Принцип максимума Понтрягина
Принцип максимума Понтрягина как эффективное средство исследования задач оптимального управления. Примеры применения принципа максимума. Построение функции Гамильтона по двум дифференциальным уравнениям первого порядка. Задачи оптимального управления.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 01.10.2013 |
Размер файла | 92,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Принцип максимума Понтрягина
Постановка задачи оптимального управления.
Состояние объекта управления характеризуется n - мерной вектор функцией, например, функцией времени
понтрягин максимум гамильтон уравнение
Так, шестимерная вектор-функция времени полностью определяет положение самолета как твердого тела в пространстве. Три координаты определяют положение центра масс, а три - вращение вокруг центра масс.
От управляющего органа к объекту управления поступает вектор-функция . Векторы x' и u', обычно связаны между собой каким-то соотношением. Наиболее развитым в настоящее время является уравнение, в котором векторы связаны системой обыкновенных дифференциальных уравнений. Итак, пусть движение управляемого объекта описывается системой дифференциальных уравнений
(1.1)
где - вектор координат объекта или фазовых координат,
- заданная вектор-функция, - вектор управлений или просто управление.
В уравнении (1.1) векторы являются функциями переменной t, обозначающей время, причем, где - отрезок времени, на котором происходит управление системой.
На управление обычно накладывается условие
, (1.2)
где U(t) - заданное множество в при каждом .
Будем называть далее управлением кусочно-непрерывную на отрезке (т.е. имеющую конечное число разрывов первого рода) r-мерную вектор-функцию и, непрерывную справа в точках разрыва и непрерывную в точке Т. Управление и называется допустимым, если оно удовлетворяет ограничению (1.2).
Заметим, что ограничиться рассмотрением непрерывных управлений оказывается невозможным, так как с их помощью трудно моделировать моменты переключения управления такие, как, например, включение и отключение двигателей, отделение ступеней ракеты, поворот рулей и т.д.
Иногда рассматривают и более широкие классы допустимых управлений, например, класс всех ограниченных измеримых управлений, удовлетворяющих условию (1.2).
Покажем, как при произвольном начальном положении и допустимом управлении и определяется траектория управляемого объекта. Рассмотрим задачу Коши
(1.3)
Поскольку при разрывных правых частях классическое понятие решения системы дифференциальных уравнений неприменимо, поясним, что понимается в данном случае под решением задачи (1.3). Для этого поступим следующим образом.
Пусть функция и имеет скачки в точках причем. Предположим, что задача (1.3) имеет решение х, определенное на всем отрезке [to,], причем . Далее рассмотрим задачу Коши
.
Предполагая, что она имеет решение на отрезке [] и , приходим к задаче
и т.д.
Если функцию х удалось определить указанным способом на всем отрезке [to. Т], то будем называть ее решением задачи (1.3) или фазовой траекторией (иногда просто траекторией), соответствующей управлению и. Отметим, что x - непрерывная по построению функция, удовлетворяющая на отрезке равенству
При выполнении определенных условий на f решение задачи (1.3), соответствующее управлению и, существует и единственно при произвольном начальном положении и произвольном допустимом управлении и.
Помимо ограничения на управление могут существовать ограничения и на фазовые координаты
(1.4)
Ограничения на концах траектории целесообразно рассматривать отдельно:
(1.5)
здесь, S (Т) - заданные множества из R»;
-заданные множества из R, причем inf < sup, to<.T.
Таким образом, начальный и конечный моменты времени не обязательно фиксированы. Случаю фиксированных to, Т соответствуют множества , , состоящие из одной точки; при этом говорят, что рассматривается задача с закрепленным временем.
Если So (to) = {} при любом, то левый конец траектории называют закрепленным. Если же So (to) == R» при всех , то левый конец траектории называют свободным. Во всех остальных случаях левый конец называют подвижным. В аналогичных ситуациях говорят о закрепленном, свободном или подвижном правом конце траектории.
Цель управления в задаче оптимального управления состоит в минимизации некоторого функционала на множестве допустимых наборов.
Если каждой функции y=f(x) определенного класса ставится в соответствии по некоторому закону определенное числовое значение переменной I, то эту переменную называют функционалом от одной функциональной переменной I=I[y]=I [y(x)]=I [f(x)].
Наиболее часто под задачами управления понимаются задачи, в которых роль функционала выполняет интегральный функционал
Мы будем рассматривать задачу с целевым функционалом
(1.6)
представляющим собой сумму интегрального функционала
и терминального функционала Ф (х(Т), Т). Эта задача называется задачей Больца. Ее частными случаями являются задача с интегральным функционалом, называемая задачей Лагранжа, и задача с терминальным функционалом, называемая задачей Майера. Задача с интегральным функционалом при называется задачей оптимального быстродействия.
Набор (to, Т, х, и, х), минимизирующий функционал (1.6), называется решением задачи оптимального управления, управление и - оптимальным управлением, а траектория х - оптимальной траекторией. Часто решением задачи оптимального управления называют пару (ц, х).
Эффективным средством исследования задач оптимального управления является принцип максимума Понтрягина, представляющий собой необходимое условие оптимальности в таких задачах.
Рассмотрим задачу оптимального управления, являющуюся частным случаем задачи, сформулированной выше
(2.1)
,
где (2.2)
При этом предполагается, что моменты to, Т фиксированы, т.е. рассматривается задача с закрепленным временем; множество U не зависит от времени, фазовые ограничения отсутствуют. Положим
,
где -константа,
Функция Н называется функцией Гамильтона.
Система линейных дифференциальных уравнений относительно переменных называется сопряженной системой, соответствующей управлению и и траектории х. Здесь
.
В более подробной покоординатной записи сопряженная система принимает вид
, (2.3)
Система (2.3) имеет при любых начальных условиях единственное решение, определенное и непрерывное на всем отрезке .
Следующая теорема выражает необходимые условия оптимальности в задаче (2.1).
Теорема (принцип максимума Понтрягина).
Пусть функции и, Ф, g1,…, gm имеют частные производные по переменным х1,…, Хn и непрерывны вместе с этими производными по совокупности аргументов х, и U, t [to. Т]. Предположим, что (и, х) - решение задачи (2.1). Тогда существует решение сопряженной системы (2.3), соответствующей управлению и и траектории х, и константа такие, что | | + || (t) || при t [to, Т], и выполняются следующие условия:
а) (условие максимума) при каждом t [to. Т] функция Гамильтона, достигает максимума по при v=u (t), т.е.
H (x(t), u(t),=max H (x(t), v(t), (2.4)
б) (условие трансверсальности на левом конце траектории) существуют числа, такие, что
(2.5)
в) (условие трансверсальности на правом конце траектории) существуют числа такие, что
(2.6)
Центральным в теореме является условие максимума - (2.4).
Если отказаться от предположения о том, что конечный момент времени Т фиксирован, то теорема останется справедливой за исключением условия трансверсальности на правом конце траектории. Условие (2.6) заменим условием
и добавить еще одно условие трансверсальности на правом конце траектории:
Примеры применения принципа максимума.
1. Простейшая задача оптимального быстродействия.
Пусть точка движется по прямой в соответствии с законом
(3.1)
где х - координата. Требуется найти управление и, переводящее точку из начального положения в начало координат за минимальное время Т (задача оптимального быстродействия). При этом скорость точки в конце траектории должна быть нулевой, а управление - удовлетворять условию .
Применим к сформулированной задаче принцип максимума Понтрягина. Введем фазовые переменные . Тогда движение управляемого объекта описывается системой двух дифференциальных уравнений первого порядка:
(3.2)
Начальное положение при t0=0 и конечное положение (0, 0) фиксированы, а конечный момент времени Т не фиксирован.
В обозначениях п.п. 1, 2 в данной задаче U ==[-1, 1], f0=1, Ф=0, а функция Гамильтона имеет вид
Общее решение сопряженной системы
легко выписывается в явном виде
где С, D - постоянные.
Очевидно, что максимум функции Н по и U достигается при
Таким образом, оптимальное управление и может принимать лишь два значения +1.
2. Определить управление u(t), которое дает минимум интегралу
, в процессе, описываемом уравнением
(1).
Решение.
Введем дополнительную переменную
(2)
Для этой переменной имеем дифференциальное уравнение
( (3)
с начальными условиями, получаемыми из (2), т.е. х2(0)=0. Минимизирующий функционал, используя (2), можно записать в виде I[T]=x2(T).
Построим функцию Гамильтона
Запишем сопряженную систему
(3)
Запишем
Y1(Т)=0 (т. к. с1=0)
Y2(Т)=-1
Из поэтому Y2(е)=-1. Теперь функция Гамильтона запишется в виде
H=-aY1x1+?1u-0,5x12-0,5u2.
По принципу максимума функция Н при фиксированных х1 и Y1 достигает максимума по u:
, ,
Осталось решить систему уравнений (2) и (3) при условии , Y2(Т)=-1,
,
с граничными условиями
Сведем данную систему к одному уравнению относительно U.
Добавим к этому уравнению граничные условия и решим его. Составим характеристическое уравнение к2 - (а2+1) =0, к1,2=+(-)
Найдем С1 и С2. С2=-с2е. Тогда
Используя граничные условия найдем С2
Таким образом, определено оптимальное решение
Размещено на Allbest.ru
...Подобные документы
Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.
курсовая работа [1,4 M], добавлен 31.01.2014Определения и параболические операторы. Принцип максимума для уравнений параболического типа. Применение принципа максимума при математическом моделировании процессов. Наличие экстремальных свойств уравнений. Решение уравнения теплопроводности.
курсовая работа [159,5 K], добавлен 22.08.2013Исследование вспомогательных определений и тем, необходимых при доказательстве основных утверждений. Понятие и содержание субгармоничной функции, ее свойства и особенности. Содержание обобщенного принципа максимума модуля и его важнейшие приложения.
дипломная работа [546,5 K], добавлен 08.07.2012Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа [1,4 M], добавлен 16.08.2010Алгоритм и логика решения задач категории B8 из раздела "математический анализ" Единого государственного экзамена. Определение точек максимума и минимума. Нахождение интервалов возрастания и убывания функции. Геометрический смысл определенного интеграла.
методичка [350,9 K], добавлен 23.04.2013Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.
лекция [744,1 K], добавлен 24.11.2010Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат [165,4 K], добавлен 24.08.2015Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.
дипломная работа [351,2 K], добавлен 01.06.2015Полухарактеры и характеры. Принцип двойственности Понтрягина. Функциональная характеристика показательной функции. Исследование полугрупп, возникающих в статистических вычислениях. Введение в них инвариантной меры. Операторы Ганкеля и его свойства.
курсовая работа [241,3 K], добавлен 08.01.2013Составление гамильтониан Н с учетом необходимых условий оптимальности для задачи Майера. Определение оптимального управления из условия максимизации. Получение конической системы уравнений и ее разрешение. Анализ необходимых условий оптимальности.
курсовая работа [113,1 K], добавлен 13.09.2010Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.
реферат [933,5 K], добавлен 10.08.2014Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа [61,5 K], добавлен 14.01.2015Описание газлифтного процесса с помощью системы дифференциальных уравнений с частными производными гиперболического типа. Конечно-разностная аппроксимация производных функций и решение дискретной линейно-квадратичной задачи оптимального управления.
статья [41,4 K], добавлен 17.10.2012Задачи, приводящие к дифференциальным уравнениям, связывающих независимую переменную, искомую функцию и ее производную. Нахождение матрицы. Исследование функции и построение ее графика. Определение площади фигуры, ограниченной прямой и параболой.
контрольная работа [209,0 K], добавлен 14.03.2017Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.
презентация [112,6 K], добавлен 17.09.2013Подборка комичных отрывков из конспектов студентов 4-го курса механико-математического факультета и некоторых казусных фраз и высказываний их преподавателей. Сущность и обобщение принципа Максима Понтрягина. Методика доказательства очевидного неравенства.
учебное пособие [270,9 K], добавлен 28.03.2010Основные свойства непрерывной функции. Теоремы о корне, промежуточном значении и об ограниченности непрерывной функции, их доказательство. Непрерывная на отрезке функция достигает максимума и минимума. Графическое представление корней уравнения.
лекция [497,0 K], добавлен 13.02.2009Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.
реферат [70,2 K], добавлен 05.09.2010Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.
курсовая работа [836,0 K], добавлен 09.12.2013Нелокальная краевая задача, которая является некоторым аналогом задачи Бицадзе-Самарского. Единственность ее решения доказывается принципом максимума, а существование решения доказывается сведением задачи к эквивалентному ей интегральному уравнению.
задача [54,3 K], добавлен 13.05.2008