Об одной аппроксимационной оценке
Характеристика неравенств, которые относятся к аппроксимационным оценкам. Анализ линейных операторов, удовлетворяющих некоторым условиям. Применение метода интерполяции, описанного в работах Ю.Г. Абакумова, О.Н. Шестаковой, для оценки некоторой величины.
Рубрика | Математика |
Предмет | Численные методы |
Вид | статья |
Язык | русский |
Прислал(а) | Мэдэгэй |
Дата добавления | 31.05.2013 |
Размер файла | 506,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.
курсовая работа [807,2 K], добавлен 03.04.2015Основные понятия и факты теории линейных операторов. Определение и примеры линейных операторов. Ограниченность и норма линейного оператора. Сумма и произведение линейных операторов. Пространство линейных непрерывных операторов.
дипломная работа [240,7 K], добавлен 13.06.2007Существование и способ построения фундаментального набора решений для систем, состоящих из одного или нескольких неравенств. Метод последовательного уменьшения числа неизвестных. Системы однородных и неоднородных произвольных линейных неравенств.
курсовая работа [69,8 K], добавлен 09.12.2011Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.
курсовая работа [1,1 M], добавлен 10.04.2014Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.
методичка [303,7 K], добавлен 14.03.2011Примеры неравенств, доказываемых техникой одномонотонных последовательностей. Обоснование данного метода для случая с произвольным числом переменных. Доказательство неравенств с минимальным числом переменных. Сравнение метода с доказательством Коши.
реферат [132,8 K], добавлен 05.02.2011Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.
реферат [2,0 M], добавлен 18.01.2011Нахождение длины сторон и площади треугольника, координат центра тяжести пирамиды, центра масс тетраэдра. Составление уравнений геометрического места точек, высоты, медианы, биссектрисы внутреннего угла, окружности. Построение системы линейных неравенств.
контрольная работа [1,2 M], добавлен 13.12.2012Параллельные методы решения систем линейных уравнений с ленточными матрицами. Метод "встречной прогонки". Реализация метода циклической редукции. Применение метода Гаусса к системам с пятидиагональной матрицей. Результаты численного эксперимента.
курсовая работа [661,7 K], добавлен 21.10.2013Понятие интерполяций функций и их роль в вычислительной математике. Рассмотрение метода интерполяции кубическими сплайнами, составление алгоритма и программного модуля. Описание тестовых примеров. Достоинства и недостатки метода сплайн-интерполяции.
курсовая работа [195,1 K], добавлен 08.06.2013Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
реферат [66,4 K], добавлен 14.08.2009Метод Зейделя как модификация метода простой итерации. Особенности решения систем линейных алгебраических уравнений. Анализ способов построения графика функций. Основное назначение формул Симпсона. Характеристика модифицированного метода Эйлера.
контрольная работа [191,3 K], добавлен 30.01.2014Предпосылки корреляционного анализа - математико-статистического метода выявления взаимозависимости компонентов многомерной случайной величины и оценки их связи. Точечные оценки параметров двумерного распределения. Аппроксимация уравнений регрессии.
контрольная работа [648,3 K], добавлен 03.04.2011Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа [4,9 M], добавлен 06.12.2011Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
курсовая работа [157,4 K], добавлен 10.04.2011Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.
контрольная работа [567,1 K], добавлен 21.05.2013Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.
реферат [118,9 K], добавлен 31.01.2009Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.
контрольная работа [397,2 K], добавлен 13.12.2010Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.
курсовая работа [166,4 K], добавлен 11.01.2004Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция [24,2 K], добавлен 14.12.2010