Замена переменной и формула интегрирования по частям в определенном интеграле
Изучение правила замены переменной. Характеристика особенностей интегрирования по частям в определенном интеграле. Формулирование теорем. Нахождение первообразной подынтегральной функции и приращения первообразной. Вычисление определенного интеграла.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 18.09.2013 |
Размер файла | 158,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Понятие и геометрический смысл определенного интеграла, его свойства. Формула Ньютона–Лейбница. Замена переменной в определенном интеграле. Интегрирование по частям. Объем тела вращения. Несобственные интегралы с бесконечными пределами интегрирования.
курс лекций [514,0 K], добавлен 31.05.2010Изучение понятия интегральной суммы. Верхний и нижний пределы интегрирования. Анализ свойств определенного интеграла. Доказательство теоремы о среднем. Замена переменной в определенном интеграле. Производная от интеграла по переменной верхней границе.
презентация [487,1 K], добавлен 11.04.2013Формула замены переменной в двойном интеграле. Понятие якобиана перехода и особенности его расчета. Анализ примеров вычисления двойного интеграла с ограниченной линиями (осью и верхней полуокружностью) интегральной областью. Введение новых переменных.
презентация [107,2 K], добавлен 17.09.2013Сущность и методы определения первообразной в математическом анализе. Особенности вычисления первообразной как нахождение неопределённого интеграла. Анализ техники интегрирования. Формула Ньютона–Лейбница. Основные положения дифференциальной теории Галуа.
контрольная работа [71,8 K], добавлен 05.11.2011Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.
шпаргалка [42,3 K], добавлен 21.08.2009Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.
лабораторная работа [1,7 M], добавлен 05.07.2010Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.
лекция [187,9 K], добавлен 17.12.2010Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация [117,8 K], добавлен 18.09.2013Производная определенного интеграла по переменному верхнему пределу. Вычисление определенного интеграла как предела интегральной суммы по формуле Ньютона–Лейбница, замена переменной и интегрирование по частям. Длина дуги в полярной системе координат.
контрольная работа [345,3 K], добавлен 22.08.2009Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.
конспект урока [147,7 K], добавлен 23.10.2013Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.
презентация [73,1 K], добавлен 18.09.2013Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.
методичка [327,4 K], добавлен 01.07.2009Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа [617,2 K], добавлен 08.07.2011Вычисление пределов и устранение неопределенности. Поиск производных функций. Вычисление приближенного значения 8.051/3. Определение полного дифференциала функции z=3sin(2x+3y). Формула интегрирования по частям. Решение линейного однородного уравнения.
контрольная работа [439,6 K], добавлен 25.03.2014Задачи на нахождение неопределенного интеграла с применением метода интегрирования по частям. Вычисление площади, ограниченной заданными параболами. Решение дифференциального уравнения первого порядка. Исследование на сходимость ряда; признаки сходимости.
контрольная работа [136,7 K], добавлен 16.03.2010Способы определения точного значения интеграла по формуле Ньютона-Лейбница и приближенного значения интеграла по формуле трапеций. Порядок нахождения координаты центра тяжести однородной плоской фигуры ограниченной кривой, особенности интегрирования.
контрольная работа [459,6 K], добавлен 16.04.2010Понятие первообразной функции, теорема о первообразных. Неопределенный интеграл, его свойства и таблица. Понятие определенного интеграла, его геометрический смысл и основные свойства. Производная определенного интеграла и формула Ньютона-Лейбница.
курсовая работа [232,5 K], добавлен 21.10.2011Вычисление двойного интеграла в прямоугольных координатах. Замена переменных в двойном интеграле. Аналог формул прямоугольников и формулы трапеции. Теорема существования двойного интеграла, его геометрический и физический смысл и основные свойства.
курсовая работа [1,3 M], добавлен 13.02.2013Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.
контрольная работа [90,0 K], добавлен 24.10.2010Определение криволинейного интеграла по координатам, его основные свойства и вычисление. Условие независимости криволинейного интеграла от пути интегрирования. Вычисление площадей фигур с помощью двойного интеграла. Использование формулы Грина.
контрольная работа [257,4 K], добавлен 23.02.2011