность совершенствовать и расширять круг умений, навыков, способов деятельности.
В процессе работы над проектом я узнал, что данная тема является актуальной в современное время, так как сами проценты появились из практической необходимости. Они являются неотъемлемой экономически значимой частью общества. Но само понятие проценты включает в себя больше чем просто экономика.
Проценты широко применяются в математике, химии, и других науках. Вообще само понятие проценты развилось до того го состояния, что стало абстрактным, им можно измерять буквально все.
Использованные источники информации
1. Глейзер Г.И. История математики в школе (4-6 кл.): пособие для учителей. - М.: Просвещение, 2011.
2.И.С. Ганенкова. Математика. Многоуровневые самостоятельные работы в форме тестов для проверки качества знаний. 5-7 классы. Издательство «Учитель». Волгоград. 2012.
3. Учебник Математика 5, Н.Я. Виленкин, издательство «Мнемозина», 2011.
4. Жохов В. И. Преподавание математики в 5-6 классах.-М.:Вербум-М, 2010.
5. Петрова И.Н.. Проценты на все случаи жизни. М.: «Просвещение», 2012.
6. Акимова С. Занимательная математика.-Санкт-Петербург, «Тригон», 2011.
Размещено на Allbest.ru
...Подобные документы
Обзор истории происхождения процентов, применение процентных вычислений в задачах. Решение задач по формуле сложных процентов разными способами, нахождение процентов от числа. Применение процентов в жизни: исследование бюджета семьи и посещения кружков.
курсовая работа [126,9 K], добавлен 09.09.2010История возникновения процентов, способы их записи. Основные типы задач с применением процентных вычислений. Нахождение процентов в школе, их использование в сфере торговли. Функции и формы кредитов, анализ процентных ставок по ним в банках г. Завитинска.
контрольная работа [524,2 K], добавлен 25.03.2014Описания доказательства вреда курения с помощью математических вычислений. Анализ развития вычислительных способностей учащихся, памяти, сообразительности. Нахождение процентов от числа и их выражения десятичной дробью, выполнение заданий на внимание.
презентация [20,3 M], добавлен 15.09.2011Непрерывное начисление сложных процентов. Общий метод приближённого вычисления эффективной процентной ставки, его применение для ссуды, платежи по которой совершаются через одинаковые промежутки времени. Сравнение методов простых и сложных процентов.
курсовая работа [1,1 M], добавлен 19.02.2014Расчет итоговой суммы вклада по схеме сложных процентов. Порядок составления плана погашения займа. Определение суммы, возвращаемой кредитору и процентных денег. Порядок расчета годовой учетной ставки с применением схемы простых и сложных процентов.
контрольная работа [41,1 K], добавлен 05.01.2013Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа [352,9 K], добавлен 17.05.2021Разработка простого метода для решения сложных задач вычислительной и прикладной математики. Построение гибкого сеточного аппарата для решения практических задач. Квазирешетки в прикладных задачах течения жидкости, а также применение полиномов Бернштейна.
дипломная работа [1,9 M], добавлен 25.06.2011Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа [265,6 K], добавлен 21.01.2011Рассмотрение и анализ основных свойств показательной функции: решение задач, способы построения графиков. Понятие и примеры применения гиперболических функций, их роль в различных приложениях математики. Способы нахождения области определения функции.
контрольная работа [902,6 K], добавлен 01.11.2012Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.
курсовая работа [330,2 K], добавлен 25.11.2011История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.
презентация [178,6 K], добавлен 13.05.2011Процесс развития теории магических квадратов, их свойства и способы применения в жизни человека. Исторически значимые магические квадраты, способы и особенности их построения. Примеры решения задач с помощью различных модификаций магического квадрата.
реферат [21,1 K], добавлен 19.04.2012Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.
реферат [60,2 K], добавлен 17.06.2014Что такое абсолютные и относительные величины. Применение абсолютной и относительной величины в статистике. Прикладные варианты использования методов математической статистики в различных случаях решения задач. Опыт построения статистических таблиц.
контрольная работа [39,6 K], добавлен 12.12.2009Обзор возможностей финансовых вычислений в Excel. Подключение пакета анализа в Excel. Финансовые функции для расчетов по кредитам и оценкам инвестиций. Синтаксис функции ФУО. Исчисление величины потока платежей, нормы доходности в виде процентной ставки.
отчет по практике [877,0 K], добавлен 31.10.2014Введение в численные методы, план построения вычислительного эксперимента. Точность вычислений, классификация погрешностей. Обзор методов численного интегрирования и дифференцирования, оценка апостериорной погрешности. Решение систем линейных уравнений.
методичка [7,0 M], добавлен 23.09.2010Понятие, виды, функции средней величины и значение метода средних величин статистике. Особенности уравнения тренда на основе линейной зависимости. Парные и частные коэффициенты корреляции. Сущность предела нахождения среднего процента содержания влаги.
контрольная работа [42,8 K], добавлен 07.12.2008Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.
реферат [174,7 K], добавлен 25.10.2015Использование формулы Бернулли для нахождения вероятности происхождения события. Построение графика дискретной случайной величины. Математическое ожидание и свойства интегральной функции распределения. Функция распределения непрерывной случайной величины.
контрольная работа [87,2 K], добавлен 29.01.2014Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.
реферат [104,5 K], добавлен 12.03.2004