Вычислительная математика

Построение решения дифференциального уравнения. Подбор многочлена, описывающего полученное решение. Определение корней многочлена на полученном интервале. Алгоритм вычислений для классического метода Рунге-Кутта. Интерполяция функции на данном интервале.

Рубрика Математика
Предмет Вычислительная математика
Вид курсовая работа
Язык русский
Прислал(а) jakpomaslu
Дата добавления 07.08.2013
Размер файла 909,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Основные правила расчета значений дифференциального уравнения. Изучение выполнения оценки погрешности вычислений, осуществления аппроксимации решений. Разработка алгоритма и написание соответствующей программы. Построение интерполяционного многочлена.

    курсовая работа [212,6 K], добавлен 11.12.2013

  • Составление диагональной системы способом прогонки, нахождение решения задачи Коши для дифференциального уравнения на сетке методом Эйлера и классическим методом Рунге-Кутта. Построение кубического сплайна интерполирующей функции равномерного разбиения.

    практическая работа [46,1 K], добавлен 06.06.2011

  • Содержание текстов Единого государственного экзамена. Решение уравнений высших степеней. Разложение многочлена третьей степени на множители. Определение корней квадратного уравнения и рациональных корней многочлена. Старший коэффициент делимого.

    реферат [42,1 K], добавлен 20.10.2013

  • Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.

    курсовая работа [990,8 K], добавлен 17.07.2014

  • Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.

    курсовая работа [391,5 K], добавлен 01.03.2012

  • Основные методы Рунге-Кутта: построение класса расчетных формул. Расчетная формула метода Эйлера. Получение различных методов Рунге-Кутта с погрешностью второго порядка малости при произвольном задавании параметров. Особенности повышения порядка точности.

    реферат [78,4 K], добавлен 18.04.2015

  • Последовательность решения линейной краевой задачи. Особенности метода прогонки. Алгоритм метода конечных разностей: построение сетки в заданной области, замена дифференциального оператора. Решение СЛАУ методом Гаусса, конечно-разностные уравнения.

    контрольная работа [366,5 K], добавлен 28.07.2013

  • Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.

    курсовая работа [111,1 K], добавлен 13.11.2011

  • Исследование зависимости погрешности решения от погрешностей правой части системы. Определение корня уравнения с заданной точностью. Вычисление точностных оценок методов по координатам. Сплайн интерполяция и решение дифференциального уравнения.

    контрольная работа [323,4 K], добавлен 26.04.2011

  • Многочлен как сумма или разность одночленов. Запись многочлена в стандартном виде. Операции при сложении и вычитании многочленов. Умножение многочлена на одночлен. Деление многочлена на одночлен. Разложение многочлена на множители, метод группировки.

    презентация [53,2 K], добавлен 26.02.2010

  • Аналитическое и компьютерное исследования уравнения и модели Ван-дер-Поля. Сущность и особенности применения методов Эйлера и Рунге-Кутта 4 порядка. Сравнение точности метода Эйлера и Рунге-Кутта на одном графике, рисуя фазовые траектории из 1 точки.

    курсовая работа [341,7 K], добавлен 06.10.2012

  • Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений – Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.

    курсовая работа [1,1 M], добавлен 04.06.2010

  • Понятие многочленов и их свойства. Сущность метода неопределённых коэффициентов. Разложения многочлена на множители. Максимальное число корней многочлена над областью целостности. Методические рекомендации по изучению темы "Многочлены" в школьном курсе.

    дипломная работа [733,7 K], добавлен 20.07.2011

  • Разложение многочлена на множители. Область допустимых значений уравнения как множество всех действительных чисел. Утверждения, полезные при решении уравнений. Примеры упражнений, связанных с понятием обратной функции, нестандартные методы решения.

    контрольная работа [47,7 K], добавлен 22.12.2011

  • Сущность метода деления многочлена на линейный двучлен. Особенности вычисления значений аналитической, логарифмической и показательной функций. Сущность теоремы Безу. Расположение вычислений по схеме Горнера. Вычисление значений синуса и косинуса.

    презентация [142,0 K], добавлен 18.04.2013

  • Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.

    курсовая работа [141,5 K], добавлен 23.07.2011

  • Описание метода сведения краевой задачи к задаче Коши. Решение системы из двух уравнений с четырьмя неизвестными. Метод Рунге-Кутта. Расчет максимальной погрешности и выполнение проверки точности. Метод конечных разностей. Описание полученных результатов.

    курсовая работа [245,2 K], добавлен 10.07.2012

  • Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.

    контрольная работа [1004,9 K], добавлен 01.12.2009

  • Интерполяция с помощью полинома Ньютона исходных данных. Значение интерполяционного полинома в заданной точке. Уточнение значения корня на заданном интервале тремя итерациями и поиск погрешности вычисления. Методы треугольников, трапеций и Симпсона.

    контрольная работа [225,2 K], добавлен 06.06.2011

  • Методы построения общего решения уравнения Бернулли. Примеры решения задач с помощью него. Особое решение уравнения Бернулли и его особенности. Понятие дифференциального уравнения, его виды и свойства. Значение уравнения Бернулли в математике и физике.

    курсовая работа [183,1 K], добавлен 25.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.