Производная

Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 26.06.2013
Размер файла 829,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки республики Бурятия

ГБОУ СПО «Колледж традиционных искусств народов Забайкалья»

Реферат на тему

«Производная»

Выполнил: Нигулимов Е.Н.

Проверил: Урбанова С.М.

Иволгинск 2013г.

Содержание

Введение

1. Понятие производной

2. Геометрический смысл производной

3. Физический смысл производной

4. Правила дифференцирования

5. Производные высших порядков

6. Изучение функции с помощью производной

6.1 Возрастание и убывание функции. Экстремум функции

6.2 Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции

6.3 Правило нахождения экстремума

6.4 Точка перегиба графика функции

6.5 Общая схема исследования функции и построение ее графика

6.5 Касательная и нормаль к плоской кривой

Заключение

Введение

Понятие функции является одним из основных понятии математики. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а, как и другие фундаментальные понятия прошло длинный путь диалектического и исторического развития. Идея функциональной зависимости восходит к древнегреческой математике. Например, изменение площади, объема фигуры в зависимости от изменения ее размеров. Однако древними греками идея функциональной зависимости осознавалась интуитивно.

Уже в 16 - 17 в. в, техника, промышленность, мореходство поставили перед математикой задачи, которые нельзя было решить имеющимися методами математики постоянных величин. Нужны были новые математические методы, отличные от методов элементарной математики.

Впервые термин "функция" вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него "геометрический налет". В современных терминах это определение связано с понятием множества и звучит так: «Функция есть произвольный способ отображения множества А = {а} во множество В = {в}, по которому каждому элементу аА поставлен в соответствие определенный элемент вВ. Уже в этом определении не накладывается никаких ограничений на закон соответствия (этот закон может быть задан Формулой, таблицей, графиком, словесным описанием). Главное в этом определении: аА!bB. Под элементами множеств А и В понимаются при этом элементы произвольной природы.

В математике XVII в. самым же большим достижением справедливо считается изобретение дифференциального и интегрального исчисления. Сформировалось оно в ряде сочинений Ньютона и Лейбница и их ближайших учеников. Введение в математику методов анализа бесконечно малых стало началом больших преобразований. Но наряду с интегральными методами складывались и методы дифференциальные. Вырабатывались элементы будущего дифференциального исчисления при решении задач, которые в настоящее время и решаются с помощью дифференцирования. В то время такие задачи были трех видов: определение касательных к кривым, нахождение максимумов и минимумов функций, отыскивание условий существования алгебраических уравнений квадратных корней.

Первый в мире печатный курс дифференциального исчисления опубликовал в 1696 г. Лопиталь. Этот курс состоит из предисловия и 10 глав, в которых излагаются определения постоянных и переменных величин и дифференциала, объясняются употребляющиеся обозначения dx, dy, и др.

Появление анализа бесконечно малых революционизировало всю математику, превратив ее в математику переменных величин.

Исследование поведения различных систем (технические, экономические, экологические и др.) часто приводит к анализу и решению уравнений, включающих как параметры системы, так и скорости их изменения, аналитическим выражением которых являются производные. Такие уравнения, содержащие производные, называются дифференциальными.

В своей же работе я хочу подробнее остановится на приложениях производной.

1. Понятие производной

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f ' (x), называют дифференцированием и состоит он из следующих трех шагов:

1) даем аргументу x приращение ?x и определяем соответствующее приращение функции ?y = f(x+?x) -f(x);

2) составляем отношение

3) считая x постоянным, а ?x 0, находим, который обозначаем через f ' (x), как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x, при котором мы переходим к пределу.

Определение: Производной y ' =f ' (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен.

Таким образом

, или

Заметим, что если при некотором значении x, например при x=a, отношение при ??x0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a) не имеет производной или не дифференцируема в точке x=a.

2. Геометрический смысл производной

Рассмотрим график функции у = f (х), дифференцируемой в окрестностях точки x0

Рассмотрим произвольную прямую, проходящую через точку графика функции - точку А(x0, f (х0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ?АВС: АС = ?x; ВС =?у; tgв=?y/?x .

Так как АС || Ox, то ALO = BAC = в (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положительному направлению оси Ох. Значит, tgв = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ?х, т.е. ?х> 0. При этом точка В будет приближаться к точке А по графику, а секущая АВ будет поворачиваться. Предельным положением секущей АВ при ?х> 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ?х > 0 в равенстве tgв =?y/?x, то получим или tg =f '(x0), так как -угол наклона касательной к положительному направлению оси Ох , по определению производной. Но tg = k - угловой коэффициент касательной, значит, k = tg = f '(x0).

Итак, геометрический смысл производной заключается в следующем:

Производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.

3. Физический смысл производной

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени [t0; t0+ ?t] равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ?x/?t. Перейдем к пределу в последнем равенстве при ?t > 0.

lim Vср (t) = (t0) - мгновенная скорость в момент времени t0, ?t > 0.

а lim = ?x/?t = x'(t0) (по определению производной).

Итак, (t) =x'(t).

Физический смысл производной заключается в следующем: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x'(t) - скорость,

a(f) = '(t) - ускорение, или

a(t) = x"(t).

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращательном движении:

ц = ц(t) - изменение угла от времени,

щ = ц'(t) - угловая скорость,

е = ц'(t) - угловое ускорение, или е = ц"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x [0; l], l - длина стержня,

р = m'(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x - переменная координата, k- коэффициент упругости пружины. Положив щ2 =k/m, получим дифференциальное уравнение пружинного маятника

х"(t) + щ2x(t) = 0

где щ = vk/vm частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + щ2y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решением таких уравнений является функция

у = Asin(щt + ц0) или у = Acos(щt + ц0)

где А - амплитуда колебаний, щ - циклическая частота,

ц0 - начальная фаза.

4. Правила дифференцирования

(C)'= 0 С=const

(cos x)'=-sin x

(sin x)'=cos x

(tg x)'=

(ах)'=аx ln a

(ctg x)'=-

(ех)'=ex

Производная степенно-показательной функции

где .

.

Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам дифференцирования найти производную затруднительно.

Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную

(1)

Отношение называется логарифмической производной функции . Из формулы (1) получаем

.Или

Формула (2) дает простой способ нахождения производной функции .

график функция экстремум нормаль

5. Производные высших порядков

Ясно, что производнаяфункции y =f (x) есть также функция от x:

Если функция f ' (x) дифференцируема, то её производная обозначается символом y'' =f '' (x) и называется второй производной функции f(x) или производной функции f(x) второго порядка. Пользуясь обозначением можем написать

Очень удобно пользоваться также обозначением , указывающим, что функция y=f(x) была продифференцирована по x два раза.

Производная второй производной, т.е. функции y''=f '' (x) , называется третьей производной функции y=f(x) или производной функции f(x) третьего порядка и обозначается символами

Вообще n-я производная или производная n-го порядка функции y=f(x) обозначается символами

Дифференцируя производную первого порядка, можно получить производную второго порядка, а, дифференцируя полученную функцию, получаем производную третьего порядка и т.д. Тогда возникает вопрос: сколько производных высших порядков можно получить в случае произвольной функции.

Например:

1) ; ; ; ...;

; .

Разные функции ведут себя по-разному при многократном дифференцировании. Одни имеют конечное количество производных высших порядков, другие - переходят сами в себя, а третьи, хотя и дифференцируемы бесконечное количество раз, но порождают новые функции, отличные от исходной.

Однако все сформулированные теоремы о производных первых порядков выполняются для производных высших порядков.

6. Изучение функции с помощью производной

6.1 Возрастание и убывание функции. Экстремум функции

Определение 1. Функция f(x) называется возрастающей в интервале (a,b), если при возрастании аргумента x в этом интервале соответствующие значения функции f(x) также возрастают, т.е. если f(x2) > f(x1) при x2 > x1.

Рис.1 (а)

Рис.1 (б)

Из этого определения следует, что у возрастающей в интервале (a,b) функции f(x) в любой точке этого интервала приращения x и y имеют одинаковые знаки.

График возрастающей функции показан на рисунке1(а).

Если из неравенства x2 > x1 вытекает нестрогое неравенство f (x2) f (x1), то функция f (x) называется неубывающей в интервале (a, b ). Пример такой функции показан на рисунке 2(а). На интервале [ x0 , x1 ] она сохраняет постоянное значение C

Определение 2. Функция f (x) называется убывающей в интервале ( a, b) если при возрастании аргумента x в этом интервале соответствующие значения функции f (x) убывают, т.е. если f(x2) < f(x1) при x2 > x1.

Из этого определения следует, что у убывающей в интервале ( a, b ) функции f (x) в любой точке этого интервала приращения x и y имеют разные знаки. График убывающей функции показан на рисунке 1(б).

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Если из неравенства x2 > x1 вытекает нестрогое неравенство f(x2) f(x1), то функция f (x) называется невозрастающей в интервале ( a, b ). Пример такой функции показан на рисунке 2(б). На интервале [x0 , x1] она сохраняет постоянное значение C.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Теорема 1. Дифференцируемая и возрастающая в интервале ( a, b ) функция f (x) имеет во всех точках этого интервала неотрицательную производную.

Теорема 2. Дифференцируемая и убывающая в интервале ( a, b ) функция f (x) имеет во всех точках этого интервала неположительную производную.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Пусть данная непрерывная функция убывает при возрастании x от x0 до x1, затем при возрастании x от x1 до x2 - возрастает, при дальнейшем возрастании x от x2 до x3 она вновь убывает и так далее. Назовем такую функцию колеблющейся.

График колеблющейся функции показан на рисунке 3.

Точки A, C, в которых функция переходит от возрастания к убыванию, так же, как и точки B, D, в которых функция переходит от убывания к возрастанию, называются точками поворота или критическими точками кривой y = f (x), а их абциссы - критическими значениями аргумента x

В той точке, где функция переходит от возрастания к убыванию, ордината больше соседних с ней по ту и другую сторону ординат. Так, ордината точки A больше ординат, соседних с ней справа и слева и достаточно к ней близких, т.е. значение функции в точке A, абсцисса которой равна x0, больше значений функции в точках, абсциссы которых достаточно близки к x0 : f (x0) > f (x0+?x).

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

На рисунке 4(a) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она возрастает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - убывает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)?f (x).

Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется максимальным значением функции f (x) или просто максимумом.

Определение 3. Максимумом функции f (x) называется такое значение f (x0) этой функции, которое не меньше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой достаточно малой окрестности точки x0 .

Так, на рисунке 3 показаны два максимума: f (x0) и f (x2).

В той точке, где функция переходит от убывания к возрастанию, ордината меньше ординат в достаточно близких к ней точках, расположенных справа и слева от нее. Так ордината точки B меньше ординат в точках соседних и достаточно близких к точке x1 справа и слева. Значение функции в точке, абсцисса которой равна x1 , меньше значений функции в точках, абсциссы которых достаточно мало отличаются от x1 : f (x1) < f (x1+x).

На рисунке 4(б) изображена функция f (x), непрерывная в интервале ( a, b ). В интервале ( a, x0 ] она убывает, на интервале [ x0 , x1 ] - сохраняет постоянное значение: f (x0) = f (x1) = C, в интервале [ x1 , b ) - возрастает. Во всех точках, достаточно близких к x0 (или x1 ), значения функции f (x) удовлетворяют нестрогому неравенству f (x0)?f (x).

Значение f (x0) функции f (x), при котором выполняется вышеуказанное неравенство, называется минимальным значением функции f (x) или просто минимумом.

Определение 4. Минимумом функции f (x) называется такое значение f (x0) этой функции, которое не больше всех значений функции f (x) в точках x, достаточно близких к точке x0 , т.е. в точках x, принадлежащих некоторой достаточно малой окрестности точки x0 .

Так, на рисунке 3 показаны два минимума: f (x1) и f (x3).

По определению наибольшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)f (x), а наименьшим значением функции f (x) на интервале [ a, b ] является такое значение f (x0), для которого для всех точек интервала [ a, b ] выполняется неравенство f (x0)f (x).

Из этих определений следует, что функция может достигать своего наибольшего или наименьшего значения как внутри интервала [ a, b ] , так и на его концах a и b. Здесь же максимум и минимум функции f (x) были определены соответственно как наибольшее и наименьшее значения в некоторой окрестности точки x0 .

Если в точке x0 функция f (x) достигает максимума или минимума, то говорят, что функция f (x) в точке x0 достигает экстремума (или экстремального значения).

Функция f (x) может иметь несколько экстремумов внутри интервала [ a, b ], причем может оказаться, что какой-нибудь минимум будет больше какого-нибудь максимума. Таким образом, наибольшее значение функции f (x) на интервале [ a, b ] - это наибольший из экстремумов функции внутри этого интервала и наибольшее из значений функции на концах интервала.
Аналогично наименьшее значение функции f (x) на интервале [ a, b ] - это наименьший из экстремумов функции внутри этого интервала и наименьшее из значений функции на концах интервала.

Например функция, изображенная на рисунке 3, достигает наибольшего значения f (x) в точке x2 , наименьшего - в точке x1 интервала [ x0, x3 ]. На рисунке 5 изображена функция, имеющая бесконечное число минимумов и максимумов.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Теорема 3 (необходимый признак экстремума). Если функция f (x) имеет в точке x0 экстремум, то ее производная в данной точке или равна нулю или не существует.

Но функция f (x) может иметь экстремумы и в тех точках x0, в которых ее производная не существует. Например функция y = | x | в точке x0 = 0 не дифференцируема, но достигает минимума. Точки такого типа называют угловыми. В них кривая не имеет определенной касательной.

На рисунке 6 изображена функция f (x), не имеющая в точке x0 производной [f' (x0) = ] и достигающая в этой точке максимума. При x x0 и x < x0 f' (x), при x x0 и x > x0 f' (x). Значит касательная кривой y = f (x) при x = x0 перпендикулярна к оси Ox. Такие точки называются точками возврата кривой y=f(x).

Рис. 6

Таким образом, необходимым признаком существования в точке x0 экстремума функции f (x) является выполнение следующего условия: в точке x0 производная f' (x) или равна нулю, или не существует.

Этот признак не является достаточным условием существования экстремума функции f (x) в точке x0 : можно привести много примеров функций, удовлетворяющих этому условию при x = x0 , но, однако, не достигающих экстремума при x = x0.

Например, производная функции y = x3 при x0 = 0 равна нулю, однако эта функция при x0 = 0 не достигает экстремального значения.

6.2 Достаточные условия убывания и возрастания функции. Достаточные условия экстремума функции

Теорема 4.Если функция f(x) имеет в каждой точке интервала (a, b) неотрицательную производную, то она является неубывающей функцией в этом интервале.

Теорема 5. Если функция f(x) в каждой точке интервала (a, b) имеет неположительную производную, то она является невозрастающей функцией в этом интервале.

Теорема 6. (первый достаточный признак экстремума). Если производная f '(x) функции f(x) обращается в нуль в точке x0 или не существует и при переходе через x0 меняет свой знак, то функция f(x) имеет в этой точке экстремум (максимум, если знак меняется с "+" на "-", и минимум, если знак меняется с "-" на "+").

Теорема 7. (второй достаточный признак существования экстремума функции). Если в точке x0 первая производная f '(x) функции f(x) обращается в нуль, а её вторая производная f ''(x) отлична от нуля, то в точке x0 функция f(x) достигает экстремума (минимума, если f ''(x) > 0, и максимума, если f ''(x) < 0). Предполагается, что f ''(x) непрерывна в точке x0 и ее окрестности.

6.3 Правило нахождения экстремума

1. Чтобы найти экстремум функции, надо:

1). найти производную данной функции;

2). приравнять производную нулю и решить полученное уравнение; из полученных корней отобрать действительные и расположить их (для удобства) по их величине от меньшего к большему; в том случае, когда все корни оказываются мнимыми, данная функция не имеет экстремума;

3). определить знак производной в каждом из промежутков, отграниченных стационарными точками ( стационарными точками называют точки в которых производная равна 0);

4). если производная положительна в промежутке, лежащем слева от данной стационарной точки, и отрицательна в промежутке, лежащем справа от нес, то данная точка есть точка максимума функции, если же производная отрицательна слева и положительна справа от данной стационарной точки, то данная точка есть точка минимума функции; если производная имеет один и тот же знак как слева, так и справа от стационарной тонки, то в этой точке нет ни максимума, ни минимума, функции;

5). заменить в данном выражении функции аргумент значением, которое дает максимум или минимум функции; получим значение соответственно максимума или минимума функции.

Если функция имеет точки разрыва, то эти точки должны быть включены в число стационарных точек, разбивающих Ох на промежутки, в которых определяется знак производной.

6.4.Точка перегиба графика функции

Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вверх, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит под касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок 1а).

Рисунок 1

Будем говорить, что кривая y = f(x) в точке x0 обращена выпуклостью вниз, если существует такая окрестность точки x0 , что часть кривой, соответствующая этой окрестности, лежит над касательной к этой кривой, проведенной в точке A с абсциссой x0. (см. Рисунок 1б).

Из определения выпуклости вверх (вниз) кривой y = f(x) в точке x0 следует, что для любой точки x из интервала (x0 - h, x0 + h), не совпадающей с точкой x0, имеет место неравенство f(x) - y < 0 ( f(x) - y > 0) где f(x) - ордината точки M кривой y = f(x), y - ордината точки N касательной y - y0 = f '(x0 )(x - x0 ) к данной кривой в точке A. (смотри рисунок 1, а, б).

Ясно, что и наоборот, если для любой точки x интервала (x0 - h, x0 + h), не совпадающей с x0, выполняется неравенство f(x) - y < 0 (f(x) - y > 0), то кривая y = f(x) в точке x0 обращена выпуклостью вверх (вниз).

Будем называть кривую y = f(x) выпуклой вверх (вниз) в интервале (a, b), если она выпукла вверх (вниз) в каждой точке этого интервала.

Если кривая y = f(x) обращена выпуклостью вверх в интервале (a, b), то с увеличением аргумента x угловой коэффициент касательной к этой кривой в точке с абсциссой x будет уменьшаться.

Рисунок 2.

В самом деле, пусть абсцисса x1 точки A меньше абсциссы x2 точки B (рис. 2). Проведем касательные t1 и t2 соответствено в точках A и B к кривой y = f(x). Пусть a и j - углы наклона касательных t1 и t2. Тогда из рис. 2 видим, что j - внешний угол треугольника ECD, а поэтому он больше угла a. Следовательно tg > tg или f '(x1 ) > f '(x2 ).

Таким образом мы показали, что если в интервале (a, b) кривая y = f(x) обращена выпуклостью вверх, то с увеличением аргумента x функция y = f '(x) убывает. Поэтому вторая производная f ''(x) функции f(x), как производная убывающей фунции f '(x), будет отрицательна или равна нулю в интервале (a, b): f ''(x)0.

Если кривая y = f(x) обращена выпуклостью вниз, то из рис.2 непосредственно видно, что tg? > tg? т.е. f '(x2 ) > f '(x1 ), а поэтому в интервале (a, b) производная f '(x) возрастает. Тогда вторая производная f ''(x) функции f (x), как производная возрастающей в интервале (a, b) функции f '(x), будет положительна или равна нулю: f ''(x)0.

Рисунок 3

Докажем, что и наоборот, если f ''(x)?0 в некотором интервале (a, b), то в этом интервале кривая y = f (x) обращена выпуклостью вверх; если f ''(x)0 в интервале (a, b), то в этом интервале кривая обращена выпуклостью вниз.

Запишем уравнение касательной y - y0 = f '(x0 )(x - x0 ) к кривой y = f (x) в точке x0, где a < x0 b, в виде y = y0 + f '(x0 )(x - x0 ). Очевидно, y0 = f(x0 ), а потому последнее уравнение можно записать в виде y = f(x0 ) + f '(x0 )(x - x0 ). (1)

Но, согласно формуле Тейлора, при n = 2 имеем

(2)

Фиксируя x в интервале (a, b) и вычитая почленно из уравнения (2) уравнение (1), получим

(3)

Если f ''[x0 + (x - x0 )]0, где 0 < < 1, то имеем f(x) - y 0 откуда следует, что кривая y = f(x) в точке x обращена выпуклостью вверх. Если f ''[x0 + (x - x0 )]0, то имеем f(x) - y 0 откуда следует, что кривая y = f(x) в точке x обращена выпуклостью вниз.

Так как была зафиксирована произвольная точка x интервала (a, b), то высказанное выше утверждение доказано.

Рисунок 4

Точка кривой, в которой кривая меняет направление изгиба, т.е. переходит от выпуклости вверх к выпуклости вниз или наоборот, называется точкой перегиба кривой (рис.4). (В этом определении предполагается, что в точке перехода кривой от выпуклости вверх к выпуклости вниз (или наоборот) имеется единственная касательная).

Теорема 8. Пусть функция f(x) имеет непрерывную вторую производную f ''(x) и пусть A[x0 ; f(x0 )] - точка перегиба кривой y = f(x). Тогда f ''(x0 ) = 0 или не существует.

Доказательство. Рассмотрим для определенности случай, когда кривая y = f(x) в точке перегиба A[x0 ; f(x0 )] переходит от выпуклости вверх в выпуклости вниз (рис.4). Тогда при достаточно малом h в интервале (x0 - h, x0 ) вторая производная f ''(x) будет меньше нуля, а в инетрвале (x0, x0 +h) - больше нуля.

Но f ''(x) - функция непрерывная, а потому, переходя от отрицательных значений к положительным, она при x = x0 обращается в нуль: f ''(x0 ) = 0.

На рис. 5 изображен график функции . Хотя при x0 = 0 имеется касательная и точка перегиба, все же вторая производная f ''(x) не равна нулю, она даже не существует в этой точке.

Рисунок 5

В самом деле, имеем

Итак, f ''(0) не существует. Но тем не менее точка O(0; 0) является точкой перегиба, так как при x < 0 f ''(x) > 0 и кривая выпукла вниз, а при x > 0 f ''(x) < 0 и кривая выпукла вверх.

Таким образом в случае непрерывности второй производной f ''(x) обращение в нуль или несуществование ее в какой-нибудь точки кривой y = f(x) является необходимым условием существования точки перегиба. Однако это условие не является достаточным.

Теорема 9. Если вторая производная f ''(x) непрерывна и меняет знак при x = x0, то точка A[x0 ; f(x0 )] является точкой перегиба кривой y = f(x) при условии, конечно, что в точке A существует касательная.

Доказательство. Пусть например f ''(x) < 0 при x0 - h < x < x0 и f ''(x) > 0 при x0 < x < x0 + h. Тогда в интервале (x0 - h; x0 ) кривая y = f(x) обращена выпуклостью вверх, а в интервале (x0 ; x0 + h) - выпклостью вниз (смотри рис.4), т.е. точка A[x0 ; f(x0 )] есть точка перегиба кривой, что и требовалось доказать.

6.5 Общая схема исследования функции и построение ее графика.

1. Находим область определения функции f(x)

2. Находим точки пересечения кривой y = f(x) с осями координат и наносим их на чертеж.

3. Определяем, симметрична ли кривая y = f(x) относительно осей координат и начала координат.

4. Исследуем функцию y = f(x) на непрерывность. Если функция имеет в точке x0 разрыв, то отмечаем ее на чертеже.

5. Находим асимптоты кривой, если они имеются.

6. Находим максимум и минимум функции и отмечаем на чертеже точки кривой с максимальной и минимальной ординатами.

7. Исследуем кривую y = f(x) на выпуклость вверх или вниз, находим точки перегиба кривой и отмечаем их на чертеже.

8. Вычерчиваем кривую y = f(x).

6.6 Касательная и нормаль к плоской кривой

Пусть даны кривая y = f(x) и точка M (x1 ; y1) на ней. Требуется составить уравнения касательной и нормали (смотри рисунок).

Как известно, угловой коэффициент k касательной к кривой y = f(x) в точке M (x1 ; y1) равен значению f '(x1) производной y' = f '(x) при x = x1/

Следовательно, уравнение касательной можно записать в виде уравнения прямой, проходящей через данную точку в данном направлении, т.е. в виде y - y1 = f '(x1)(x - x1)

Нормалью называется прямая, проходящая через точку касания перпендикулярно касательной. поэтому ее угловой коэффициент равен , а уравнение записывается в виде

Заключение

Настоящая работа даёт учащимся новый подход к многим преобразованиям в математике, которые стандартным путём трудно разрешимы или разрешимы, но громоздкими способами. Рассмотренные подходы нестандартного характера для учащихся покажутся новыми и необыкновенными, что расширит их кругозор и повысит интерес к производной.

Итак, геометрический смысл производной: производная функции в точке x0 равна угловому коэффициенту касательной к графику функции, проведенной в точке с абсциссой x0.

Физический смысл производной: производная функции y = f(x) в точке x0 - это скорость изменения функции f (х) в точке x0

Экономический смысл производной: производная выступает как интенсивность изменения некоторого экономического объекта (процесса) по времени или относительно другого исследуемого фактора.

Производная находит широкое приложение в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени; для нахождения наибольших и наименьших величин.

Производная является важнейшим инструментом экономического анализа, позволяющим углубить геометрический и математический смысл экономических понятий, а также выразить ряд экономических законов с помощью математических формул.

Наиболее актуально использование производной в предельном анализе, то есть при исследовании предельных величин (предельные издержки, предельная выручка, предельная производительность труда или других факторов производства и т. д.).

Производная применяется в экономической теории. Многие, в том числе базовые, законы теории производства и потребления, спроса и предложения оказываются прямыми следствиями математических теорем

Знание производной позволяет решать многочисленные задачи по экономической теории, физике, алгебре и геометрии.

Размещено на Allbest.ru

...

Подобные документы

  • Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.

    статья [122,0 K], добавлен 11.01.2004

  • Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.

    курс лекций [445,7 K], добавлен 27.05.2010

  • Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.

    презентация [246,0 K], добавлен 21.09.2013

  • Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.

    презентация [696,5 K], добавлен 18.12.2014

  • Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.

    контрольная работа [75,5 K], добавлен 07.09.2010

  • Расчет производной функции. Раскрытие неопределенности и поиск пределов. Проведение полного исследования функции и построение ее графика. Поиск интервалов возрастания, убывания и экстремумов. Решение дифференциальных уравнений. Расчет вероятности события.

    контрольная работа [117,5 K], добавлен 27.08.2013

  • Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.

    презентация [282,0 K], добавлен 14.11.2014

  • Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.

    контрольная работа [539,8 K], добавлен 20.03.2016

  • Нахождение пределов, не используя правило Лопиталя. Исследование функции на непрерывность, построение ее графика. Определение типа точки разрыва. Поиск производной функции. Поиск наибольшего и наименьшего значения функции на указанном ее отрезке.

    контрольная работа [1,1 M], добавлен 26.03.2014

  • Вычисление предела функции, не используя правило Лопиталя. Нахождение производной функции и построение ее графика. Исследование неопределенных интегралов и выполнение проверки дифференцированием. Вычисление площади фигуры, ограниченной графиками функций.

    контрольная работа [317,3 K], добавлен 25.03.2014

  • Область определения функции. Очки пересечения с осями координат, промежутки знакопостоянства. Исследование функции на непрерывность. Асимптоты, определение точки экстремума и точки перегиба. Расчет области определения функций, заданных аналитически.

    контрольная работа [178,7 K], добавлен 14.06.2013

  • Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.

    презентация [62,1 K], добавлен 21.09.2013

  • Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.

    презентация [575,4 K], добавлен 11.09.2011

  • Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.

    контрольная работа [98,4 K], добавлен 07.02.2015

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Методика и основные этапы нахождения производной функции. Исследование методами дифференциального исчисления и построение графика функции. Порядок определения экстремумов функции. Вычисление неопределенных и определенных интегралов заменой переменной.

    контрольная работа [84,3 K], добавлен 01.05.2010

  • Исследование функции на четность и периодичность. Нахождение вертикальных, горизонтальных (или наклонных) асимптот, а также экстремумов и интервалов монотонности. Определение интервалов выпуклости и точки перегиба. Построение графика исследуемой функции.

    презентация [134,7 K], добавлен 21.09.2013

  • Вычисление производной функции. Угловой коэффициент прямой. Интервалы монотонности, точки экстремума и перегиба функции. Вычисление интегралов с помощью универсальной тригонометрической подстановки. Нахождение площади фигуры, ограниченной линиями.

    контрольная работа [696,1 K], добавлен 05.01.2013

  • Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.

    курсовая работа [1,0 M], добавлен 25.11.2010

  • Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.

    контрольная работа [565,5 K], добавлен 16.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.