Принцип максимума Понтрягина

Принцип максимума Понтрягина как эффективное средство исследования задач оптимального управления. Примеры применения принципа максимума. Построение функции Гамильтона по двум дифференциальным уравнениям первого порядка. Задачи оптимального управления.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 01.10.2013
Размер файла 92,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Принцип максимума Понтрягина

Постановка задачи оптимального управления.

Состояние объекта управления характеризуется n - мерной вектор функцией, например, функцией времени

понтрягин максимум гамильтон уравнение

Так, шестимерная вектор-функция времени полностью определяет положение самолета как твердого тела в пространстве. Три координаты определяют положение центра масс, а три - вращение вокруг центра масс.

От управляющего органа к объекту управления поступает вектор-функция . Векторы x' и u', обычно связаны между собой каким-то соотношением. Наиболее развитым в настоящее время является уравнение, в котором векторы связаны системой обыкновенных дифференциальных уравнений. Итак, пусть движение управляемого объекта описывается системой дифференциальных уравнений

(1.1)

где - вектор координат объекта или фазовых координат,

- заданная вектор-функция, - вектор управлений или просто управление.

В уравнении (1.1) векторы являются функциями переменной t, обозначающей время, причем, где - отрезок времени, на котором происходит управление системой.

На управление обычно накладывается условие

, (1.2)

где U(t) - заданное множество в при каждом .

Будем называть далее управлением кусочно-непрерывную на отрезке (т.е. имеющую конечное число разрывов первого рода) r-мерную вектор-функцию и, непрерывную справа в точках разрыва и непрерывную в точке Т. Управление и называется допустимым, если оно удовлетворяет ограничению (1.2).

Заметим, что ограничиться рассмотрением непрерывных управлений оказывается невозможным, так как с их помощью трудно моделировать моменты переключения управления такие, как, например, включение и отключение двигателей, отделение ступеней ракеты, поворот рулей и т.д.

Иногда рассматривают и более широкие классы допустимых управлений, например, класс всех ограниченных измеримых управлений, удовлетворяющих условию (1.2).

Покажем, как при произвольном начальном положении  и допустимом управлении и определяется траектория управляемого объекта. Рассмотрим задачу Коши

(1.3)

Поскольку при разрывных правых частях классическое понятие решения системы дифференциальных уравнений неприменимо, поясним, что понимается в данном случае под решением задачи (1.3). Для этого поступим следующим образом.

Пусть функция и имеет скачки в точках причем. Предположим, что задача (1.3) имеет решение х, определенное на всем отрезке [to,], причем . Далее рассмотрим задачу Коши

.

Предполагая, что она имеет решение на отрезке [] и , приходим к задаче

и т.д.

Если функцию х удалось определить указанным способом на всем отрезке [to. Т], то будем называть ее решением задачи (1.3) или фазовой траекторией (иногда просто траекторией), соответствующей управлению и. Отметим, что x - непрерывная по построению функция, удовлетворяющая на отрезке равенству

При выполнении определенных условий на f решение задачи (1.3), соответствующее управлению и, существует и единственно при произвольном начальном положении и произвольном допустимом управлении и.

Помимо ограничения на управление могут существовать ограничения и на фазовые координаты

(1.4)

Ограничения на концах траектории целесообразно рассматривать отдельно:

(1.5)

здесь, S (Т) - заданные множества из R»;

-заданные множества из R, причем inf < sup, to<.T.

Таким образом, начальный и конечный моменты времени не обязательно фиксированы. Случаю фиксированных to, Т соответствуют множества , , состоящие из одной точки; при этом говорят, что рассматривается задача с закрепленным временем.

Если So (to) = {} при любом, то левый конец траектории называют закрепленным. Если же So (to) == R» при всех , то левый конец траектории называют свободным. Во всех остальных случаях левый конец называют подвижным. В аналогичных ситуациях говорят о закрепленном, свободном или подвижном правом конце траектории.

Цель управления в задаче оптимального управления состоит в минимизации некоторого функционала на множестве допустимых наборов.

Если каждой функции y=f(x) определенного класса ставится в соответствии по некоторому закону определенное числовое значение переменной I, то эту переменную называют функционалом от одной функциональной переменной I=I[y]=I [y(x)]=I [f(x)].

Наиболее часто под задачами управления понимаются задачи, в которых роль функционала выполняет интегральный функционал

Мы будем рассматривать задачу с целевым функционалом

(1.6)

представляющим собой сумму интегрального функционала

и терминального функционала Ф (х(Т), Т). Эта задача называется задачей Больца. Ее частными случаями являются задача с интегральным функционалом, называемая задачей Лагранжа, и задача с терминальным функционалом, называемая задачей Майера. Задача с интегральным функционалом при  называется задачей оптимального быстродействия.

Набор (to, Т, х, и, х), минимизирующий функционал (1.6), называется решением задачи оптимального управления, управление и - оптимальным управлением, а траектория х - оптимальной траекторией. Часто решением задачи оптимального управления называют пару (ц, х).

Эффективным средством исследования задач оптимального управления является принцип максимума Понтрягина, представляющий собой необходимое условие оптимальности в таких задачах.

Рассмотрим задачу оптимального управления, являющуюся частным случаем задачи, сформулированной выше

(2.1)

,

где (2.2)

При этом предполагается, что моменты to, Т фиксированы, т.е. рассматривается задача с закрепленным временем; множество U не зависит от времени, фазовые ограничения отсутствуют. Положим

,

где -константа,

Функция Н называется функцией Гамильтона.

Система линейных дифференциальных уравнений  относительно переменных называется сопряженной системой, соответствующей управлению и и траектории х. Здесь

.

В более подробной покоординатной записи сопряженная система принимает вид

, (2.3)

Система (2.3) имеет при любых начальных условиях единственное решение, определенное и непрерывное на всем отрезке .

Следующая теорема выражает необходимые условия оптимальности в задаче (2.1).

Теорема (принцип максимума Понтрягина).

Пусть функции и, Ф, g1,…, gm имеют частные производные по переменным х1,…, Хn и непрерывны вместе с этими производными по совокупности аргументов х, и  U, t [to. Т]. Предположим, что (и, х) - решение задачи (2.1). Тогда существует решение  сопряженной системы (2.3), соответствующей управлению и и траектории х, и константа  такие, что |  | + || (t) || при t [to, Т], и выполняются следующие условия:

а) (условие максимума) при каждом t [to. Т] функция Гамильтона, достигает максимума по при v=u (t), т.е.

H (x(t), u(t),=max H (x(t), v(t), (2.4)

б) (условие трансверсальности на левом конце траектории) существуют числа, такие, что

(2.5)

в) (условие трансверсальности на правом конце траектории) существуют числа  такие, что

(2.6)

Центральным в теореме является условие максимума - (2.4).

Если отказаться от предположения о том, что конечный момент времени Т фиксирован, то теорема останется справедливой за исключением условия трансверсальности на правом конце траектории. Условие (2.6) заменим условием

и добавить еще одно условие трансверсальности на правом конце траектории:

Примеры применения принципа максимума.

1. Простейшая задача оптимального быстродействия.

Пусть точка движется по прямой в соответствии с законом

(3.1)

где х - координата. Требуется найти управление и, переводящее точку из начального положения в начало координат за минимальное время Т (задача оптимального быстродействия). При этом скорость точки в конце траектории должна быть нулевой, а управление - удовлетворять условию .

Применим к сформулированной задаче принцип максимума Понтрягина. Введем фазовые переменные . Тогда движение управляемого объекта описывается системой двух дифференциальных уравнений первого порядка:

(3.2)

Начальное положение при t0=0 и конечное положение (0, 0) фиксированы, а конечный момент времени Т не фиксирован.

В обозначениях п.п. 1, 2 в данной задаче U ==[-1, 1], f0=1, Ф=0, а функция Гамильтона имеет вид

Общее решение сопряженной системы

легко выписывается в явном виде

где С, D - постоянные.

Очевидно, что максимум функции Н по и U достигается при

Таким образом, оптимальное управление и может принимать лишь два значения +1.

2. Определить управление u(t), которое дает минимум интегралу

, в процессе, описываемом уравнением

(1).

Решение.

Введем дополнительную переменную

(2)

Для этой переменной имеем дифференциальное уравнение

( (3)

с начальными условиями, получаемыми из (2), т.е. х2(0)=0. Минимизирующий функционал, используя (2), можно записать в виде I[T]=x2(T).

Построим функцию Гамильтона

Запишем сопряженную систему

(3)

Запишем 

Y1(Т)=0 (т. к. с1=0)

Y2(Т)=-1

Из поэтому Y2(е)=-1. Теперь функция Гамильтона запишется в виде

H=-aY1x1+?1u-0,5x12-0,5u2.

По принципу максимума функция Н при фиксированных х1 и Y1 достигает максимума по u:

, ,

Осталось решить систему уравнений (2) и (3) при условии , Y2(Т)=-1,

,

с граничными условиями 

Сведем данную систему к одному уравнению относительно U.

Добавим к этому уравнению граничные условия  и решим его. Составим характеристическое уравнение к2 - (а2+1) =0, к1,2=+(-)

Найдем С1 и С2.  С2=-с2е. Тогда 

Используя граничные условия найдем С2

Таким образом, определено оптимальное решение

Размещено на Allbest.ru

...

Подобные документы

  • Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.

    курсовая работа [1,4 M], добавлен 31.01.2014

  • Определения и параболические операторы. Принцип максимума для уравнений параболического типа. Применение принципа максимума при математическом моделировании процессов. Наличие экстремальных свойств уравнений. Решение уравнения теплопроводности.

    курсовая работа [159,5 K], добавлен 22.08.2013

  • Исследование вспомогательных определений и тем, необходимых при доказательстве основных утверждений. Понятие и содержание субгармоничной функции, ее свойства и особенности. Содержание обобщенного принципа максимума модуля и его важнейшие приложения.

    дипломная работа [546,5 K], добавлен 08.07.2012

  • Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.

    контрольная работа [1,4 M], добавлен 16.08.2010

  • Алгоритм и логика решения задач категории B8 из раздела "математический анализ" Единого государственного экзамена. Определение точек максимума и минимума. Нахождение интервалов возрастания и убывания функции. Геометрический смысл определенного интеграла.

    методичка [350,9 K], добавлен 23.04.2013

  • Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

    лекция [744,1 K], добавлен 24.11.2010

  • Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.

    реферат [165,4 K], добавлен 24.08.2015

  • Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.

    дипломная работа [351,2 K], добавлен 01.06.2015

  • Полухарактеры и характеры. Принцип двойственности Понтрягина. Функциональная характеристика показательной функции. Исследование полугрупп, возникающих в статистических вычислениях. Введение в них инвариантной меры. Операторы Ганкеля и его свойства.

    курсовая работа [241,3 K], добавлен 08.01.2013

  • Составление гамильтониан Н с учетом необходимых условий оптимальности для задачи Майера. Определение оптимального управления из условия максимизации. Получение конической системы уравнений и ее разрешение. Анализ необходимых условий оптимальности.

    курсовая работа [113,1 K], добавлен 13.09.2010

  • Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.

    реферат [933,5 K], добавлен 10.08.2014

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа [61,5 K], добавлен 14.01.2015

  • Описание газлифтного процесса с помощью системы дифференциальных уравнений с частными производными гиперболического типа. Конечно-разностная аппроксимация производных функций и решение дискретной линейно-квадратичной задачи оптимального управления.

    статья [41,4 K], добавлен 17.10.2012

  • Задачи, приводящие к дифференциальным уравнениям, связывающих независимую переменную, искомую функцию и ее производную. Нахождение матрицы. Исследование функции и построение ее графика. Определение площади фигуры, ограниченной прямой и параболой.

    контрольная работа [209,0 K], добавлен 14.03.2017

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Подборка комичных отрывков из конспектов студентов 4-го курса механико-математического факультета и некоторых казусных фраз и высказываний их преподавателей. Сущность и обобщение принципа Максима Понтрягина. Методика доказательства очевидного неравенства.

    учебное пособие [270,9 K], добавлен 28.03.2010

  • Основные свойства непрерывной функции. Теоремы о корне, промежуточном значении и об ограниченности непрерывной функции, их доказательство. Непрерывная на отрезке функция достигает максимума и минимума. Графическое представление корней уравнения.

    лекция [497,0 K], добавлен 13.02.2009

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.

    курсовая работа [836,0 K], добавлен 09.12.2013

  • Нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность ее решения доказывается принципом максимума, а существование решения доказывается сведением задачи к эквивалентному ей интегральному уравнению.

    задача [54,3 K], добавлен 13.05.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.