Однородная система линейных уравнений
Построение однородной системы алгебраического уравнения с равной степенью составляющих многочленов. Обзор тривиальных и нетривиальных решений однородной системы. Составление матрицы линейно независимых координат. Очерк неоднородных решений уравнения.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 29.09.2013 |
Размер файла | 70,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Лекция
Однородная система линейных уравнений
Запишем однородную систему линейных уравнений:
(1)
Однородная система всегда совместна, так как всегда имеется тривиальное решение.
Согласно общей теории единственным является тривиальное решение уравнения.
Теорема 1. - о нетривиальных решениях однородной системы.
Однородная линейная система с квадратной матрицей имеет нетривиальное решение тогда и только тогда, когда определитель системы равен нулю.
Доказательство:
По теореме Крамера, когда система с квадратной матрицей имеет единственное решение (т. е., векторы - столбцы системы (1) - линейно зависимы). В случае если задана система линейных однородных уравнений, это решение - тривиальное (0,0,…0). Значит, нетривиальные решения имеются тогда и только тогда, когда решений системы бесконечное множество.
Любое решение СЛОУ выражается в виде линейной комбинации векторов.
(2)
Покажем, что вектора:
- линейно независимы. Для этого составим матрицу Г из их координат:
Ниже черты расположен минор порядка , отличный от нуля:
- столбцов матрицы Г линейно независимы.
Следовательно, вектора - линейно независимы, т. е., эти вектора образуют базис подпространства.
Определение 1.
Всякая линейно независимая система (n-r) решений системы линейных однородных уравнений называется фундаментальной системой решений.
Замечание 1. Отличный от нуля минор матрицы порядка , такой, что всякие миноры порядка (r+1) и выше, (если такие имеются) равны нулю, называется базисом. Итак, общее решение СЛОУ:
(3)
Где:
- фундаментальная система решений;
- произвольные постоянные.
Пример 1:
Системы линейных неоднородных уравнений (СЛНУ).
Рассмотрим систему неоднородных уравнений:
(4)
Пусть:
Пусть Хо - решение этой системы, т. е.:
(5)
Вычитая из (4) выражение (5), получим:
Где:
- является решением соответствующего однородного уравнения.
Согласно (3):
В нашем случае:
Или:
(4).
Таким образом:
Теорема 2.
Общее решение представляется в виде суммы произвольного частного решения этой системы и общего решения соответствующей ей однородной системы.
Следствие 1. Разность двух произвольных решений систем линейных неоднородных уравнений является решением соответствующей системы линейных однородных уравнений.
Следствие 2. Сумма любого частного решения системы линейных неоднородных уравнений с любым частным решением соответствующей системы линейных однородных уравнений дает частное решение системы линейных неоднородных уравнений.
Замечание 2. В формуле (5) присутствует частное решение системы.
Пример 2:
алгебраический уравнение матрица
Размещено на Allbest.ru
...Подобные документы
Характеристика уравнений с разделяющимися переменными. Сущность метода Бернулли и метода Лагранжа, задачи Коша. Решение линейных уравнений n-го порядка. Фундаментальная система решений - набор линейно независимых решений однородной системы уравнений.
контрольная работа [355,9 K], добавлен 28.02.2011Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.
контрольная работа [193,5 K], добавлен 28.03.2014Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.
контрольная работа [104,2 K], добавлен 23.01.2012Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.
научная работа [47,7 K], добавлен 05.05.2010Основные понятия и теоремы систем линейных уравнений, характеристика методов их решения. Критерий совместности общей системы. Структура общих решений однородной и неоднородной систем. Матричный метод решения и обобщение. Методы Крамера и Гаусса.
курсовая работа [154,5 K], добавлен 13.11.2012Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.
контрольная работа [239,4 K], добавлен 19.06.2009Разложение определителя 4-го порядка. Проверка с помощью функции МОПРЕД() в программе Microsoft Excel. Нахождение обратной матрицы. Решение системы линейных уравнений методом обратной матрицы и методом Гаусса. Составление общего уравнения плоскости.
контрольная работа [138,7 K], добавлен 05.07.2015Описание методов решения системы линейного алгебраического уравнения: обратной матрицы, Якоби, Гаусса-Зейделя. Постановка и решение задачи интерполяции. Подбор полиномиальной зависимости методом наименьших квадратов. Особенности метода релаксации.
лабораторная работа [4,9 M], добавлен 06.12.2011Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.
дипломная работа [395,4 K], добавлен 10.06.2010Поиск собственных чисел и построение фундаментальной системы решений. Исследование зависимости жордановой формы матрицы А от свойств матрицы системы. Построение фундаментальной матрицы решений методом Эйлера, решение задачи Коши и построение графиков.
курсовая работа [354,7 K], добавлен 14.10.2010Решение системы линейных уравнений методом Гауса. Преобразования расширенной матрицы, приведение ее к треугольному виду. Средства матричного исчисления. Вычисление алгебраических дополнений матрицы. Решение матричного уравнения по правилу Крамера.
задача [26,8 K], добавлен 29.05.2012Решение системы линейных уравнений методами Крамера, Гаусса (посредством преобразований, не изменяющих множество решений системы), матричным (нахождением обратной матрицы). Вероятность оценки события. Определение предельных вероятностей состояний системы.
контрольная работа [69,7 K], добавлен 26.02.2012Гиперболические уравнения и уравнения смешанного типа. Неограниченная область свойства решений эллиптических уравнений. Вспомогательные леммы и утверждения. Существование резольвенты дифференциального оператора. Применение преобразования Фурье.
реферат [93,9 K], добавлен 30.04.2013Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа [332,6 K], добавлен 14.12.2012Диофант и история диофантовых уравнений. О числе решений линейных диофантовых уравнений (ЛДУ). Нахождение решений для некоторых частных случаев ЛДУ. ЛДУ c одной неизвестной и с двумя неизвестными. Произвольные ЛДУ.
курсовая работа [108,7 K], добавлен 13.06.2007Решение дифференциальных уравнений с разделяющимися переменными, однородных, линейных уравнений первого порядка и уравнений допускающего понижение порядка. Введение функций в решение уравнений. Интегрирование заданных линейных неоднородных уравнений.
контрольная работа [92,7 K], добавлен 09.02.2012Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.
шпаргалка [129,6 K], добавлен 22.06.2008Система двух нелинейных обыкновенных дифференциальных уравнений, порождённая прямым и обратным преобразованиями Беклунда высшего аналога второго уравнения Пенлеве. Аналитические свойства решения, наличие у системы четырёхпараметрических семейств решений.
реферат [104,0 K], добавлен 28.06.2009История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат [75,8 K], добавлен 09.05.2009Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015