Сфера и шар
Сфера - фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии. Понятие шара. Взаимное расположение сферы и плоскости. Точка их касания. Определение площади сферы. Доказательство теорем о касательной к плоскости.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 08.05.2013 |
Размер файла | 206,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Сфера и шар
Работа ученика 11 класса средней школы №1906 юго-западного округа Кашина Виталия.
г. Москвы
1. Сфера и шар
Сфера-это фигура, состоящая из всех точек пространства, удалённых от данной точки на данном расстоянии.
Точка О называется центром сферы, R-радиус сферы.
Любой отрезок, соединяющий центр и какую-нибудь точку сферы, называется радиусом сферы. Отрезок, соединяющий две точки сферы и проходящий через её центр, называется диаметром сферы.
Шар-это фигура, состоящая из всех точек пространства, находящихся на расстоянии не большем данного от данной точки
(или фигура, ограниченная сферой).
2. Уравнение сферы
M(x;y;z)-произвольная точка, принадлежащая сфере.
след.
MC=
т.к. MC=R, то
если т.М не лежит на сфере, то MCR, т.е. координаты точки М
не удовлетворяют уравнению. Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром C(x0;y0;z0;) имеет вид:
Взаимное расположение сферы и плоскости.
d - расстояние от центра сферы до плоскости.
след. C(0;0;d), поэтому сфера имеет уравнение
плоскость совпадает с Оxy, и поэтому её уравнение имеет вид z=0
Если т.М(x;y;z) удовлетворяет обоим уравнениям, то она лежит и в плоскости и на сфере, т.е. является общей точкой плоскости и сферы.
след. возможны 3 решения системы :
1) d<R , d^2<R^2 , x^2 + y^2 = R^2 - d^2 > 0
уравнение имеет б.м. решений, пересечение сферы и плоскости - окружность C(0;0;0) и r^2=R^2 - d^2
2) d=R , x^2 + y^2 =0 , x=y=0 след. сфера пересекается плоскостью в точке О(0;0;0)
3) d>R , d^2>R^2 R^2 - d^2 < 0
x^2 + y^2 >=0 , x^2+y^2=R^2 - d^2 не имеет решений
сфера шар касательная
3. Касательная плоскость к сфере
Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.
Теорема:
Радиус сферы, проведённый в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.
Доказательство:
Предположим, что ОА не перпендикулярен плоскости, след. ОА-наклонная к плоскости, след. ОА > R , но т.А принадлежит сфере, то получаем противоречие, след. ОА перпендикулярен плоскости.
Теорема:
Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.
Доказательство:
Из условия теоремы следует, что данный радиус является перпендикуляром, проведённым из центра сферы к данной плоскости. Поэтому расстояние от центра сферы до плоскости равно радиусу сферы, и, следовательно, сфера и плоскость имеют только одну общую точку. Это означает, что данная плоскость является касательной к сфере.
Площадь сферы:
Для определения площади сферы воспользуемся понятием описанного многогранника. Многогранник называется описанным около сферы (шара) , если сфера касается всех его граней. При этом сфера называется вписанной в многогранник.
Пусть описанный около сферы многогранник имеет n-граней. Будем неограниченно увеличивать n таким образом, чтобы наибольший размер каждой грани стремился к нулю. За площадь сферы примем предел последовательности площадей поверхностей описанных около сферы многогранников при стремлении к нулю наибольшего размера каждой грани. Можно доказать, что этот предел существует, и получить формулу для вычисления площади сферы радиуса R:
S=4ПR^2
Размещено на Allbest.ru
...Подобные документы
Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.
реферат [197,7 K], добавлен 03.08.2010Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.
курсовая работа [1,1 M], добавлен 22.09.2014Понятие плоскости и определение ее положения в пространстве. Задание плоскости ее следами на комплексном чертеже. Плоскости и проекции уровня. Свойство проецирующих плоскостей собирать одноименные проекции всех элементов, расположенных в данной плоскости.
реферат [69,0 K], добавлен 17.10.2010Плоскость как простейший вид поверхности, ее задание тремя точками. Основные геометрические фигуры на плоскости. Определение геометрического места точек, примеры для угла и окружности. Сущность использования метода геометрических мест при решении задач.
курсовая работа [115,2 K], добавлен 10.01.2010Уравнение плоскости, проходящей через точку и перпендикулярной заданному вектору, плоскости в отрезках, проходящей через три точки. Общее уравнение плоскости. Условие параллельности и перпендикулярности двух плоскостей. Расстояние от точки до плоскости.
презентация [106,9 K], добавлен 21.09.2013Возможные случаи ориентации прямой и плоскости для заданного уравнения. Условия их перпендикулярности и параллельности. Скалярное произведение перпендикулярных векторов. Координаты точки, лежащей на прямой. Угол между прямой и плоскостью, его определение.
презентация [65,2 K], добавлен 21.09.2013Сущность планиметрии как науки о свойствах точек и прямых на плоскости. Понятие точки, прямой и плоскости, принятие утверждений без доказательств. Особенности построения и содержание аксиом принадлежности, измерения, параллельности, откладывания.
презентация [77,7 K], добавлен 12.04.2012Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.
презентация [3,4 M], добавлен 18.04.2013Основные фигуры в пространстве. Геометрические тела: куб, параллелепипед, тетраэдр. Способ задания плоскости. Взаимное расположение прямой и плоскости. Следствия из аксиом стереометрии. Геометрические понятия: вершина, прямая, точка, ребро, грань.
презентация [316,1 K], добавлен 10.11.2013Азимутально-полярная проекция как проекция сферы на плоскость. Построение кругов параллелей и линий меридианов. Параллель как малый круг, полученный от сечения сферы плоскостью, параллельной плоскости экватора. Отображение меридианов и полюсов сферы.
контрольная работа [112,1 K], добавлен 13.05.2009Случай движения, при котором все точки пространства перемещаются в одном и том же пространстве и расстоянии. Параллельный перенос на координатной прямой и плоскости в направлении данного вектора на его длину. Построение трапеции параллельным переносом.
презентация [121,1 K], добавлен 15.02.2012Понятие числовой прямой. Типы числовых промежутков. Определение координатами положения точки на прямой, на плоскости, в пространстве, система координат. Единицы измерения для осей. Определение расстояния между двумя точками плоскости и в пространстве.
реферат [123,9 K], добавлен 19.01.2012Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.
презентация [69,8 K], добавлен 27.10.2013Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.
презентация [1,5 M], добавлен 14.10.2014Определение производных сложных функций при заданном значении аргумента. Исследование траектории движения тела на плоскости и построение графика функции. Характеристика нахождения максимальных и минимальных точек, экстремумов и точек перегиба функции.
контрольная работа [790,1 K], добавлен 09.12.2011Понятие и технологии проецирования, особенности применения компьютерных технологий в данном процессе, его типы и признаки. Свойства параллельного проецирования. Комплексный чертеж точки (эпюр Г. Монжа). Взаимное расположение точек, его принципы.
контрольная работа [693,6 K], добавлен 22.11.2013Классификация различных точек поверхности. Омбилические точки поверхности. Строение поверхности вблизи эллиптической, параболической и гиперболической точек. Линии кривизны поверхности и омбилические точки. Поверхность, состоящая из омбилических точек.
дипломная работа [956,7 K], добавлен 24.06.2015Сущность и графическое отображение игры на преследование, ее математический смысл и формулирование соответствующих теорем. Стратегия параллельного сближения и ее обоснование. Порядок преследования на плоскости с одним или несколькими преследователями.
творческая работа [24,9 K], добавлен 03.01.2010Треугольник как геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки. Основные элементы данной фигуры: вершины и стороны. Классификация и разновидности треугольников по различным признакам.
презентация [343,2 K], добавлен 28.11.2013Доказательство коллинеарности и компланарности векторов. Проведение расчета площади параллелограмма, построенного на векторах а и в, объема тетраэдра, косинуса угла, точки пресечения прямой и плоскости. Определение канонических уравнений прямой.
контрольная работа [87,7 K], добавлен 21.02.2010