Конус

История открытия и исследований конуса как одной из основных геометрических фигур, образованной вращением прямоугольного треугольника около одного из его катетов, его основные свойства. Понятие усеченного конуса. Применение знаний о конусе на практике.

Рубрика Математика
Вид практическая работа
Язык русский
Дата добавления 26.09.2013
Размер файла 20,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Файл не выбран
Обзор

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Практическая работа

Конус

1. Введение исторических сведений

Конус в переводе с греческого «konos» означает «сосновая шишка». С конусом люди знакомы с глубокой древности. В 1906 году была обнаружена книга Архимеда (287-212 гг. до н.э.) «О методе», в которой дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед приписывает честь открытия этого принципа Демокриту (470-380 гг. до н.э.) - древнегреческому философу-материалисту. С помощью этого принципа Демокрит получил формулу для вычисления объема пирамиды и конуса.

Много сделала для геометрии школа Платона (428-348 гг. до н.э.). Платон был учеником Сократа (470-399 гг. до н.э.). Он в 387 г. до н.э. основал в Африке Академию, в которой работал 20 лет. Каждый, входящий в Академию, читал надпись: «Пусть сюда не входит никто, не знающий геометрии». Школе Платона, в частности, принадлежит: а) исследование свойств призмы, пирамиды, цилиндра и конуса; б) изучение конических сечений.

Большой трактат о конических сечениях был написан Аполлонием Пергским (260-170 гг. до н.э.) - учеником Евклида (III в. До н.э.), который создал великий труд из 15 книг под названием «Начала». Эти книги издаются и по сей день, а в школах Англии по ним учатся до сих пор.

КОНУС (от лат. conus, от греч. konos) (в элементарной геометрии), геометрическое тело, образованное вращением прямоугольного треугольника около одного из его катетов.

Первоначальные сведения о свойствах геометрических тел люди нашли, наблюдая окружающий мир и в результате практической деятельности. Со временем ученые заметили, что некоторые свойства геометрических тел можно выводить из других свойств путем рассуждения. Так возникли теоремы и доказательства.

Появилось естественное желание по возможности сократить число тех свойств геометрических тел, которые берутся непосредственно из опыта. Утверждения, оставшиеся без доказательства свойств стали аксиомами. Таким образом, аксиомы имеют опытное происхождение.

Геометрия в ранний период своего развития достигла особенно высокого уровня в Египте. В первом тысячелетии до нашей эры геометрические сведения от египтян перешли к грекам. За период с VII по III век до нашей эры греческие геометры не только обогатили геометрию многочисленными новыми теоремами, но сделали также серьезные шаги к строгому ее обоснованию. Многовековая работа греческих геометров за этот период была подытожено Евклидом в его знаменитом труде «Начала».

Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I Сотера. Известно также, что Евклид был моложе учеников Платона (427-347 до н.э.), но старше Архимеда (ок. 287-212 до н.э.), так как, с одной стороны, был платоником и хорошо знал философию Платона (именно поэтому он закончил «Начала» изложением т. н. платоновых тел, т.е. пяти правильных многогранников), а с другой стороны - его имя упоминается в первом из двух писем Архимеда к Досифею «О шаре и цилиндре». С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки.

В XI книге «Начал» дается следующее определение: если вращающийся около одного из своих катетов прямоугольный треугольник слева вернется в то же самое положение, из которого он начал двигаться, то описанная фигура будет конусом. Неподвижный катет, вокруг которого поворачивается треугольник, называется осью конуса, а круг, описываемый вращающимся катетом, называется основанием конуса. Евклид рассматривает только прямые конусы, т.е. такие, у которых ось перпендикулярна к основанию, лишь Аполлоний различает прямые и косые конусы, у которых ось образует с основанием угол, отличный от прямого.

В XII книге «Начал» Евклида содержится следующие теоремы.

· Объем конуса равен одной трети объёма цилиндра с равным основанием и равной высотой; доказательство этой теоремы принадлежит Евдоксу Книдскому.

· Отношение объёмов двух конусов с равными основаниями равно отношению соответствующих высот.

· Если два конуса равновелики, то площади их оснований обратно пропорциональны соответствующим высотам и наоборот.

Аполлоний Пергский древнегреческий математик и астроном, ученик Евклида дал полное изложение теории и основанных им трудов «Конические сечения» в восьми книгах. В зависимости от взаимного расположения конуса и секущей плоскости получают три типа: параболу, эллипс, гиперболу.

У Евклида нет понятия конической поверхности, оно было введено Аполлонием в его «Конических сечениях», при этом он имел в виду обе плоскости конуса. Вот что пишет Аполлоний Пергский: «Если от какой-либо точки окружности круга, который не находится в одной плоскости с некоторой точкой, проводить прямые, соединяющие эту точку с окружностью, и при неподвижности точки перемещать прямую по окружности, возвращая ее туда, откуда началось движение, то поверхность, описанную прямой и составленную из 2 поверхностей, лежащих в вершине друг против друга, из которых каждая бесконечно увеличивается, если бесконечно продолжать описывающую прямую, я называю конической поверхностью, неподвижную же точку - её вершиной, а осью - прямую, проведённую через эту точку и центр круга».

Определение конической поверхности Аполлония воспроизведено в современных школьных учебниках с существенной заменой круга на любую линию, так называемую направляющую.

Евдокс Книдский древнегреческий математик и астроном, родился в Книде, на юго-западе Малой Азии. О его жизни известно немного. Евдокс учился медицине, потом математике (у пифагорейца Архита в Италии), затем присоединился к школе Платона в Афинах. Около года провёл в Египте, изучал астрономию в Гелиополе. Позднее Евдокс переселился в город Кизик на Мраморном море, основал там собственную математико-астрономическую школу, читал лекции по философии, астрономии и метеорологии.

Около 368 г. до н.э. Евдокс вместе с частью учеников вернулся в Афины. Умер в родном Книде, окружённый славой и почётом. Кроме математики и астрономии, Евдокс занимался врачеванием, философией и музыкой; был известен также как оратор и законовед. Неоднократно упоминается у античных авторов; сочинения самого Евдокса до нас не дошли. В честь Евдокса названы кратеры на Луне и на Марсе.

Строгое доказательство теорем, служащих для вывода формулы объема конуса и изложенных в пяти предложениях 12 книги «Начал» Евклида, дал Евдокс Книдский. В первом из них методом исчерпывания доказывается, что объем конуса равен 1/3 объема цилиндра, имеющего то же основание и ту же высоту. В следующем предложении тем же методом доказывается, что отношение объемов конусов с равными высотами равно отношению площадей их оснований. В третьем из упомянутых предложений доказывается, что объемы 2 подобных конусов, т.е. таких, у которых оси и диаметры оснований пропорциональны, относятся как кубы диаметров. Наконец, в последних 2 предложениях устанавливается, что отношение объемов 2 конусов, площади оснований которых равны, равно отношению высот. По определению Евклида, конус образуется от вращения прямоугольного треугольника, вокруг одного из катетов.

2. Определение

Конусом (точнее, круговым конусом) называется тело, которое состоит из круга - основания конуса, точки, не лежащей в плоскости этого круга, - вершины конуса и всех отрезков, соединяющих вершину конуса с точками основания (рис. 1) Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими, конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания. В дальнейшем мы будем рассматривать только прямой конус, называя его для краткости просто конусом. Наглядно прямой круговой конус можно представлять себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого кругового конуса называется прямая, содержащая его высоту.

3. Теорема

Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность - по окружности с центром на оси конуса.

Доказательство. Пусть - плоскость, параллельная плоскости основания конуса и пересекающая конус (рис. 5). Преобразование гомотетии относительно вершины конуса, совмещающее плоскость с плоскостью основания, совмещает сечение конуса плоскостью с основанием конуса.

Следовательно, сечение конуса плоскостью есть круг, а сечение боковой поверхности - окружность с центром на оси конуса. Теорема доказана.

4. Сечение

Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса. В частности, равнобедренным треугольником является осевое сечение конуса. Это сечение, которое проходит через ось конуса.

Усеченным конусом называется часть конуса, ограниченная его основанием и сечением, плоскость которого параллельна плоскости основания.

конус геометрический усеченный вращение

5. Применение на практике

Знания о конусе широко применяются в быту, на производстве, в науке. В жизни мы нередко встречаемся с конусами. Например, мы используем вёдра, имеющие форму усечённого конуса. Крыши старинных замков очень часто похожи на конус. Для переливания жидкостей мы берем воронку, она имеет форму усечённого конуса. В данной работе рассмотрены задачи, вопросы которых встречаются нам в повседневной жизни. Работа выполнена в программе PowerPoint, содержит теоретический материал.

Список литературы

1. Погорелов А.В. Геометрия: Учебник для 10 - 11 классов общеобразовательных учреждений, 1995.

2. Бескин Л.Н. Стереометрия. Пособие для учителей средней школы, 1999.

3. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия: Учебник для 10 - 11 классов общеобразовательных учреждений, 2000.

4. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия: учебник для 10-11 классов общеобразовательных учреждений, 1998.

5. Киселев А.П., Рыбкин Н.А. Геометрия: Стереометрия: 10 - 11 классы: Учебник и задачник, 2000.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и историческая справка о конусе, характеристика его элементов. Особенности образования конуса и виды конических сечений. Построение сферы Данделена и ее параметры. Применение свойств конических сечений. Расчеты площадей поверхностей конуса.

    презентация [499,0 K], добавлен 08.04.2012

  • Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.

    презентация [137,9 K], добавлен 12.12.2013

  • Поняття правильної піраміди, її висоти і радіусу описаного навколо неї прямого конуса. Особливості комбінацій геометричних тіл: твірної конуса, розміщення центра його основи та висоти. Властивості правильного трикутника і розрахунок об'єму тіла обертання.

    контрольная работа [454,7 K], добавлен 07.07.2011

  • Определение цилиндра (кругового прямого и наклонного), прямого и усечённого конуса, шара и сферы. Основные формулы по расчету геометрических размеров фигур вращения: радиуса, площади боковой и полной поверхности. Объем шара по Архимеду. Уравнение сферы.

    презентация [3,4 M], добавлен 18.04.2013

  • Обоснование алгоритма уточнения решения. Свойства последовательности стохастических матриц, которые гарантируют существование предельного конуса. Условия, при которых уточнённое по последовательности конусов оптимальное решение является единственным.

    дипломная работа [117,9 K], добавлен 14.01.2011

  • Ознакомление с понятиями синуса, косинуса, тангенса острого угла прямоугольного треугольника и основным тригонометрическим тождеством. Нахождение площади равнобедренного прямоугольного треугольная по заданному основанию и прилегающему к нему углу.

    конспект урока [67,9 K], добавлен 17.05.2010

  • Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

    презентация [376,2 K], добавлен 28.02.2012

  • Основа физики – геометрия. Она определяет способы задания координат. Преобразования их единственны и это преобразования Лоренца внутри изотропного конуса. На поверхности изотропного конуса эти преобразования не обладают единственностью. Расстояние света.

    статья [6,1 K], добавлен 22.06.2008

  • Элементы геометрии треугольника: изогональное и изотомическое сопряжение, замечательные точки и линии. Коники, связанные с треугольником: свойства конических сечений; коники, описанные около треугольника и вписанные в него; применение к решению задач.

    курсовая работа [1,3 M], добавлен 17.06.2012

  • Определение периметра треугольника, наименьшего и наибольшего значений функции. Вычисление средней температуры. Проведение вычислений логарифмов. Нахождение угла между прямой и плоскостью. Вычисление объема конуса. Коэффициент теплового расширения.

    контрольная работа [15,5 K], добавлен 27.12.2013

  • Оптимальність по конусу в багатокрітеріальній задачі. Оптимальне рішення по Парето. Властивості послідовності стохастичних матриць, які гарантують існування граничного конуса. Умови, при яких уточнене по послідовності конусів оптимальне рішення є єдиним.

    реферат [121,5 K], добавлен 16.01.2011

  • Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.

    презентация [11,6 M], добавлен 04.04.2019

  • Головні властивості прямого циліндра, визначення площі його бічної поверхні і радіусу основи. Розрахунок осьового перерізу прямого конуса та об'єму кулі. Площа поверхні тіла обертання рівнобедреного трикутника навколо прямої, що містить його основу.

    контрольная работа [302,8 K], добавлен 07.07.2011

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация [174,3 K], добавлен 18.12.2012

  • Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.

    курс лекций [3,7 M], добавлен 23.04.2011

  • Биссектриса треугольника, центр вписанной окружности треугольника, точка Жергонна. Центр тяжести окружности треугольника. Решение задач на применение свойств биссектрисы. Окружность и прямая Эйлера, свойства окружности. Ортоцентр окружности треугольника.

    курсовая работа [330,3 K], добавлен 13.05.2015

  • Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.

    научная работа [2,0 M], добавлен 29.01.2010

  • "Конические сечения" Аполлония. Вывод уравнения кривой для сечения прямоугольного конуса вращения. Вывод уравнения для параболы, для эллипса и гиперболы. Инвариантность конических сечений. Дальнейшее развитие теории конических сечений в трудах Аполлония.

    реферат [174,6 K], добавлен 04.02.2010

  • Расчет площади равнобедренного и равностороннего треугольника. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы. Расчет размеров медианы, биссектрисы.

    презентация [68,7 K], добавлен 16.04.2011

  • Медианы треугольника и их свойства. Открытие немецкого математика Г. Лейбница. Применение медиан в математической статистике. Основная сущность понятия "медиана тетраедра". Шесть доказательств теоремы о медианах. Теорема о медианах треугольника.

    реферат [44,3 K], добавлен 05.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.