Решение проблемы континуума (принцип непрерывности)

Обоснование необходимости ввода в процессе решения математической проблемы континуума в числовую математику принципа непрерывности, определенного в философии. Анализ варианта решения проблемы автором только в категории потенциальной бесконечности.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 27.08.2013
Размер файла 14,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Решение проблемы континуума (принцип непрерывности)

М. А. Гайсин

Аннотация

В процессе решения математической проблемы континуума, автор пришел к выводу о необходимости ввода в числовую математику принципа непрерывности определенного в философии.

Математическая проблема континуума

Проблему континуума математики относят к числу главных проблем. Итак, проблемой континуума является вопрос существования промежуточной мощности между счетной мощностью и мощностью континуума. Континуум-гипотеза утверждает, что такой мощности нет. Математики доказали, что как существование такого множества, так и ее отсутствие не противоречат остальным аксиомам теории множеств. Тем самым пришли к выводу, что ни доказать, ни опровергнуть континуум-гипотезу невозможно. Автор же при решении проблемы, исходил из того, что если бы решении проблемы было в аксиоматике теории множеств, то она давно была бы решена. Поэтому автор направил свои усилия на анализ исходных принципов.

Анализ проблемы

При анализе исходных принципов, автор пришел к выводу, что в действительности, проблемой континуума является само понимание континуума в математике. Первая концепция континуума была представлена в виде неделимых моментов - мигов времени и неделимых точек пространства. Проблема континуума была поставлена Зеноном, выявившим парадоксы в этой концепции. Рассмотрим один из этих парадоксов, например третий. Зенон в парадоксе «Стрела» доказывает, что летящая стрела покоится. Здесь он исходит из понимания времени как суммы неделимых моментов «теперь», а пространства как суммы неделимых точек. Зенон считал, что в каждый момент времени стрела занимает место, равное своему объему, а значит, движение можно представить как сумму «продвинутостей» - состояний покоя, так как при действительном движении предмет должен занимать место большее, чем он сам. Таким образом, Зенон доказал, что атомистический континуум не позволяет движению ни существовать, ни быть мыслимым.

Аристотель, создавая свою физику, был вынужден доказать возможность мыслить движение без противоречий, т.е. решить парадоксы Зенона. Аристотель сделал это, углубив понимание природы континуума, вводом понятия непрерывности. По его утверждению, непрерывность - это когда у соприкасающихся друг к другу элементов, граница соприкосновения принадлежит как одному, так и другому соприкасающемуся элементу. Смежность же, это когда соприкасающиеся друг к другу элементы сохраняют свои границы. По Аристотелю, непрерывными могут быть части пространства, времени и движения. И непрерывное это то, что делится на части, всегда делимые. То есть, непрерывное не может состоять из неделимых частей. Аристотель разрешил парадоксы, которые возникли в физике, при допущении атомарности пространства и времени, показав возможность мыслить движение как непрерывный процесс, а не как сумму «продвинутостей». Автора восхитила глубина мысли Аристотеля, которая до сих пор полностью не осознана, и автор считает, что теория континуума Аристотеля, является фундаментом не только физики, но и математики, так как принцип непрерывности дан с соблюдением строгой математической логики.

Решение проблемы

А как же обстоят дела с пониманием природы континуума в современной математике? Посмотрим это на примере решения математической проблемы континуума, которая задана в категории актуальной бесконечности. Натуральный ряд в современной математике определяется как множество всех натуральных чисел. Это определение противоречит природе натурального ряда. Натуральный ряд является примером потенциально бесконечного множества по определению. Беспредельно возрастающий ряд натуральных чисел, сколько бы его не увеличивали, остается конечной величиной. А в категории потенциальной бесконечности мы не имеем права говорить о Натуральном ряде как о совокупности всех натуральных чисел, или как о бесконечном счетном множестве.

Разберем теперь, что такое мощность всех действительных чисел, так называемая континуальная мощность. Континуум в категории актуальной бесконечности определяется как бесконечное множество всех действительных чисел представленной в виде числовой прямой. Рассмотрим эту числовую прямую с учетом принципа непрерывности. Согласно этому принципу числовая прямая не может быть представлена в виде актуального бесконечного множества. Поэтому аналогом множества мощности континуума будет понятие возможности неограниченного деления числовой прямой в выбранной системе исчисления. А это понятие определено в категории потенциальной бесконечности.

Итак, понятие натурального ряда и понятие неограниченного деления числовой прямой в категории потенциальной бесконечности преобразуются в одно понятие - в понятие числа. Возможность неограниченного счета с возможностью неограниченного деления в выбранной системе исчисления для определения численных значений объектов математики сколь угодно больших со сколь угодной точностью есть определение числа в категории потенциальной бесконечности.

Отсюда видим, что вопрос о существование промежуточного множества определенного в категории актуальной бесконечности в категории потенциальной бесконечности теряет смысл. Но возникает вопрос: почему трансцендентные и иррациональные числа, определенные в категории актуальной бесконечности в категории потенциальной бесконечности не имеют места? Действительно, они в категории потенциальной бесконечности не являются числами, а являются объектами математики, которые могут быть вычислены с любой точностью, так как в категории потенциальной бесконечности числа по определению конструктивны. Следовательно, число вне числовой конструкции появиться не может.

Заключение

Хотя проблема континуума поставлена в категории актуальной бесконечности, тем не менее, автор нашел решение проблемы только в категории потенциальной бесконечности, так как изначально заданные бесконечности как актуальные, на самом деле оказались потенциальными. То есть актуальная бесконечность непредставима и соответственно автор пришел к выводу, что теория бесконечных множеств Кантора ошибочна. Так как доказательства Кантора также сделаны на основе потенциальной бесконечности. математический континуум непрерывность числовой

Автор также утверждает, что математика в принципе не может содержать парадоксы, так как является инструментом логики. А парадоксы в теории множеств возникли из-за неправомерного использования понятия актуальной бесконечности. Так как из предыдущего анализа и решения проблемы континуума видно, что актуальная бесконечность представима только не в проявленной форме, то есть как непрерывность.

Список литературы

1. П. П. Гайденко. «Понятие времени и проблема континуума.

Размещено на Allbest.ru

...

Подобные документы

  • Философский подход к количественной характеристике и ее переходу к качественной категории. Математический анализ гегелевской логики теории непрерывности. Определение числа посредством бесконечности. Сущность и значение метода дифференциального исчисления.

    реферат [35,4 K], добавлен 14.08.2015

  • Структура текстовой задачи. Условия и требования задач и отношения между ними. Методы и способы решения задач. Основные этапы решения задач. Поиск и составление плана решения. Осуществление плана решения. Моделирование в процессе решения задачи.

    презентация [247,7 K], добавлен 20.02.2015

  • Идеи интегрального исчисления в работах древних математиков. Особенности метода исчерпывания. История нахождения формулы объема тора Кеплера. Теоретическое обоснование принципа интегрального исчисления (принцип Кавальери). Понятие определенного интеграла.

    презентация [1,8 M], добавлен 05.07.2016

  • Алгоритм и логика решения задач категории B8 из раздела "математический анализ" Единого государственного экзамена. Определение точек максимума и минимума. Нахождение интервалов возрастания и убывания функции. Геометрический смысл определенного интеграла.

    методичка [350,9 K], добавлен 23.04.2013

  • Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.

    реферат [67,0 K], добавлен 09.02.2009

  • Изучение биографии и деятельности Франсуа Виета и его вклада в математику. Определение понятия квадратного уравнения. Сущность уравнений частного порядка и их решение рациональным способом. Анализ теоремы Виета как инструмента для решения уравнений.

    презентация [320,7 K], добавлен 31.05.2019

  • Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.

    презентация [128,4 K], добавлен 24.06.2012

  • Метод Эйлера: сущность и основное содержание, принципы и направления практического применения, определение погрешности. Примеры решения задачи в Excel. Метод разложения решения в степенной ряд. Понятие и погрешность, решение с помощью метода Пикара.

    контрольная работа [129,0 K], добавлен 13.03.2012

  • Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.

    контрольная работа [65,3 K], добавлен 15.12.2010

  • Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.

    контрольная работа [66,0 K], добавлен 05.10.2010

  • Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.

    реферат [29,4 K], добавлен 21.09.2010

  • Собственные значения и вектора матрицы. Применение итерационного метода вращений Якоби для решения симметричной полной проблемы собственных значений эрмитовых матриц. Алгоритмы решения задач и их реализация на современных языках программирования.

    курсовая работа [321,6 K], добавлен 15.11.2015

  • Понятие Диофантовых уравнений, их сущность и особенности, методика и этапы решения. Великая теорема Ферма и порядок ее доказательства. Алгоритм решения иррациональных уравнений. Метод поиска Пифагоровых троек. особенности решения уравнения Каталана.

    учебное пособие [330,2 K], добавлен 23.04.2009

  • Изучение способов решения нелинейных уравнений: метод деления отрезка пополам, комбинированный метод хорд и касательных. Примеры решения систем линейных алгебраических уравнений. Особенности математической обработки результатов опыта, полином Лагранжа.

    курсовая работа [181,1 K], добавлен 13.04.2010

  • Изучение нестандартных методов решения задач по математике, имеющих широкое распространение. Анализ метода функциональной, тригонометрической подстановки, методов, основанных на применении численных неравенств. Решение симметрических систем уравнений.

    курсовая работа [638,6 K], добавлен 14.02.2010

  • Определение вероятности определенного события. Вычисление математического ожидания, дисперсии, среднеквадратического отклонения дискретной случайной величины Х по известному закону ее распределения, заданному таблично. Расчет корреляционных признаков.

    контрольная работа [725,5 K], добавлен 12.02.2010

  • Рассмотрение общих сведений обратных задач математической физики. Ознакомление с методами решения граничных обратных задач уравнений параболического типа. Описание численного решения данных задач для линейно упруго-пластического режима фильтрации.

    диссертация [2,8 M], добавлен 19.06.2015

  • Центр инверсии: обозначение, пример отображения. Понятие о плоскости симметрии. Порядок оси симметрии, элементарный угол поворота. Физические причины отсутствия осей порядка более 6. Пространственные решетки, инверсионная ось, элементы континуума.

    презентация [173,7 K], добавлен 23.09.2013

  • Обоснование итерационных методов решения уравнений в свертках, уравнений Винера-Хопфа, с парными ядрами, сингулярных интегральных, интегральных с одним и двумя ядрами. Рассмотрение алгоритмов решения. Анализ учебных программ по данной дисциплине.

    дипломная работа [2,2 M], добавлен 27.06.2014

  • Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.

    методичка [303,7 K], добавлен 14.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.